
method of Lagrangian multipliers

c̃=
Q¡1e
eTQ¡1e

: (14)
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Recognizing Occluded Objects in SAR Images

Recognizing occluded vehicle targets in synthetic aperture

radar (SAR) images is addressed. Recognition algorithms, based

on local features, are presented that successfully recognize highly

occluded objects in both XPATCH synthetic SAR signatures

and real SAR images of actual vehicles from the MSTAR

data. Extensive experimental results are presented for a basic

recognition algorithm, using SAR scattering center relative

locations as features with the XPATCH data and for an improved
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algorithm, using scatterer locations and magnitudes with the real

SAR targets in the MSTAR data. The results show the effect of

occlusion on recognition performance in terms of probability

of correct identification (PCI), receiver operating characteristic

(ROC) curves, and confusion matrices.

I. INTRODUCTION

The focus of this work is recognizing occluded
objects, starting with occluded versions of synthetic
aperture radar (SAR) image chips of various target
vehicles and ending with the identification of the
specific vehicle type (e.g., a SCUD missile launcher).
We use both synthetic target images, generated by
the XPATCH radar signature prediction code [1]
and real SAR images of actual vehicles from the
MSTAR (public) targets data set [15]. We present
a basic recognition system for the XPATCH data,
using SAR scattering center relative locations as
features, and an improved recognition system, using
scatterer locations and magnitudes, that achieves
improved performance with the real SAR targets in
the MSTAR data. These local features are the key
to successfully recognizing highly occluded objects.
The recognition approach uses standard models of
the objects (at 1± azimuth increments) to recognize
occluded versions of the same objects in standard
and articulated configurations. (Articulated objects
have at least one major part that can move relative
to the rest of the object, such as the turret rotation
of a tank or a SCUD missile erected on the launcher
vehicle.) The recognition process is an efficient
search for positive evidence, that uses table look-ups
based on information in the occluded test image
to generate votes for the appropriate object (and
azimuth pose). The recognition system performance
is characterized in terms of the effect of occlusion on
such performance measures as probability of correct
identification (PCI), confusion matrices, and ROC
(receiver operating characteristic) curves.
General reviews of automatic target recognition

concepts and technologies can be found in [3, 8].
The detection theory [4, 5], pattern recognition
[13, 16, 17] and neural network [7, 18] approaches
to SAR recognition all tend to use global features
that are optimized for standard, nonarticulated,
nonoccluded configurations. Approaches that rely on
global features are not appropriate for recognizing
occluded (or articulated) objects because occlusion
(or articulation) changes global features like the
object outline and major axis [20]. Some of the
SAR recognition techniques, e.g., MINACE filters
[6], PERFORM [10], mean squared error template
matching [14] and invariant histograms [9] have
reported limited test results for small amounts of
occlusion, typically 25 percent or less. In addition, the
developers of the MSTAR search engine reported [19]
using a shadow inferencing technique to hypothesize

targets with up to 30 percent occlusion in the
cross-range direction.
In contrast, we present an approach to SAR target

recognition, specifically designed to accommodate
articulated and occluded targets, that achieves
excellent recognition results for highly occluded data
with over 50 percent target occlusion. This paper
is both an extension of our earlier work [11] on
occluded and articulated XPATCH objects (e.g. adding
performance analysis, predictions and occlusion
from an unknown second object) and a significant
advancement that addresses the development of new
algorithms needed and the extensive experimental
results obtained with the real MSTAR data. In
addition to locations of scattering centers as features,
this algorithm takes into consideration location
uncertainty, magnitude of scattering centers as features
and its uncertainty. Furthermore by comparing
predicted and actual performance, it shows that
these constraints are effective for target recognition.
A variety of test data (that is distinct from the
training/model data) is used to perform experiments.
This includes 1) simulated controlled occlusion,
2) random positional and magnitude noise as
additional scattering centers, 3) articulated occluded
objects, 4) occlusion from an unmodeled second
object, and 5) allowing for confusers and a reject or
unknown class.

II. SAR TARGET CHARACTERISTICS

A. XPATCH Objects, SAR Images and Scattering
Centers

The XPATCH radar signature prediction code [1]
is used to generate 6 in resolution target chips at 360
azimuth angles (at a 15± depression angle) from CAD
models of three tanks (T72, T80, and M1a1) and
a SCUD missile launcher (with numbers of model
surface facets ranging from 5345 to 32954). The
scattering center locations are determined by finding
local eight-neighbor maxima in the radar image.
Examples of the object CAD model, SAR image
and scattering center locations (as black squares)
are shown in Fig. 1 for the T72 tank at 30± azimuth.
(Fig. 1 is not to scale and the image is displayed at
8 intensity levels, the scattering center map at 256
levels.)

B. MSTAR Objects, SAR Images and Scattering Centers

Objects from the MSTAR public data [15] used in
this paper include: BMP2 armored personnel carrier
(APC) serial number (#) c21, BTR70 APC #c71,
T72 tanks #132 and #a64 (#a64 in the articulation
experiments), ZSU23/4 anti-aircraft gun #d08 and
BRDM2 APC #e71. Regions of interest (ROI) are
found in the MSTAR SAR target chips by reducing
speckle noise using the Crimmins algorithm in
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Fig. 1. Examples of T72 tank CAD model, XPATCH SAR image
and scattering center locations superimposed on image for 30±

azimuth.

Khoros [12], thresholding at the mean plus two
standard deviations, dilating to fill small gaps between
regions, eroding to have one large ROI and little
regions, discarding the small regions with a size
filter and dilating to expand the extracted ROI. All
the procedural parameters in the ROI extraction
algorithm are fixed for the entire MSTAR data used
to demonstrate results in this work. The scattering
centers are extracted from the SAR magnitude data
(within the boundary contour of the ROI) by finding
local eight-neighbor maxima. Example photograph,
SAR image and the ROI, with the locations of the
scattering centers superimposed, are shown in Fig. 2
for ZSU23/4 #d08. The MSTAR data is all at 1 ft
resolution and the data is at 15± depression angle
(unless otherwise noted).

C. Target Occlusion

There are no real SAR data with occluded objects
available to the general public (limited data on
vehicles in revetments [14] and partially hidden

Fig. 2. Example MSTAR target photo, SAR image, ROI (with
peaks) for ZSU 23/4 #d08.

behind walls [19] has been reported to exist, but
it has not yet been released for unrestricted use).
In addition, there is no standard, accepted method
for characterizing or simulating occluded targets.
Typically occlusion occurs when a tank backs up
into a tree line, for example, so that the back end is
covered by trees and only the front portion of the tank
is visible to the radar. Thus, the bright target becomes
a much smaller sized object to the ATR. In addition,
the tree tops can produce bright peaks that are of
similar strength to target peaks at many azimuths.
The occluded test data here is simulated by starting

with a given number of the strongest scattering
centers and then removing the appropriate number
of scattering centers encountered in order, starting in
one of four perpendicular directions di (where d1 and
d3 are the cross range directions, along and opposite
the flight path respectively, and d2 and d4 are the up
range and down range directions). This simulates the
spatial correlation of the missing features in occluded
objects. Then the same number of scattering centers
(with random magnitudes, within the overall range of
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target scatterers) are added back at random locations
within the original bounding box of the chip. This
synthetic noise keeps the number of scatterers constant
and acts as a surrogate for some potential occluding
object.
Our approach, using simulated occlusion provides

an enormous amount of test data with varying known
amounts of occlusion and additional random noise for
carefully controlled experiments, discussed in Section
IV for XPATCH data and Section V for MSTAR
data. In the cases that are not forced recognition,
the test data includes unmodeled confuser vehicles,
where the correct system response should be the
unknown category. In the occluded articulated object
experiments the test data has missing features and
additional noise due to articulation as well as the
simulated occlusion. XPATCH is used to generate
(simulated SAR) test data with actual occlusion and
interference from a second object for the experiments
reported in Section IVD.

III. SAR RECOGNITION ALGORITHM

The basic SAR recognition algorithm is an off-line
model construction process and a similar on-line
recognition process. The approach is designed for
SAR and is specifically intended to accommodate
recognition of occluded and articulated objects.
Standard nonarticulated, nonoccluded models of the
objects are used to recognize these same objects in
nonstandard, articulated and occluded configurations
in the presence of noise. The models are a look up
table and the recognition process is an efficient search
for positive evidence, using relative locations of the
scattering centers in the test image to access the
look-up table and generate votes for the appropriate
object (and azimuth pose).
The relative locations and magnitudes of the N

strongest SAR scattering centers (local maxima in the
radar return signal) are used as characteristic features
(where N, the number of scattering centers used, is
a design parameter). Because of the specular radar
reflections in SAR images, a significant number of
features do not typically persist over a few degrees
of rotation (in either the XPATCH data [11] or the
real MSTAR data [2]). Consequently, we model each
object at 1± azimuth increments. Any local reference
point, such as a scattering center location, can be
chosen as a basis point (or origin) to establish a
reference coordinate system for building a model of
an object at a specific azimuth angle pose. The relative
distance and direction of other scattering centers
can be expressed in radar range and cross-range
coordinates and naturally tessellated into integer
buckets that correspond to the radar range/cross-range
bins. For ideal data, picking the location of the
strongest scattering center as the basis point is
sufficient. However, for potentially corrupted data
where any scattering center could be spurious or

missing (due to the effects of noise, target articulation,
occlusion, nonstandard target configurations, etc.), we
use all N strongest scattering centers in turn as basis
points to ensure that a valid basis point is obtained.
Thus, to handle occlusion and articulation, the size
of the look-up table models (and also the number
of relative distances that are considered in the test
image during recognition) are increased from N to
N(N ¡ 1)=2. The models are constructed using the
relative positions of the scattering centers in the range
and cross-range directions as the initial indices to a
look-up table of labels that give the associated target
type, target pose, basis point range and cross-range
positions and the magnitudes of the two scatterers.
Since the relative distances are not unique, there can
be several of these labels (with different target, pose,
etc. values) at each look-up table entry. The outline
of the model construction algorithm for an object at a
specific azimuth is as follows.

1) Obtain location and magnitude of the strongest
n scatterers.
2) For each scatterer i (1· i· n, where i 6= origin

scatterer), calculate relative range (dRi), cross-range
(dCi) location from the origin and at model look
up table location (dRi,dCi) append to list an entry
with: object name, azimuth angle, origin range,
origin cross-range, origin magnitude, and scatterer i
magnitude.
3) Repeat Step 2 using other scatterers as the

origin.

The recognition process uses the relative locations
of the N strongest scattering centers in the test image
to access the look-up table and generate votes for the
appropriate object, azimuth, range, and cross-range
translation. Constraints are applied to limit the
allowable percent difference in the magnitudes of
the data and model scattering centers (difference
normalized by model magnitude, all expressed as
scaled radar crossection) to §9%, based on measured
probability mass functions of scatterer magnitude
invariance with target configuration variants and
articulations [2]. (Given the MSTAR targets are
centered in the chips, a §5 pixel limit on allowable
translations is imposed for computational efficiency.)
To accommodate some uncertainty in the scattering
center locations, the eight-neighbors of the nominal
range and cross-range relative location are also
probed and the translation results are accumulated
for a 3£ 3 neighborhood in the translation subspace.
The recognition process is repeated with different
scattering centers as basis points, providing multiple
looks at the model database to handle spurious
scatterers that arise due to articulation, occlusion, or
configuration differences. The recognition algorithm
actually makes a total of 9N(N ¡ 1)=2 queries of
the look-up table to accumulate evidence for the
appropriate target type, azimuth angle, and translation.
The models (labels with object, azimuth, etc.)
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associated with a specific look-up table entry are
the real model and other models that happen by
coincidence, to have a scatterer pair with the same
(range, cross-range) relative distance. The constraints
on magnitude differences filter out many of these
false matches. In addition, while these collisions
may occur at one relative location, the same random
object-azimuth pair doesn’t keep showing up at
other relative locations with appropriate scatterer
magnitudes and mapping to a consistent 3£ 3
neighborhood in translation space, while the correct
object does. The outline of the recognition algorithm
is as follows.

1) Obtain the location and magnitude of the
strongest n scatterers in the test SAR image.
2) For each scatterer i (1· i· n, where i 6= origin

scatterer), calculate the relative range (dRi) and
cross-range (dCi) location from the origin, look up
list of entries at (dRi, dCi) in the model table, and for
each entry in the list, if the translation of the origin
and percent magnitude changes of both the scatterer
and the origin (test data versus model entry) are all
within limits, then increment the vote count of the
appropriate object name, azimuth angle and (range,
cross-range) translation combination.
3) Repeat Step 2 using the 3£ 3 neighborhood

about each nominal (dRi, dCi).
4) Repeat Step 2 and Step 3 using other scatterers

as the origin.
5) Tally the votes for each object, azimuth,

translation combination by summing votes in a 3£ 3
neighborhood in translation space.

The basic decision rule used in the recognition is
to select the object-azimuth pair (and associated best
translation) with the highest accumulated vote total.
To handle identification with unknown objects, we
introduce a criteria for the quality of the recognition
result that the votes for the potential winning object
exceed some minimum threshold vmin. By varying
the decision rule threshold we obtain a form of ROC
curve with PCI = Pfdecide correct object j object is
trueg, versus probability of false alarm, Pf = fdecide
any object j unknown is trueg. We call the algorithm
a 6D recognition algorithm since, in effect, we
use the range and cross-range positions and the
magnitudes of pairs of scattering centers. (When using
40 scatterers, this 6D algorithm takes an average of
2.5 s to process a test chip on a Sun Ultra2 without
any optimizations.)

IV. XPATCH RESULTS

Results with XPATCH data are based on using a
2D recognition algorithm that is an earlier, simpler
version of the 6D algorithm described above. The
2D algorithm [11] uses only the relative range
and cross-range distances; it does not compute the
translation; it only considers the exact scatterer

Fig. 3. Effect of XPATCH occlusion and number of scatterers on
recognition rate. (a) Effect of occlusion. (b) Effect of number of

scatterers.

location; and it does not use the magnitude
information.

A. XPATCH Forced Recognition Performance

The performance of the 2D recognition algorithm
with nonarticulated objects that are occluded (using
the approach outlined in Section IIC) is shown in
Fig. 3(a) in terms of the PCI as a function of percent
occlusion with the number of scattering centers used
as a parameter. The results of 288,000 test cases are
shown as 50 points (10 to 50 scatterers in 10 scatterer
steps for 10 to 90% occlusion in 10% steps, plus
20 and 40 scatterers at 55, 65 and 75% occlusion,
minus 10 scatterers at 90% occlusion is 50 points),
where each point for a specific percent occlusion and
number of scattering centers is the average PCI for
all 4 occlusion directions, the 4 objects and the 360
azimuths (5760 test cases). The overall 2D recognition
algorithm performance is almost perfect for up to 60%
occlusion (for 40 scatterers with 60% occlusion the
PCI is 0.986). By 80 to 90% occlusion, the results
are not much better than the 0.25 PCI one would
expect by chance from the 4 possible objects. These
performance results are replotted as Fig. 3(b) to
illustrate the effect of the number of scattering centers
used on the recognition rate for the highly occluded
cases. This indicates that optimal performance is in
the range of 20 to 40 scattering centers.
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B. Performance Analysis

The performance of the 2D recognition algorithm
can be expressed in terms of the number of votes
received for the true case (the actual object, azimuth
used in the test instance) and the highest number of
votes received for any random case. The true case
will have n matching points (scattering centers with
the same range, cross-range location) of M points
considered (where n·M due to occlusion). The
number of votes for the true case, Vt, is given by

Vt =
n(n¡1)
2

+p ¢
·
M(M ¡ 1)¡ n(n¡ 1)

2

¸
(1)

where p is the probability that an object, azimuth
instance has an entry at a random location in the
relative distance look-up table. The first term in (1)
reflects distances with both end points (scattering
centers) matching, while in the remaining term, one
or both of the end points are not matching.
The average number of votes received for the true

test object, the predicted number of votes from the
first term of (1), the average votes for the highest
ranking other object and the average votes for the
incorrect winning object when recognition fails are
shown in Fig. 4(a) as a function of the percent valid
(or unoccluded) data for a 4-object case (SCUD
launcher, T72, M1a1, and T80) with 40 scattering
centers. Each point in Fig. 4(a) for the test object and
highest other object is the average of 5760 test cases
(4 objects, 360 azimuths, 4 occlusion directions). The
true object receives more votes than predicted by the
first term of (1) because of the random contributions
from the nonmatching points. These contributions are
predicted by the second term of (1) to range from
11.3 votes at 10 percent valid down to 2.2 votes at
90 percent valid. These predictions are much lower
than the actual results, because the relative distance
table density distribution is very nonuniform with
short distances being much more common than longer
distances.
The average votes received for the true object

is shown in Fig. 4(b) for the four test objects, and
the average of the highest votes for another object is
shown in Fig. 4(c) with the true object as a parameter.
Note that the two larger objects (in our case the
SCUD launcher and T72 tank) have fewer than
average votes (see Fig. 4(b)) and result in the highest
other object receiving fewer than average votes
(Fig. 4(c)). In generating the occluded test data, the
occluded points are placed back within the original
bounding box of the object SAR image, so the
occluded test cases for the larger objects are relatively
sparse and have more long distances. Because the
larger objects have fewer of the more common short
distances, they have a smaller contribution from
random coincidences and the number of votes is thus
smaller and closer to the number predicted solely

Fig. 4. Occluded performance analysis for XPATCH data.
(a) Average votes. (b) True object votes. (c) Highest other object

votes. (d) Random contribution to winning total votes.

from the valid points (the first term of (1)). Similarly,
because of the relatively fewer smaller distances with
the larger object test cases, the smaller other objects
do not collect many votes.
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Fig. 5. Performance prediction by (2).

If we call the random contribution of the
nonmatching points Vn, then (1) for the number of
votes in the true case can be written as Vt = n(n¡ 1)
=2+Vn. In Fig. 4(a), Vn is the Test object curve minus
the Predicted curve. Fig. 4(d) shows Vn as a function
of percent of valid points n=M for M = 20 and 40
scattering centers. We can approximate Vn, as shown
in Fig. 4(d), by a linearly decreasing function of
n with a random contribution Vn =Q when n= 0
(no matching points) and Vn = 0 when n=M (all
scattering centers match). Thus, we obtain Vn =
Q(1¡ n=M). If we assume that Q is given by a simple
polynomial of the form Q = aMb, based on Fig. 4(d)
with Q(40) = 180 and Q(20) = 25, we derive the
coefficient values a= 4:9£ 10¡3 and b = 2:85. Thus
we obtain

Vt = n(n¡ 1)=2+ aMb(1¡ n=M): (2)

Using (2) to predict the total votes, the predicted and
actual votes for the 2D recognition algorithm with 20
and 40 scattering center models are shown in Fig. 5.

C. XPATCH Decision Rule, ROC Curve and Unknown
Object Results

The decision rule used to determine the
recognition algorithm result is a design parameter that
can be varied to optimize the algorithm performance.
Using a vote ratio decision rule (i.e., the ratio of votes
for the potential winning object v1 to the votes for
the second place different object v2 must be greater
than some minimum ratio r), results are obtained for
a 4-object case (SCUD launcher, T72, M1a1, and
T80) with test data that are occluded versions of those
four objects and a similarly occluded FRED tank
as an unknown object. Fig. 6 gives the ROC curves
(PCI versus Pf) of the 2D recognition algorithm with
40 scattering centers for 50%—70% occlusion using
vote ratio decision rule. (The upper-right point on
each ROC curve, maximum PCI, and maximum Pf ,
is r = 1:0 which corresponds to the forced recognition
case).
Fig. 7(a), which plots Pf versus r for 40 scatterers

with 50—70% occlusion, shows that for a given vote
ratio, the false alarm rate is largely independent of the

Fig. 6. ROC.

Fig. 7. Effect of vote ratio. (a) False alarm rate. (b) Recognition
rate.

occlusion of the unknown object. Thus, the desired
maximum false alarm rate (such as 10%) dictates a
minimum vote ratio (at least 1.08 for 40 scatterers).
Higher vote ratios, such as 1.10 for 40 scatterers,
reduce the false alarm rate to about 3%. However,
increasing the vote ratio r reduces the recognition
rate, PCI, for highly occluded objects. Fig. 7(b) shows
how the recognition rate degrades more quickly with
occlusion for higher values of vote ratio. Thus, the
optimum vote ratio is the smallest value that will
meet the desired false alarm rate. For 60% occlusion
with r = 1:1 (40 scatterers) the PCI is 0.829 and Pf
is 0.031, with only one target misidentification (and
all other target misses are classified as unknown).
Previously, for the same (60% occlusion, 40 scatterer)
case, but with forced recognition, r = 1:0, there are 80
misidentifications for a PCI of 0.986. This is typical
because as vote ratio increases, not only do some of
the weaker identifications move into the unknown
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Fig. 8. Example of CAD models and XPATCH SAR image (40±
azimuth) for T80 (left) and FRED (right) tanks together.

column, but also many of the misidentifications
become unknowns.

D. Occlusion and Noise from an Unknown Second
XPATCH Object

Another method for generating occluded target
data with additional noise is to introduce a competing
second object that is unknown. The CAD model of
the FRED tank is positioned parallel to the T80 tank
(arbitrarily 83 in apart) and 360 6 in resolution SAR
images are generated with XPATCH (in steps of 1±

azimuth). An example of the geometry and a SAR
image are shown in Fig. 8. In this case FRED is not
another target, recognizing closely spaced targets is
a different research problem, rather FRED is used to
provide a measurable “occlusion” environment. The
close presence of FRED provides blockage, strong
spurious scatterers and interaction effects. Recognition
results (for 40 scattering centers and a vote ratio of
1.1) are shown as a confusion matrix in Table I with
an overall PCI of 97.8%. The PCI is 99.4% for cases
with the T80 in front (0±—179± azimuth) and 96.1%
for cases with the FRED tank in front (180±—359±

azimuth). Since the T80 CAD model location is fixed,
the strongest 40 scattering center locations from each
image with both (T80 and FRED) tanks together can
be compared with the strongest 40 scatterers from the
image at the same azimuth with the T80 tank alone

TABLE I
Confusion Matrix for XPATCH T80 and FRED Tanks Together

Identification Results

Test Targets SCUD T72 M1a1 T80 Unknown

T80 and FRED together 0 0 1 352 7

Note: 40 scatterers, r = 1:1.

Fig. 9. XPATCH T80 tank recognition failure plot (¦) on
invariance curve for T80 and FRED tanks together.

to determine the percent invariance at that azimuth.
Fig. 9 shows this T80 invariance (with 40 scatterers)
as a function of azimuth and plots, as diamonds (¦),
the recognition failures (7 where the presence of
the FRED tank causes the answer to be unknown
and 1 misidentification). From Fig. 9 it can be seen
that most of the recognition failures occur near 270±

azimuth, where the FRED tank is broadside to the
radar and directly in front of the T80 tank.

E. Occluded Articulated XPATCH Objects

The occluded articulated data is produced in the
same manner as the nonarticulated occluded data
(see Section IIC). The same tanks are used, but with
a 90± turret rotation and the missile is erect on the
SCUD launcher. There are 9 occluded articulated
data sets (for 20 scattering centers with 10 to 90%
occlusion), each with 5760 test cases as before, for a
total of 51,840 test cases. Fig. 10 shows the average
and individual test object performance of the 2D
recognition algorithm (using 20 scattering centers)
as a function of percent occlusion with 4 different
articulated objects. The results of 51,840 test cases
are shown, for example, the overall performance for
these articulated objects with 30% occlusion is a 0.698
PCI.

V. MSTAR RESULTS

A. MSTAR Forced Recognition Performance

The performance of the 6D recognition algorithm
with MSTAR objects that are occluded (as outlined
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TABLE II
Forced Recognition Confusion Matrix for 70% Occluded MSTAR Objects

Identification Results Pose Accuracy70% Occluded
Test Targets: BMP BTR T72 ZSU BMP BTR T72 ZSU

BMP 769 1 2 0 768c, 768e
BTR 1 774 1 0 773c, 770e
T72 3 0 773 0 767c, 765e
ZSU 1 1 0 1094 1084c, 1072e

Note: 40 scatterers, e= exact pose, c= pose within §5±.

Fig. 10. Effect of occlusion on articulated object recognition rate
using XPATCH data.

Fig. 11. Effect of occlusion and number of scatterers on
recognition rate using MSTAR data. (a) Effect of occlusion.

(b) Effect of number of scatterers.

in Section IIC) is shown in Fig. 11 in terms of PCI
as a function of percent occlusion with the number
of scattering centers used as a parameter. Each point

for a specific number of scattering centers and percent
occlusion is the average PCI for all four occlusion
directions, the 4 objects (BMP, BTR, T72, and
ZSU) and the number of available test azimuths. We
defined the available test azimuths as azimuths that
had at least the number of scattering centers used
present in the data, thus we avoid introducing an
uncontrolled variable: the number of scattering centers
actually available for some instance of an object at
a specific azimuth orientation. (In practice, if some
target aspect did not have the appropriate number of
scattering centers, the performance would degrade as
if the missing scatterers were occluded.) The forced
recognition results for the MSTAR data in Fig. 11 are
comparable to the XPATCH results of Fig. 3. For the
6D algorithm and the MSTAR data the breakpoint
is at 60—75% occlusion for 20 scatterers or more,
compared with 55—60% for the 2D algorithm with
XPATCH data. In addition the 6D algorithm optimizes
at a higher number of scattering centers used than
the 2D version. At very high occlusion levels one
would expect that the recognition results with four
objects would approach 25%, due to chance. With the
MSTAR data we achieve 50% recognition, because the
ZSU is almost never confused with the other vehicles,
so the three remaining vehicles at a little over 33%
and the ZSU at over 90% yields an overall rate of
about 50% recognition.
Typical forced recognition results for 40 scattering

centers and 70% occlusion are shown as a confusion
matrix in the left half of Table II. With 3410 correct
identifications in 3420 trials, the overall PCI is
0.9971. The right half of Table II shows the pose
accuracy results, where 99.18% of the time the pose
is correct within §5±, in 98.68% of the cases the pose
is exactly correct.

B. MSTAR Performance Analysis

For the 6D recognition algorithm, the additional
constraints on the range and cross-range translations
and the percent magnitude changes for the scatterers
significantly reduce the number of random matches.
In the case of occlusion, for the true case (the actual
object, azimuth used in the test instance) there are n
valid scatterers of M scatterers used (where n·M due
to occlusion) and, neglecting any random contribution
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Fig. 12. MSTAR occluded performance prediction.

of nonmatching points, the number of votes for
the true case V is given by V = n(n¡ 1)=2. Fig. 12
shows that the actual number of votes received lies
just slightly above the prediction curve and that the
random contributions of nonmatching points are
negligible. These results for the 6D algorithm are in
contrast to the results for the earlier 2D algorithm,
Fig. 4(b), where there was a significant random
contribution from the nonmatching points. Thus, the
additional features and constraints used in the 6D
recognition are quite effective.

C. MSTAR Decision Rule, ROC Curve and Unknown
Object Results

The vote ratio decision rule was not used with
the MSTAR data, because the BRDM2 confuser
vehicle would consistently be identified as a T72 with
a high vote ratio, even though the total number of
votes was quite low (compared with what a T72 test
case would get). So, using a vote threshold decision
rule (i.e., the votes for the potential winning object
exceed some threshold, vmin), recognition results were
obtained with the MSTAR data for occluded versions
of the BMP, BTR, T72, and ZSU test vehicles as well
as a similarly occluded BRDM2 confuser vehicle.
Figs. 13(a), 13(b), and 13(c) give the PCI, probability
of false alarm, and probability of miss, Pm = Pfdecide
unknown j object is trueg, respectively, as a function
of vmin for 20 and 40 scatterers and 70% occlusion.
The resulting ROC curves for 20 and 40 scatterers and
70% occlusion are shown in Fig. 13(d).
Fig. 14 gives the ROC curves for 40 scatterers

with 65%—80% occlusion and is comparable to
Fig. 6. An illustrative confusion matrix for 70%
occlusion and vmin = 65 (40 scatterers) is shown in
Table III. The overall PCI is 0.997 and the Pf is 0.025.
The results in Table III are significantly better than
the comparable 2D algorithm XPATCH results in
Section IVC (which are: PCI = 0:829, Pf = 0:031 at
60% occlusion).
Fig. 15 compares the mean and standard deviation

of the votes generated by the test objects with the
votes generated by the BRDM2 confuser vehicle
for 40 scatterers as a function of the percentage

Fig. 13. MSTAR vote threshold and ROC (70% occlusion).
(a) Probability of correct identification. (b) Probability of false

alarm. (c) Probability of miss. (d) ROC.

of valid (unoccluded) scatterers. This shows that,
with 40 scatterers, for above 30% valid data (or less
than 70% occlusion) the occluded BRDM2 is not in
competition with the actual object. However, while
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Fig. 14. Effect of occlusion on MSTAR ROC (40 scatterers).

Fig. 15. MSTAR occluded performance with unknown object.

TABLE III
Typical Confusion Matrix for 70% Occluded MSTAR Objects

Identification Results70% Occluded
Test Targets: BMP BTR T72 ZSU Unknown

BMP 769 1 2 0 0
BTR 1 774 1 0 0
T72 3 0 773 0 0
ZSU 1 1 0 1094 0

BRDM2 2 3 0 1 237

the target may be occluded, the confuser vehicle may
not necessarily be occluded in the practical case.
Hence to cope with unoccluded confusers, one would
need to set a threshold of about 200 votes for a valid
identification (labeled a in Fig. 15), which would then
limit the ability to recognize targets to about 50%
target occlusion (b in Fig. 15).

D. MSTAR Occlusion and Positional Noise

Test data with positional noise are generated by
adding Gaussian noise with zero mean and standard
deviation sigma (in units of 1 ft resolution pixels) to
the range and cross-range locations of the scattering
centers. The overall recognition performance for four
objects, using 40 scatterers with varying amounts
of occlusion, is shown in Fig. 16 as a function of
positional noise. Fig. 16 confirms that the objective
of the 6D recognition algorithm to accommodate a

Fig. 16. Effect of positional noise on MSTAR occluded object
recognition.

Fig. 17. Effect of scaling on MSTAR occluded object
recognition.

one pixel uncertainty in scattering center location has
been achieved for up to 70 percent occlusion.

E. MSTAR Occlusion and Scaling

The previous MSTAR occlusion experiments all
involved recognizing four objects (BMP, BTR, T72,
and ZSU). Because there are only two articulated
objects available (T72 and ZSU), it is useful to
establish the effect of scaling the forced recognition
problem from four occluded objects to two occluded
objects prior to investigating the effect of occlusion
on articulated objects. Fig. 17 illustrates the effect of
scaling on occluded object recognition. The 20 and 40
scatterer curves for four objects are the same data as
previously shown in Fig. 11(a). As one would expect,
the results for the two-object case are better than the
four-object case: the break point is less pronounced
and the PCI is higher at very high occlusion levels.

F. Occluded Articulated MSTAR Objects

In the articulated object experiments the models
are nonarticulated versions of T72 #a64 and ZSU23/4
#d08 and the test data are the articulated versions
of these same serial number objects (with the turret
rotated to 315±) that are occluded in the same
manner as before. The MSTAR articulated data is at
30 deg depression angle. Fig. 18 shows the effect of
occlusion on recognition of these MSTAR articulated
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Fig. 18. Effect of occlusion on MSTAR articulated object
recognition.

objects for various numbers of scattering centers used.
The 6D algorithm results on MSTAR data in Fig. 18
are less sensitive to occlusion than the 2D algorithm
results on XPATCH data, shown in Fig. 10, although
the excellent results at higher occlusion levels are
due to the fact that only two articulated objects are
available in the MSTAR data.

VI. CONCLUSIONS

Local features provide a successful approach
to recognizing highly occluded objects (with 50%
or more occlusion). The basic 2D algorithm, while
sufficient for the simulated XPATCH SAR data, had
a significant level of potential false matches that are
nearly eliminated by the introduction of additional
features and constraints in the 6D algorithm. The
techniques introduced in the 6D algorithm used
both location and magnitude of scattering centers as
features and successfully accommodated uncertainty
in these features. The possibility of an unoccluded
confuser vehicle is an important practical limiting
factor on the performance that can be achieved in
recognizing highly occluded vehicle targets (e.g., 50%
occlusion versus over 70% with occluded confusers).
These algorithms achieve excellent occluded object
recognition results for simulated and real SAR data. In
addition to the significant results for occlusion alone,
the local features approach also produced good results
for the combined effects of occlusion and articulation.

GRINNELL JONES, III
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Center for Research in Intelligent Systems
University of California at Riverside
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Riverside, CA 92521-0425
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Errata: Fast Converging Adaptive Processor for a
Structured Covariance Matrix1

1) The title of this contribution should read as
above; inadvertently for was printed as or in the
original.
2) On page 1116: In the last line of the first

paragraph in the second column, which now reads
“nonsingular SMC [12].” should read “nonsingular
SCM [12].”
3) On page 1123: The first line of V. SUMMARY

should read “A fast converging adaptive processor has
been –.”
The Editors apologize for these errors and any

inconveniences.

1 Steiner, M., and Gerlach, K., IEEE Transactions on Aerospace
and Electronic Systems, 36, 4 (Oct. 2000), 1115—1126.
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