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Abstract. Target recognition is a multilevel process requir-
ing a sequence of algorithms at low, intermediate and high
levels. Generally, such systems are open loop with no feed-
back between levels and assuring their performance at the
given probability of correct identification (PCT) and proba-
bility of false alarm (P f) is a key challenge in computer vi-
sion and pattern recognition research. In this paper, a robust
closed-loop system for recognition of SAR images based
on reinforcement learning is presented. The parameters in
model-based SAR target recognition are learned. The method
meets performance specifications by using PCI and Pf as
feedback for the learning system. It has been experimentally
validated by learning the parameters of the recognition sys-
tem for SAR imagery, successfully recognizing articulated
targets, targets of different configuration and targets at dif-
ferent depression angles.

Key words: Target recognition — Reinforcement learning —
Parameter learning

1 Introduction

Typical systems for model-based object recognition use a
sequence of algorithms that operate at various stages of the
process to perform recognition. These systems are usually
unidirectional and without feedback. Often there are proce-
dural (tuning) parameters associated with these algorithms
that must be selected to achieve the desired performance,
e.g., a given point on a ROC (receiver operating charac-
teristic) curve demonstrating the performance of the entire
system. However, automatic development of control strate-
gies in an object recognition system has been a challenging
problem in the field of computer vision and pattern recogni-
tion. In addition, the simultaneous adjustment of even a few
system parameters is time-consuming and difficult and has
yet to be solved satisfactorily for multistage systems. This
is due to the lack of a feedback theory of multistage object
recognition.

Correspondence to: B. Bhanu

In this paper, we propose a learning-based target recog-
nition system for SAR imagery that is capable of automati-
cally adjusting its procedural parameters (input to target de-
tection, discrimination and recognition algorithms), thereby
achieving a desired performance specification, a point on the
‘limit” ROC curve. A typical ROC curve (plot of probabil-
ity of detection Pd, or in our case, probability of correct
identification PCI, versus probability of false alarm Pf) is -
generated by varying one parameter of the system (in our
case, typically, the decision rule parameter). Varying other
parameters (such as the number of features used) generates
families of different ROC curves. Usually, no one set of pa-
rameters provides a single ROC curve that is optimum, with
the greatest PC1I, for all values of P f. Thus, we introduce
the concept of a ‘limit” ROC curve (an example is shown in
Fig. 1), which is the highest ROC curve that can be produced
(for a given set of target and ‘confuser’ data) by optimally
varying all of the system parameters.

Our approach to the control strategy is to use an incre-
mental method based on reinforcement learning for com-
puting parameter settings in a multistage model-based target
recognition system. This paper begins the development and
evaluation of the proposed computational model by building
and controlling a system that is capable of being operated
on any given point on the limit ROC curve. The applica-
tion of the system is the recognition of articulated targets,
non-standard targets and targets at slightly different depres-
sion angles in SAR imagery. Although the system is now
a single-stage system, it serves as the basis for an even-
tual multistage system that would also control parameters
for target detection and target discrimination.

We use reinforcement learning because it is difficult, if
not impossible, for a conventional search method to accom-
plish the same task. Simply, there are no well-defined eval-
uation functions at each of the stages of object recognition.
Furthermore, if a method uses a point on the limit ROC
curve for evaluation, then it is not clear how the process
should proceed in a systematic way. Finally, at each stage,
any such method will have to delay its decision as to where
to search next until the recognition results become avail-
able. However, this need not be the case for the approach
presented in this paper.
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Fig. 1. Limit curve (fop thick curve) of five ROC curves of articulated
MSTAR data. Each ROC curve is for a different number of scattering
centers (26, 32, 37, 43, 47). The decision threshold is varied along each
ROC curve
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2 Related work and our contributions

There is no published work in image processing, computer
vision and pattern recognition on learning to perform recog-
nition at a given point on the ROC curve. Procedural param-
eter learning for the recognition algorithm and the adaptive
selection and combination of different algorithms in a learn-
ing integrated system are unsolved problems in the field of
image processing, computer vision and pattern recognition
[1]. Most techniques in computer vision and pattern recog-
nition do not involve any learning to improve future perfor-
mance with experience.

Burges et al. [4] describe a method for coupling recog-
nition and segmentation by the principle of heuristic over-
segmentation. The basic idea is that a segmentation algo-
rithm generates a graph that summarizes a large number of
segmentation hypotheses that are scored by a recognition al-
gorithm. A globally optimal decision is then made that com-
bines uncertainties in segmentation and recognition. Each
time a new input comes in, an over-segmented hypothesis
~ graph must be generated and traversed in order to classify
the input. In another related work by Le Cun et al. [9],
graph generation is actually learned by minimizing global
errors that take into account both segmentation hypotheses

and recognition scores. Bengio and Le Cun [2] describe a
method for fitting segmentation parameters to maximize the
likelihood of a model of an object. Peng and Bhanu [10, 11]
develop approaches in which reinforcement learning tech-
niques are used to close the loop between segmentation and
recognition. Draper et al. [5] use reinforcement learning to
select a control policy for recognizing a rectangular rooftop
in aerial images.

The original contributions of the adaptive target recog-
nition approach presented in this paper are that performance
specification (given as a point on the ROC curve) can be
used as feedback to influence the target recognition system,
thereby providing a target recognition system with adapt-
ability in real-world applications. Experimental results are
presented using XPATCH and MSTAR data for adapting
system parameters for different articulations, different con-
figurations and slightly different depression angles.

3 Overview of the approach

In the general multilevel recognition process, the parame-
ters used in the image segmentation, feature extraction and
recognition modules can be adaptively controlled with feed-
back, based on reinforcement learning, as shown in Fig. 2.
The results of recognition (PCI, Pf) are evaluated and a
feedback signal based on the discrepancy between the de-
sired and actual performance is generated. This signal is used
as the input to reinforcement learning which provides appro-
priate feedback in selecting parameters that are used in the
segmentation, feature extraction and recognition modules.
Segmentation, feature extraction and recognition are carried
out with new parameters and the process continues until the
desired performance is obtained or the number of allowed
loops has been exceeded.

3.1 Image segmentation

The image segmentation process extracts small areas of the
image that are likely to contain targets. The goal of this stage
is to eliminate most of the sensor data from further consid-
eration and find small regions potentially containing the tar-
gets of interest. Detecting targets in SAR images typically
involves a pre-screen stage (e.g., a constant false-alarm-rate
thresholding technique [13]) and a discriminator stage to
separate the targets from the background clutter.

The experimental results in this paper are based on the
XPATCH and MSTAR (Public) data set, so we do not cur-
rently implement and control the initial image segmentation
to provide the SAR target chips. However, the discrimination
of target features from the background in the target chips is
required and implemented as described in the next section.

3.2 Feature computation

The locations and magnitudes of the return from SAR scat-
tering centers are characteristic features that are related to
the geometry of the object. The typical detailed-edge and
straight-line features of man-made objects in the visual



world, do not have good counterparts in SAR images for
sub-components of vehicle-sized objects at 1-foot resolution.
A typical SAR target shows a wealth of peaks correspond-
ing to scattering centers and has no obvious lines or edges
within the boundary of the vehicle.

The MSTAR (Public) data set, used to provide SAR tar-
get chips for these experiments, has targets and background
clutter from a grassland environment. Target regions of in-
terest (ROI) are found in the MSTAR SAR target chips
by reducing speckle noise using the Crimmins algorithm
in Khoros [7], thresholding at the mean plus two standard
deviations, dilating to fill small gaps among regions, erod-
ing to have one large ROI and little regions, discarding the
small regions with a size filter and dilating to expand the
extracted ROI. The scattering centers are extracted from the
SAR magnitude data (within the boundary contour of the
ROI) by finding local eight-neighbor maxima.

In the current implementation, the parameters used to
extract the ROIs (e.g., signal and region size thresholds) are
fixed, while the number of scattering centers used, N, is a
variable parameter of the recognition algorithm described in
the next section.

3.3 SAR recognition algorithm

The basic SAR recognition algorithm is an off-line model
construction process and a similar on-line recognition pro-
cess (the detailed algorithms are given in [6]). The approach
is designed for SAR and is specifically intended to accom-
modate recognition of occluded and articulated objects. Stan-
dard non-articulated models of the objects are used to rec-
ognize these same objects in non-standard, articulated and
occluded configurations. The models are a look-up table and
the recognition process is an efficient search for positive ev-
idence, using relative locations of the scattering centers in
the test image to access the look-up table and generate votes
for the appropriate object (and azimuth pose).

The relative locations and magnitudes of the N strongest
SAR scattering centers (local maxima in the radar return sig-
nal) are used as characteristic features (where NV, the number
of scattering centers used, is a design parameter). Any lo-
cal reference point, such as a scattering center location, can
be chosen as a ‘basis point’ to establish a reference coor-
dinate system. The relative distance and direction of other
scattering centers can be expressed in radar range and cross-
range coordinates and naturally tessellated into integer buck-
ets that correspond to the radar range/cross-range bins. For
ideal data, picking the location of the strongest scattering
center as the basis point is sufficient. However, for poten-
tially corrupted data where any scattering center could be
spurious or missing (due to the effects of noise, target artic-
ulation, occlusion, non-standard target configurations, etc.),
we use all IV strongest scattering centers in turn as basis
points to ensure that a valid basis point is obtained. Using
a technique like geometric hashing [8], the models are con-
structed using the relative positions of the scattering centers
in the range and cross-range directions as the initial indices
to a look-up table of labels that give the associated target
type, target pose, basis point range and cross-range posi-
tions and the magnitudes of the two scatterers. Because of
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the specular radar reflections of SAR images, a significant
number of features do not typically persist over a few de-
grees of rotation. Consequently, we use 360 models (at 1°
azimuth increments) for each object. ,

The recognition process uses the relative locations of the
N strongest scattering centers in the test image to access the
look-up table and generate votes for the appropriate object,
azimuth, range and cross-range translation. Constraints are
applied to limit the allowable percent difference in the mag-
nitudes of the data and model scattering centers. (Limits on
allowable translations are also imposed for computational
efficiency.) To accommodate some uncertainty in the scat-
tering center locations, the eight-neighbors of the nominal
range and cross-range relative location are also probed and
the translation results are accumulated for a 3 x 3 neighbor-
hood in the translation sub-space. The recognition process
is repeated with different scattering centers as basis points,
providing multiple ‘looks’ at the model database to handle
spurious scatterers that arise due to articulation, occlusion
or configuration differences. The basic decision rule used in
the recognition is to select the object-azimuth pair (and asso-
ciated “best” translation) with the highest accumulated vote
total. To handle identification with ‘unknown’ objects, we
introduce a criterion for the quality of the recognition result
that the votes for the potential winning object exceed some
minimum threshold 7'. By varying the decision rule thresh-
old, we obtain a form of ROC curve with PCI vs. Pf.
We call the algorithm a 6D recognition algorithm since, in
effect, we use the range and cross-range positions and the
magnitudes of pairs of scattering centers.

There are several parameters in the recognition proce-
dure that could be optimized: the number of scatterers used,
N (or alternatively use all scatterers above a certain sig-
nal strength); the constraint on the allowable difference in
magnitude between the data and the model (we use a fixed
value of £ 10%); the limits on allowable translations (fixed
at + 5 pixels in both range and cross-range directions) and
the decision rule. Several possibilities exist for the decision
rule: a vote threshold, T'; a specific vote threshold for each
object, T;; a vote ratio threshold, V R (i.e., the ratio of votes
for the potential winning object to the votes for the next
best different object exceeds some value V R). Based on ex-
periments, we found that the vote ratio approach did not
work for distinguishing the BRDM ‘confuser’ vehicle from
the T72 tank when the alternative was the ZSU 23/4, so we
used the vote threshold, 7', decision rule for the MSTAR
data (for XPATCH data, we used vote ratio).

3.4 Multistage learning algorithm

Reinforcement learning provides a framework for construct-
ing a general mapping from images to parameter settings in a
multistage model-based object recognition system [10]. One
set of effective methods for reinforcement learning is given
by the theory of dynamic programming. Given a Markov
decision problem, these methods involve first determining
the “optimal action-value function,” the () function, that as-
signs to each state-action pair a value measuring the average
total (discounted) reward obtained when a particular action
is taken in the given state and the optimal policy is followed
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. Initialization: Q(z,ﬁ) + 0 for all z,p, where = is an image, a seg-
mented image or features extracted and p is an instance of segmentation
parameters @, feature extraction parameters b or recognition algorithm
parameters C.

. LOOP:

For each image ¢ in the training set do

a) Segment image ¢ with segmentation parameters a =
(a1,a2, -, an) recommended by e-greedy policy; is is the re-
sulting segmented image.

b) Update: Q(i, @) + QG,a)+a{yV (is) — Q, @)} where V(is) =
maxg Q(is, b),  is the learning rate.

¢) Perform feature extraction with feature extraction parameters b=
(b1, by, - -+, bp) recommended by e-greedy policy from the seg-
mented image is. R . )

d) Update: Q(is, b) < QUis, b) + a{yV(ig) — QG @)}, QU, @)
O, @) + aON{V (i) — V(is)}, where V(iy) = maxz Q(iy, ).

e) Perform recognition with parameters ¢ = (c1, ¢p, " -+, Cn) Tecom-
mended by e-greedy policy from the features (iy) extracted.

f) Evaluate the recognition results and get the reinforcement r.

9) Update: Q(is,0) + QUig,d) + afr — Qlis, D}, Qlis,b) +
Qis, B+aO{r—V (i)} and QG, @) + QU &)+ o) {r—
Vis)}

3. UNTIL terminating condition

—

[ ]

Fig. 3. Main steps of the multistage reinforcement learning algorithm for
parameter adjustment
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Fig. 4. Learning integrated SAR recognition system

c d

Fig. 5a-d. XPATCH T72 (30 deg hull azimuth) chips and peaks superim
posed on an 8-bit image. a and b: Turret straight. ¢ and d: Turret at 6
degrees

thereafter. That is, using the notation that « denotes the cur
rent state, a the current action, r the resulting immediat
reward, and y the resulting next state from taking a in 2
then

Q(z,0) = R, a)+7 Y Pry@V(y), (I

Y

where R(z,a) = E {r|z,a} with E denoting the expectatio
operator, V(z) = max, Q(z, a), Pyy(a) is the probability ¢
making a state transition from x to y as a result of apply
ing action a, and « € [0, 1) is a discount factor. Once th
Q function is known, it is straightforward to determine th
optimal policy. For any state x, the optimal action is simpl
arg max, Q(z, a). Note that both z and a can be vectors.

The particular method employed in this work for learnin
the Q function is the Q()) algorithm, where A € [0, 1]. Th
algorithm is an example of the “temporal difference” (TL
method. Like @ learning, Q()\) learning works by maintair
ing an estimate @ of the Q function and updating it so th:
Eq. 1 comes to be more nearly satisfied for each state-actic
pair encountered [10]. The key steps of the multistage reil
forcement learning algorithm, suited for the system show
in Fig. 2, are given in Fig. 3.

3.5 Single-stage learning algorithm
Figure 4 shows the flowchart of the single-stage learnir

algorithm. While our learning framework is intended for s
lecting parameters in a multistage recognition system, t
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a PCIvs N,VR b Pfvs NJVR

Fig. 6a—c. Adapting parameters for articulation with XPATCH data

Table 1. Optimum and learned results for various MSTAR Data

MSTAR articulated data
Learned results

T PCI Pf N T
2400 0.844 0.007 35 2400
1700 0.948 0.040 31 1700
1600 0.948 0.040 31 1700
0.115 39 2500 0.948 0.040 31 1700
0.115 39 2500 0.948 0.040 31 1700

Desired Optimal results
Pf< PCI Pf N
001 0.844 0.007 35
0.05 0.948 0.040 31
‘ 0.1 0990 0.092 31
02 1

0.3 1

MSTAR depression angle change

Desired Optimal results Learned results

Pf < PCI

Pf N T PCI

P

N

T

0.01
0.05
1 0.1
0.2
0.3

0.621
0.791
0.876
0.949
0.978

0.009 41
0.050 47
0.096 49
0.196 41
0.284 50

5000 0.621
6600 0.791
7000 0.874
4100 0.926
6600 0.926

0.009
0.050
0.085
0.126
0.126

41
47
50
41
41

5000
6600
7400
4300
4300

Desired
Pf<

MSTAR configuration change

Optimal results

PCI

Pf

N

T PCI

Learned results

Pf N T

0.01
0.05
| 0.1
02
03

0.313
0.542
0.617
0.718
0.778

0.005
0.031
0.093
0.196
0.273

34
33
36
31
31

3200 0.313
2700 0.542
3100 0.614
2100 0.684
2000 0.742

0.005
0.031
0.062
0.134
0.201

34
33
35
36
35

3200
2700
2900
3000
2700

algorithm described here is focused on learning parameter
values for the SAR recognition algorithm of a single stage to
achieve given PCI and Pf. It is a variant of the algorithm
mentioned in the previous section. In the notation of Q(z, a)
used before, x is the set of all input images, which is omitted
in the following equations, and a = (IV,T'). There are two
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parameters to be learned: the number of features (V) to be
used and the voting decision threshold (7).

Initial conditions. When the algorithm starts to run, it asks
the user to specify the performance point (PCI,, Pf,) on
the ROC curve. Each pair of parameters (N, T') of the SAR
algorithm is associated with a value Q(V,T"), which mea-
sures the goodness of this pair of parameters. The larger the
Q value, the better the pair of parameters. All the initial
Q values are 0. All pairs of parameters (INV,T") are marked
SELECTABLE.

Select parameters for the SAR algorithm. Only those pairs
of parameters marked SELECTABLE and with non-negative
Q value can be selected by the learning algorithm. If no pair
of parameters meets this requirement, the learning algorithm
stops automatically. The parameters are selected using an e-
greedy policy.

1. Select the pair of parameters (N, T) whose correspond-
ing Q value is the maximum among all the Q values with
probability 1 — e. If several pairs of parameters have the
maximum Q value, choose one of them randomly.

2. Select parameters (IV,T) randomly with probability e.

The value of e determines the probability that the learn-
ing algorithm searches the parameter space of the SAR
recognition algorithm. Parameter € has an initial value ¢y (we
used 0.9), which means the algorithm searches the space with
higher probability. Each time when the learning succeeds,
the € decreases by Ae (we used 0.1). So, as the learning
algorithm runs and the learning succeeds again and again,
the probability of search decreases and the learning algo-
rithm gradually focuses on good parameters. The value of
€ should be greater than 0, since we want the learning al-
gorithm to continue exploring the parameter space of SAR
recognition algorithm, even though it explores less actively
as the learning proceeds. In our experiments, the value of
€min 18 0.1.

Compute reinforcement. The learning algorithm compares
the performance point (PCI, Pf) returned by the SAR
recognition algorithm with the performance point (PCI,,
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b baseline ROI

¢ articulated image d articulated ROI

Fig. 7a-d. MSTAR SAR images and ROIs (with peaks shown as black dots
superimposed on the ROI) for T72 tank #a64 at 56° azimuth

Pf,) pre-specified by the user and calculates the distance D
between them. Then it computes the reinforcement R using

D
R:O—Vaxs, @

where S is a distance scale factor (we used S = 1.0).

Update Q value. If the reinforcement R > Rin (We used
Rpmin = 0.9), the algorithm increases Q(N, T) using the fol-
lowing formula:

QN,T) = Q(N,T)+ alR — QV, 1)1, 3.

where o was set to 0.1. Then the algorithm compares the
new Q(N,T) with the old Q(N, T). If the difference be-
tween them is smaller than Qo (we used @ = 0.001), the
parameter (N, T) is marked UNSELECTABLE, and the ¢
is set to its initial value €, which means that the learning
algorithm should explore the parameter space more actively.

By mathematical induction, it is easy to prove that if the
same parameter (N, 7T') is selected infinite times, its Q value
Q(N,T) converges to R in Eq. 3.

If reinforcement R < Ryin, the algorithm decreases the
Q(N,T) using

QWN.T) = Q(N, T) + ol R — Rnin — QN D] @)

Then, the pair of parameters (IV, T) is marked UNSE-
LECTABLE, which means that the pair of parameters (N, T)
is not good and will not be selected any more.

Learning succeeds one time. If the learning succeeds, that
is, the reinforcement received is greater than R, (we used
R, = 0.95), the value of € is decreased by Ae, which means
the probability of searching is decreased.

Termination condition. If the learning succeeds more than
a specified number of times, the learning algorithm stops.
Otherwise, the learning algorithm tries another pair of pa-
rameters (N,T) and the loop runs again. It is worth noting
that the algorithm will stop eventually (in the worst case
after an exhaustive search). The searching strategy used in
learning is critical to the efficiency of the learning algorithm.
If the searching strategy is good, the learning algorithm can
find the good parameters and converge quickly.

4 Experimental results

We conducted two sets of experiments: one with articulated
targets using XPATCH simulated SAR data and the other
with articulated targets, depression angle changes and tar-
get configuration variants using real SAR images from the
MSTAR public data.

4.] Results on XPATCH data

In these experiments, the input test images were articulated
versions of the T72, M1A1 and T80 tanks (with the turret
at 60° and 90° with respect to the hull), and the SCUD
missile launcher in the erect position, where non-articulated
versions of these same objects (for tanks turret at 0° and
missile lancher in the down position) are used as models.
The FRED tank was used as an unknown “confuser” vehicle.
There are a total of 1440 model (non-articulated) images
and 2880 test images. Examples of SAR target chips and
scattering center locations are shown in Fig. 5 for articulated
and non-articulated versions of the T72 tank.

Results with XPATCH data are based on using a 2D
recognition algorithm [14] that is an earlier, simpler version
of the 6D recognition algorithm described previously. The
2D algorithm uses only the relative range and cross-range
distances; it does not compute the appropriate translation; it
only considers the ‘exact’ scatterer location; and it does not
use the magnitude information. For these experiments we
used a vote ratio (V' R) decision rule as defined in Sect. 3.3.

The parameters of the recognition algorithm used by the
learning algorithm are number of scattering centers (IV) and
vote ratio (V' R). Once the input images and parameters (N,
VR) are given, after the recognition algorithm runs over
input images with the given parameters, we get the ROC
curve (PCI vs. Pf) of the recognition algorithm. Figure 6a
shows the effect of N and VR on PCI, and Fig. 6b shows
the effect of N and VR on Pf. The desired solutions are
high PCI and low P f value. In order to get high PCI, we
should use low V'R, and in order to get low P f, we should
use high V R. So, these two parameters. are in conflict. The
goal of the learning algorithm is to find the good parameters
as fast as possible. In this experiment, the user specified 0.80
PCIT and 0.10 Pf. After the learning algorithm succeeds
ten times, the Q value of each pair of parameters is shown
in Fig. 6c, where the best pair of parameters found by the
learning algorithm is N of 35 and VR of 1.1. This pair of
parameters is very close to the optimum pair of parameters
(36, 1.1). The PCI and Pf resulting from (35, 1.1) are
0.80 and 0.12, respectively, very close to the PCI and Pf
specified by the user.
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Fig. 9a-d. MSTAR SAR images and ROI (with peaks shown as black dots
superimposed on the ROI) for T72 tank #132 at 132° azimuth and 15° and
17° depression angles

Fig. 8a-d. Adapting parameters for articulated angle
changes

4.2 Results on MSTAR data

Articulated target results. In this experiment, the input im-
ages (test data) are articulated versions of T72(#a64) and
ZSU23/4(#d08) at 30° depression angle, using the non-
articulated versions of these same serial number targets as
the model. BRDM2(#¢71) is also included in test data, used
as an “unknown” confuser vehicle. There are a total of 576
model images and 530 test images. Example SAR images
and the ROI, with the locations of the scattering centers su-
perimposed, are shown in Fig. 7 for baseline (turret straight)
and articulated (turret at 315°) versions of T72 serial number
(#) ab4.

Figure 8a shows the effect of N and T on PCI, and
Fig. 8b shows the effect of N and T on Pf, where N
ranges from 10 to 50 and T" from 1000 to 3500. We can see
that as IV increases, the PCT and Pf increase, and as T'
increases, the PCI and Pf decrease. The best results are
high PCI and low Pf value. Figure 8c shows the good-
ness of the parameters expressed as the reinforcement R
obtained from each pair of parameters when user-specified
performance point is the best point (1.0, 0.0). The larger the
reinforcement, the better the pair of parameters. The pair
of parameters (34, 2050) are the best parameters. Figure 8d
shows the Q value of each pair of parameters after the learn-
ing algorithm stops. In this experiment, the user-specified
performance point is (1.0, 0.0). The Q value measures the
goodness of the pair of parameters. It is consistent with the
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Fig. 10a-d. Adapting parameters for depression angle
changes

cRvsT, N

reinforcement shown in Fig. 8c. Parameters (34,2050) have
the maximum Q value. The PCT and Pf results in Fig. 8a
and b can be plotted as the family of ROC curves show in
Fig. 13a (For a fixed value of N, varying T maps appropri-
ate values of PCI and Pf from Fig. 8a and b to generate
one of the ROC curves shown in Fig. 13a).

Depression angle change results. The input images (test
data) are T72 (#132) and BMP2 (#C21) at the depression
angle of 17°, using these same serial number objects at 15°
as the model. BTR70(#C71) at 17° is also included in the
test data as an “unknown” confuser. There are a total of 388
model images and 697 test images. Example SAR images
and the ROIs, with the locations of the scattering centers
superimposed, are shown in Fig. 9. The results are shown in
Fig. 10. In this experiment, the user-specified performance
point is (0.89, 0.16), which is the performance point when
the best pair of parameters (36,3100) in Fig. 10c is selected.
Parameter (36,3100) has the maximum Q value in Fig. 10d.
The PCI and Pf results in Fig. 10a and b can be plotted
as the family of ROC curves show in Fig. 13b.

a #C21 image b #C21 ROI

Configuration variant results. In this experiment, a single
configuration of the vehicle (BMP2#C21 and T72#132) is

- used as the model and the test data are two other variants of
¢ #9563 image d #9563 ROL each vehicle type (BMP #9563, #9566 and T72 #812, #s7).
BTR70 (#C71) is also included in the test data, as an “un-
Fig. 11a-d. MSTAR SAR images and ROIs (with peaks shown as black known” confuser. Both the model and data are acquired at

dots superimposed on the ROI) for BMP configuration variants #C21 and 15° depression angle. There are a total of 388 model images
#9563 at 132° azimuth
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and 963 test images. Example SAR images and the ROIs,
with the locations of the scattering centers superimposed, are
shown in Fig. 11 for BMP #C21 and #9563 configurations
at 132° azimuth. The results are shown in Fig. 12. In this
experiment, the user-specified performance point is (0.72,
0.15), which is the performance point when the best pair
of parameters (35,2750) in Fig. 12c is selected. Parameter
(35,2750) has the maximum Q value in Fig. 12d. The PCTI
and P f results in Fig. 12a and b can be plotted as the family
of ROC curves show in Fig. 13c.

Analysis of results. The families of ROC curves for the
MSTAR articulated data, depression angle change and con-
figuration change data are shown in Fig. 13. These curves
are superimposed to show the limit ROC curves in Fig. 14.
These limit curves demonstrate the best performance the
recognition system can archieve by using the optimum pa-
rameters for IV and T'. Table 1 shows the maximum PCT re-
sults for various specified values of Pf that can be obtained
from the learning-based adaptive recognition system and the
optimal results from the limit ROC curve for the MSTAR
articulated data, depression angle change and configuration
change data. In addition, in Table 1, the tuning parameters,
N and T, that are found by the learning algorithm can be
compared with the values for the optimal system.
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Fig. 12a-d. Adapting parameters for configuration
changes

5 Conclusion and future work

In this paper, we have demonstrated a reinforcement-learn-
ing-based control strategy to determine the optimum values
for two parameters in the recognition algorithm that con-
stitutes one stage of a multistage recognition system. This
sub-set of the problem has provided a useful experimental
regime where the results of the learning-based approach can
be compared to the optimum solution found by exhaustive
search.

We intend to extend this single-stage learning algorithm
to other tuning parameters of the recognition algorithm and
apply the multistage learning algorithm to target discrmina-
tion algorithm parameters and eventually the target detection
algorithm parameters. We also plan to incorporate prediction
theory [15] into adaptive target recognition research. This
initial work serves as a foundation and useful benchmark
to assess future progress, where the higher problem dimen-
sionality makes it impractical to exhaustively determine the
optimal solution.
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