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Abstrac~Recognition of objects in complex, perspective aerial imagery is difficult because of occlusion, 
shadow, clutter and various forms of image degradation. This paper presents a system for aircraft 
recognition under real-world conditions. The particular approach is based on the use of a hierarchical 
database of object models and involves three key processes: (a) The qualitative object recognition process 
performs heterogeneous model-based symbolic feature extraction and generic object recognition; (b) The 
refocused matchin 9 and evaluation process refines the extracted features for more specific classification with 
input from (a); and (c) The primitive feature extraction process regulates the extracted features based on their 
saliency and interacts with (a) and (b). Experimental results showing the qualitative recognition of aircraft in 
perspective, aerial images are presented. © 1998 Pattern Recognition Society. Published by Elsevier 
Science Ltd. All rights reserved 
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1. INTRODUCTION 

Photointerpretation (PI) or extraction of intelligence 
from image data, particularly aerial imagery, has been 
an important application domain of image under- 
standing (IU) techniques for about two decades. The 
primary goal of PI is image exploitation to aid recon- 
naissance tasks, such as airfield, port, and troop 
movement monitoring. An IU system for PI is typi- 
cally required to identify buildings, aircraft, ships, 
ground vehicles, bridges, and storage facilities, using 
geometric (e.g. CAD-based) models. Of these, the first 
two object classes buildings and aircraft - -  have 
received the maximum attention in the literature. Rec- 
ognition of buildings has proven to be relatively easier 
than that of aircraft because of the structural simpli- 
city of the former. Although there have been several 
aircraft recognition systems proposed in the past, very 
few of these have actually addressed the concerns of 
real-world, such as occlusion, shadow, cloud cover, 
haze, seasonal variations, clutter, and various other 
forms of image degradation. To illustrate the difficulty 
of the problem, we show typical aircraft images in 
Fig. 1 where recognition has to be accomplished un- 
der varying contrast and in presence of shadows. 
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However, there exists no viable approach to date that 
can work satisfactorily on all these example images. 

In this paper, we describe an end-to-end IU system 
for aircraft recognition which has been demonstrated 
to be effective in presence of shadows, clutter, and low 
image contrast. Our system uses a hierarchical repres- 
entation of aircraft models consisting of generic 
aircraft, aircraft classes (e.g. jumbo aircraft), specific 
aircraft (e.g. Boeing 747), and aspects of a specific 
aircraft. Such representation is in terms of qualitative- 
to-quantitative descriptions that vary from advance 
concepts (e.g. aircraft wing) to primitive geometric 
entities (e.g. points, lines) and allow increasingly fo- 
cused search of the precise models in the database. To 
account for image variabilities, our system exploits 
heterogeneous models, such as those of image seg- 
mentation, camera/platform, sun, shadow to derive 
symbolic features in a robust manner. Finally, the 
system regulates the extracted primitive features 
based on their saliency, an ability that helps to distin- 
guish object model features from image clutter. 

Section 2 describes the background and motivation 
behind the work reported in this paper. Section 3 
describes the novel features of our aircraft recognition 
system. Section 4 presents the details of an algorithm 
that integrates feature refinement and object classi- 
fication. Section 5 gives the specifics of implemen- 
tation and the experimental results for qualitative 
recognition of aircraft using real-world data. Sec- 
tion 6 presents concluding remarks. 
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(a) (b) (c) 

Fig. 1. Representative aircraft recognition scenarios: (a) shadow and medium contrast, (b) shadow and 
low-to-medium contrast, and (c) shadow and very low contrast. 

2. BACKGROUND AND MOTIVATION 

There is a variety of object recognition and classi- 
fication techniques which can possibly be applied to 
the domain of aircraft recognition. However, the algo- 
rithms reviewed in this section are those which have 
been applied to the specific problem of aircraft identi- 
fication in both 2-D and 3-D. Following this, we 
discuss the motivation behind our particular ap- 
proach to aircraft recognition. 

2.1. Background 

The different approaches to aircraft recognition 
which have been proposed so far can be broadly 
classified into the following categories: 

• Moment invariant techniques--These techniques 
use moment invariant features of the aircraft sil- 
houette and silhouette border to perform the 
classification task. The advantage of these tech- 
niques is that these invariants are unaffected by 
rotational, translational, and scaling differences be- 
tween an object model and its observed image. The 
disadvantage is the sensitivity of the invariants to 
mass distribution inside the silhouette, occlusion, 
clutter, noise, and other image abnormalities. 

• Syntactic~semantic grammar techniques--These 
approaches use linguistic pattern recognition tech- 
niques to analyze shapes and classify aircraft using 
piecewise linear border approximations. Using a 
set of terminal symbols to represent image primi- 
tives (lines or arcs) and relationships (parallel, 
collinear, right angles) between these primitives, 
a grammar is derived to specify allowable combina- 
tions of these primitives to construct complete 
aircraft borders. Other information, e.g. mean, vari- 
ance, etc., about a particular object is represented 
by the semantics introduced into the grammar. 
Thus, recognition of individual aircraft reduces to 
the task of parsing a set of words (image primitives) 
to create legal sentences (aircraft borders). The ad- 
vantages of syntactic/semantic grammar over mo- 

ment invariants are that the former allows speci- 
fication of local structure rather than global shape 
and the variations in object shapes can be explicitly 
incorporated into the models, thereby reducing the 
sensitivity to noise. However, these approaches are 
also inadequate in handling occlusion and clutter. 

• Fourier descriptor techniques--In these approaches, 
the shape of the aircraft's closed contour in the 
image plane is represented using a Fourier descrip- 
tor (FD) which is subsequently used to recognize 
future instances of the aircraft. The principle of FD 
is that the boundary of a closed planar figure can be 
expressed as a function of some variable and re- 
peating this process multiple times will produce 
a periodic function that can be expressed in a 
Fourier series. This series is the Fourier descriptor 
of the planar figure. Various normalization proced- 
ures are used to derive feature sets which are 
invariant with respect to starting point, rotation, 
translation, and scale. The advantage of FDs is that 
partial shape matching in presence of occlusion can 
also lead to complete classification. However, there 
may be instances when the normalization for deriv- 
ing invariant features is not uniquely determined. 
Other factors affecting FD-based approaches are 
number of sampling points used on the contour, 
uniformity of sample spacing, number of FDs used, 
quantization error, and the amount of perturbation 
of the contour. 

• Model and knowledge-based technique~These 
techniques seek to represent an aircraft using ad- 
vance concepts in a hierarchical part-subpart 
fashion, where the lowest-level representation is 
usually in terms of image primitives. The recogni- 
tion process begins by locating these image 
primitives and then by combining them in a for- 
ward- or backward-chaining fashion using the 
system's model and knowledge base. The advant- 
age of these techniques is that they rely on spatially 
local features which can be extracted from the sens- 
ory data with relative ease. Such features can lead 
to relatively robust model matching in presence of 
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noise, occlusion, and missing data, when compared 
to the global shape representations, by incorporat- 
ing appropriate object, sensory, and contextual 
information. The main drawbacks of these tech- 
niques are the "knowledge acquisition bottleneck" 
and the real-time implementation. 

• Other techniques- -These  are the techniques which 
do not exactly belong to any one of the categories 
described above. 

Summaries of the specific algorithms which are 
representative of these groups appear in Table 1. 

The "knowledge-free" techniques are inadequate 
for real scenes as they treat the object of interest in 
isolation from the rest of the image. Also, these ap- 
proaches have very limited capability to handle 
clutter, shadow, occlusion, etc. Among the know- 
ledge-based techniques, the ACRONYM system by 
Brooks (1) is closest to the system described in this 
paper. However, the primitive feature extraction pro- 
cess in ACRONYM is independent of the subsequent 
analysis. So errors in preprocessing of primitives per- 
sist throughout analysis. Also, ACRONYM does not 
possess any hypothesis verification step and the com- 
plexity of its constraint-based modeling is limited. All 
of these factors limit its application to images which 
are relatively simple photometrically, e.g. free of 
shadows and clutter. 

2.2. Motivation 

Most model-based object recognition approaches 
rely on some form of segmentation of the raw image 
primitives into meaningful groups. However, good 
segmentation cannot be guaranteed for real-world, 
complex images. This difficulty is compounded by the 
fact that a specific aircraft type can have very different 
appearances depending on the imaging conditions, 
e.g. the hercules aircraft in Figs l(b) and (c). Conse- 
quently, the recognition of aircraft using 2-D or 3-D 
quantitative object models is very difficult and almost 
none of the proposed methods have been shown to be 
effective for the diverse scenarios encountered in PI. 
Since one has little control on the imaging conditions 
and hence on the types of features which may be 
obtained, a more effective approach would be to ad- 
opt a multi-step recognition approach that proceeds 
from identifying generic object classes to specific ob- 
ject instances. A hierarchy of model database in which 
the terminal nodes are specific object models of geo- 
metric entities and successive higher levels are 
symbolic conceptualization of the lower-level nodes is 
well suited for this purpose. 

One of the key factors of poor recognition perfor- 
mance in real-world scenarios is the presence of 
shadows as seen in Fig. 1. However, shadows provide 
valuable 3-D information and have been successfully 
utilized in recognizing buildings in aerial photo- 
graphs, (2"3) but have found little attention in the 
context of aircraft recognition. Shadows can be help- 

ful in the identification of image features which are 
caused by raised structures, such as buildings, poles, 
or aircraft, and also in the determination of their 3-D 
orientations, such as a vertically oriented structure 
(e.g. a pole) as opposed to a horizontally oriented 
structure (e.g. an aircraft). Occlusion is another issue 
which a robust aircraft recognition system needs to 
address. In aerial imagery, occlusion is primarily due 
to self-occlusion or close parking of aircraft. The 
shadow and occlusion issues signify that aircraft rec- 
ognition is essentially a 3-D problem. 

Feature selection is critical for successful object 
recognition in practical scenarios. For  aircraft recog- 
nition, this is related to distinguishing between image 
features which are caused by the aircraft structure 
and those which constitute the clutter. One way to 
determine the relevant features is to identify the per- 
ceptually salient image contours (linked intensity edge 
segments). As psychological evidence indicate, very 
often such contours are associated with objects which 
could be of interest or which attract our visual atten- 
tion immediately. Detection of such salient contours 
in aerial images, which could very well be aircraft 
contours, should considerably simplify the segmenta- 
tion and recognition tasks. Previous attempts at 
aircraft recognition have focused on a single feature 
type, either edges (lines, closed boundaries, etc.) or 
regions (blobs, silhouettes, etc.). Some IU systems 
have incorporated both, but dynamically selected 
only one at any stage of processing, e.g. COBIUS. (4) 
However, since the extraction processes for these two 
types of features seek to maximize different criterion 
functions and are, therefore, affected by the image 
variabilities in different ways, the overall recognition 
process is benefited by combining these features. 

Extraction of salient image primitives and sub- 
sequent formation of symbolic descriptions do not 
guarantee successful recognition in a single processing 
step. This is because a single decision threshold on the 
measure of saliency may allow too many or too few 
primitives for the symbolic feature extraction step, 
thereby, inciting too many possibilities in the recogni- 
tion outcome or none at all! On the other hand, if the 
degree of saliency is determined by the "'generic" 
properties of a class of objects, then it is possible to 
have multiple decision thresholds. With an iterative 
recognition scheme, a different threshold in each iter- 
ation will allow only the "generic" features associated 
with the object "class" of the iteration to be extracted. 
For  example, "wing" symbolic features which are cer- 
tain to distinguish an aircraft class from most of other 
object classes encountered in an aerial imagery should 
be extracted to recognize an instance of an aircraft 
using long, low-curvature, salient contours in the in- 
itial iteration of an aircraft recognition cycle. Thus, 
further improvement in recognition is possible by 
integrating feature (both primitive and symbolic) se- 
lection and image interpretation processes, such that 
the interpretation process is driven by the most salient 
contours first, followed by the less salient ones. Such 
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Table 1. Summary of various aircraft recognition techniques 

Techniques References Descriptions 

Moment invariant Gupta and Srinath (16) 2-D; vector of a sequence of moment invariant functions computed 
from contour 

Gnpta and Srinath (17) 2-D; moment function based on distances between each contour pixel 
and object centroid 

Dudani et al. (~s~ 3-D; invariant features computed from silhouette and its border for 

Syntactic/semantic 
grammar 

Fourier descriptor 

Model and knowl- 
edge based 

Other 

Reeves et alJ TM 

Tang and Huang (2°) 

Davis and Henderson (21) 

Lin and Chellappa (z2) 
Wallace and Wintz (z3) 
Wallace et alJ TM 

Gorin (25) 

Gorman et  al. (26) 

Chen and Ho (27) 

Ming and Bhann (2s) 

Brooks (t) 

Moldovan and Wu C29) 

COBIUS (*) 

Ma e t a / .  (3°) 

Gibbon(31~ 
Ben-Arie and Meiri (32) 
Thompson and Mundy (33~ 
Chien and Aggarwal (34~ 

Reeves and Taylor (3s) 

different views of each aircraft; Bayes and distance-weighted k-NN 
classification 
3-D; normalized moment invariants that are less sensitive to noise than 
conventional invariants; performance comparable to FDs with/without 
noise 

2-D; large, useful structures obtained by removing redundant terminal 
symbols; localization without classification 
2-D; hierarchical approach using only grammatically correct fragments 
at all levels with constraint propagation; classification into general 
categories 

2-D; estimation of FD for the complete contour from partial data 
3D; normalized FDs for global shape descriptions 
3-D; FDs for local shape descriptions 
3-D; combines individual classification results from multiple frames to 
refine accuracy over time 
3-D; partial recognition of occluded or overlapping objects using FDs 
of local features 
3-D; elliptic FDs that are tess sensitive to contour perturbation than 
regular FDs; reduced set of near neighbors in NN classification for 
speed 

2-D; Explanation-based learning for model acquisition and refinement; 
Conceptual clustering for classification 
3-D; specific and generic objects, partially specified scene and camera 
models; iteration of prediction, description, and interpretation from 
coarse object subpart and class interpretations to fine distinctions 
among subclasses and precise 3D quantification 
3-D; hierarchical classification using object skeleton, boundary, surface, 
volume, and ancillary data; top-down reasoning from higher abstrac- 
tion level of object details to lower level of greater object-related 
information 
3-D; hierarchical representation of objects and constraints; dynamic 
selection of region or edge segmentation for initial interpretation, 
followed by model-based resegmentation to extract expected objects 

2-D; normalized shape descriptors faster than FDs and requiring less 
storage 
2-D; weighted chord functions to represent angle chords of an object 
3-D; matching of n-ary relational graphs 
3-D; vertex-pairs as invariant features 
3-D; quadtree and octree-based object representation; identification 
using occluding contours 
3-D; recognition based on contour, silhouette, and range imagery 

in tegra t ion  will also facilitate the usage of the inter- 
p re ta t ion  results of a previous in tegra t ion  step to 
direct the feature selection and  in te rp re ta t ion  pro- 
cesses of a la ter  step. Fo r  example,  classification of 
a generic aircraft using '"wing" features should  make  
the search for "engine" features easier and  should  
facilitate fur ther  classification based  on  the lat ter  fea- 
tures. 

3. SYSTEM DESCRIPTION 

The  system for model -based  aircraft recogni t ion is 
schematical ly shown in Fig. 2. I t  has  four key ele- 
ments:  (a) a qual i ta t ive- to-quant i ta t ive  hierarchical  
object  model  database ,  and  three recogni t ion sub- 
processes which utilize these models,  (b) saliency- 
based  regula t ion  of low-level features to be used in the 
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Fig. 2. A schematic of the model-based aircraft recognition system. 

Aircraft 
D 

Classification 

subsequent steps of recognition in an incremental 
fashion, (c) model-based symbolic feature extraction 
and evaluation that utilizes these regulated low-level 
features and heterogeneous models of image segmen- 
tation, shadow casting, and image acquisition, and (d) 
refocused matching for finer object classification. 
These features are now described in detail and their 
novelties are clearly identified. 

3.1. Hierarchical object model database 

There are two important considerations in design- 
ing a generic-to-specific hierarchical database from 
the point of view object recognition: the choice of 
features to represent a particular object class and the 
matching process. 

Our system uses a representation of structural 
models in which the choice of features is driven by the 
discriminating power of these features among objects 
at the same level of the hierarchy. Additionally, the 
selected features (of an object model) are ranked ac- 
cording to their relative importance in recognizing 
that particular object and this order is followed dur- 
ing evidence accumulation. The top level of the 
hierarchy contains the shape (qualitative) attributes of 
a generic aircraft in terms of its structural subparts. 
The progressingly deeper levels embody more specific 
knowledge that becomes completely quantitative at 
the terminal nodes, i.e. location of geometric models. 
A partial hierarchy illustrating this particular data- 
base structure is shown in Fig. 3. 

Using the hierarchical database, reasoning about 
objects and their classes can be cascaded without 
requiring the presence of the same features (for match- 
ing) at all levels. The matching process can also search 
a lower level for distinguishing model features should 
a categorization be not possible at a particular level 
because of the lack of suitable features. For example, 
according to Fig. 3, the engine is not an essential 
structural feature to detect a generic aircraft and is, 
therefore, not a part of the generic aircraft model, but 

it is required for subclass discrimination. However, 
this feature can be used for verifying a generic aircraft. 
Thus, the flow of control during matching is bi-direc- 
tional - -  between a generalized class and its more 
specialized subclasses. The use of hierarchical object 
descriptions is proving to be useful for scene under- 
standing tasks in general. (5) 

Compared to our approach, ACRONYM (1/ em- 
ploys a representation scheme in which all the features 
which are characteristics of a specialization are also 
present in the corresponding generic description, ex- 
cept that these feature values are replaced by symbols 
(quantifiers) in the generic model. Matches to parts of 
an object class are automatically carried down to 
matches to the corresponding parts of a specialization 
of that object class. In other words, the control flow is 
always from the generalized to the specialized classes 
and failure to recognize the generalized class causes 
failure of the subclass recognition. 

3.2. Saliency-based regulation o f  low-level featares 

Real-world, complex scenarios are characterized by 
large amount of image clutter which may mislead any 
system into false recognition. Clutter rejection is diffi- 
cult using local image measures unless these measures 
have strong saliency, e.g. color. One way to distin- 
guish an object from its background clutter is by its 
perceptual saliency. (6) Humans can visually attend to 
salient structures almost immediately without scann- 
ing an entire image. The different saliency measures 
can be length, curvature, or contrast of primitive fea- 
tures. 

Our approach utilizes simple local measures of sali- 
ency based on the strengths of detected edge pixels, 
and lengths and local curvatures of edge segments. As 
a first step, edge pixels at multiple thresholds are 
extracted. This is motivated by the fact that no single 
threshold is suitable for all the different images which 
may be encountered in practice, let alone for the 
different parts of a single image. Edge pixels are 
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Generic Aircraft 

Large 
(on-wing engine) 

/ \  
Boeing 747 MD- 11 

I [ 
I I 

Medium 
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engine) 

/ \  
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GulfStream Citation 
I 
I 
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(concealed 

engine) 

/ \  
Cessna Piper 
Caravan Malibu 

I 1 
I [ 

Fig. 3. A partial hierarchy of genemc-to-specific aircraft. 

(define-rule GENERIC-AIRCRAFF 
"The description of a generic aircraft" 
(model-description = Edge, RSHGC) 
(symbolic-feature = WlNG)(satisfy = TRUE) 
(symbolic-feature = FUSELAGE)(satisfy = TRUE) 
(symbolic-feature = TAIL)(satisfy = ¢) 
(symbolic-feature = RUDDER)(satisfy = ~) 
(symbolic-feature = NOSE)(satisfy = ¢) 
(connected-to (WING, FUSELAGE)) 
(connected-to (TAIL, FUSELAGE)) 
(connected-to (RUDDER, FUSELAGE)) 
(connected-to (NOSE, FUSELAGE)) 
(closer-to (WING, NOSE, TAIL)) 
(closer-to (WING, NOSE, RUDDER)) 
(closer-to (TAIL, RUDDER, WING)) 
(closer-to (RUDDER, TAIL, WING))) 

(a) 

(define-rule LARGE-AIRCRAFT 
"The description of a large aircraft class" 
(symbolic-feature = ENGINE) 
(location (ENGINE, WING))) 

(b) 

(define-role MEDIUM-AIRCRAFt 
"The description of a medium aircraft class" 
(symbolic-feature = ENGINE) 
(location (ENGINE, WING)) v 
(location (ENGINE, FUSELAGE))) 

(c) 

(define-role SMALL-AIRCRAF'r 
"The description of a small aircraft class" 
(symbolic-feature = ENGINE) 
(location (ENGINE, ¢))) 

(d) 

Fig. 4. Simplified examples of symbolic features: (a) A generic aircraft, and the three aircraft classes, 
(b) large, (c) medium, (d) small. 

grouped based on the local curvature values and the 
continuity of edge segments. In addition, the flow of 
low-level features which are used to derive the sym- 
bolic features is regulated based on the saliency. 
Regulation may also be based on the "specialized" 
nature of the features as required by the refocused 
matching process. 

The use of salient features is different from the 
locally focused features. (7) The latter are suitable for 
industrial applications where images are far less com- 
plex and the models have certain unique 
characteristics. 

3.3. Model-based symbolic feature extraction and 
evaluation 

Perceptually grouped primitives which are typically 
employed in object recognition systems are based on 
local measures, such as proximity, collinearity, paral- 
lelism (s) and can describe only simple shapes using 
primarily linear features. Symbolic features are de- 
rived from mappings of primitive features under 

geometrical and physical constraints. However, by 
incorporat ing more domain-specific knowledge into 
these constraints, symbolic features can be tuned to 
the detection of specific object classes, such as aircraft. 

Domain  knowledge is embedded in the production 
rules describing the symbolic features. There are two 
types of production rules: qualitative, which measures 
the qualitative properties of symbolic features; quant-  
itative, which computes values for the corresponding 
symbolic features. The production rule definitions of 
a generic aircraft and its three subclasses are illus- 
trated in Fig. 4. To extract these features, the 
recognition search process is initiated at the top level 
of the database hierarchy and is looped through the 
production rules of the node being visited in a goal- 
decomposition fashion until  a rule is encountered 
whose conditions require mapping of primitives. 

The evaluation of the extracted features involves 
the verification of the global semantic shape compo- 
nents of the generic model. It utilizes heterogeneous 
models: edge/gray scale-based model of image seg- 
mentation,  models of shadow casting process, and 
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models of image acquisition. Although, the use of 
multiple sources of information is routine for multi- 
sensor-based scene interpretation, (5'9) such practice is 
uncommon for the single sensor-based approaches. 
Also used in our system are the dominant axes which 
characterize the shape of the generic aircraft class. 
During evaluation, feedback from the generic recogni- 
tion module to the feature regulation module (see 
Fig. 2) helps to acquire additional low-level features 
in the event of recognition failure or low recognition 
confidence. Integrating feature acquisition and recog- 
nition is essential for robust object recognition. 
However, this aspect has not been addressed by pre- 
vious model-based recognition techniques. 

3.4. Refocused matching 

This module is responsible for further classification 
of an object whose category has been determined by 
the generic recognition process. Functionally, re- 
focused matching is an iterative recognition process 
attempting to match a reduced set of image data and 
a reduced set of object models, where reduction is with 
respect to the input image data and the entire object 
model library. In our approach, data reduction is 
achieved by deriving symbolic features which are 
more "focused" or localized with respect to a particu- 
lar level of our database hierarchy. Usually, the 
symbolic features of the "generic" model identified in 
the previous iteration step guide the search for image 
primitives required for deriving these focused sym- 
bolic features during current iteration. In addition, the 
derived symbolic features may be subjected to men- 
suration. 

The key difference between this step and multi- 
resolution approaches to recognition is that the 
former views the object model database at increasing 

resolution instead of the image. It may be noted that 
in the absence of any higher-level control knowledge, 
the resampling process may exclude important object 
features while accommodating clutter. 

4. A L G O R I T H M  

The emphasis of this paper is on qualitative recog- 
nition of aircraft using the system described in the 
previous section. Initially, a solid modeling system is 
used to build B-spline CAD models of aircraft with 
multiple representations. (1°) In this work, we utilize 
two representations: polyhedral edge-based (approxi- 
mations of B-spline CAD models) and straight 
homogeneous generalized cylinder (SHGC). Given an 
input 2-D image and ancillary data about the imaging 
parameters and scene conditions, the algorithm for 
qualitative recognition of aircraft consists of the steps 
illustrated in Fig. 5. First, the regions of interest 
(ROIs) likely to contain aircraft are identified in the 
high resolution input image by performing an intelli- 
gent search. The search begins with a low resolution 
version of the original image and identifies different 
image parts which have a large concentration of per- 
ceptual groups of primitive feature types character- 
istic of the targeted generic class. Next, each of these 
subimages are examined at increasingly higher resolu- 
tion for the same purpose until the original resolution 
is attained. Further details of this step appear in. (11) 

The qualitative recognition of aircraft within each 
identified ROI is accomplished by two major algorith- 
mic processes: heterogeneous model-based feature 
extraction, and integration of salient feature extrac- 
tion and evidence-based model matching. The former 
process obtains symbolic features of the generic air- 
craft and its classes using region- and edge-based 

~ .............. Segmented Image, 
/" Region ~ _ ~ o m i n a n t  Axes~ DominantAxes Non-shadow 

i k~egmentation~/ ~._ Extraction ~ ~ ]  Symbolic/ Primitive Imagery Regions / 
In t°rfest ~ i Features, 

Extraction I ~/¢Saliency-Based~ ~P-dm~]fiv~--'~ [ - - -  ~ ( Shadow ~ Axes, Regions 
| Feature ~ -~  _Feature ~ -  ~DetectionJ 
k,~ Regulation ~] ~E.x~ac!io_n.ff Regulated 

...................... Primitives 

Based 
~SHGC Non-shadow 
%,...,.,~.,.,jj Based Symbolic/ Supervisory 

Primitive I ~ IAircralL~tel~t Features, Control 
Axes,  Evidence-B ased 
Regions Reasoning Generic Aircraft with Labeled parts[ d 

Generic Aircraft 
Recognition 

Fig. 5. A flow diagram of the qualitative aircraft recognition algorithm. 
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primitive features. It involves heterogeneous models 
of image segmentation utilizing edge/gray scale in- 
formation, of shadow casting process, and of image 
acquisition. The integration process provides a feed- 
back path from the model matching module to salient 
edge feature regulation module (see Fig. 5). The feed- 
back control is used to acquire additional primitive/ 
symbolic features in the event of recognition failure or 
low recognition confidence. In the following, we de- 
scribe the individual steps of these two processes in 
further detail. 

Our  approach to identifying perceptually salient 
contours is based on finding long, smooth edge seg- 
ments which are made up of high-magnitude edge 
pixels. This is formulated as a problem of finding an 
edge segment of length N starting at a terminal pixel, 
corresponding to s = 0 (s being the segment para- 
meter), and subject to the following optimization: 

maxII[w~V(s)+w22(s)]ds-wsi(dO/ds)2ds] ,  (1) 
c~c~, L 3 c .) c 

4.1. Salient edge feature regulation 

Edge pixels are detected in an input  ROI by ap- 
plying multiple thresholds. This is motivated by the 
fact that no single threshold is suitable for all the 
different images which may be encountered in prac- 
tice. We illustrate the effect of different thresholds on 
the output  of an edge detector in Fig. 6. Clearly, a 
trial-and-error approach can only find a satisfactory 
threshold, but  it is not  guaranteed for all situations. 
Instead, we emphasize the extraction of perceptually 
salient contours from any given set of edge pixels 
obtained using multiple thresholds. 

where 0 < w~, w2, w3 < 1. Here, C u denotes the set of 
all contours, C, of length N beginning at s = 0. The 
variable V(s) is the magnitude of an edge pixel along 
the contour and denotes the strength component  of 
the criterion function; 2(s) = 1, if V(s) is greater than 
a chosen threshold and 2 ( s )=  0, otherwise, and it 
represents the length component;  dO/ds denotes the 
local curvature at the selected pixet, where O(s) is the 
slope along the contour,  and it is a measure of local 
roughness. To reduce complexity, the above optimiza- 
tion model is decomposed into n sub-optimization 
steps, each of which finds an edge segment of length 
Ni such that N = ~,~ 1Ni. These sub-optimization 
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Fig. 6. Results of applying multiple thresholds (0 to an edge detector output: (a) original image; edge 
images obtained with (b) t = 225, (c) t = 200, (d) t = 150, (e) t = 100, (f) t = 50. 
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/ 

(a) (b) 

Fig. 7. Illustrating salient contour extraction: (a) detection of salient contours corresponding to edge 
image Fig. 6(b), (b) detection of salient contours corresponding to edge image Fig. 6(c). 

steps differ in the threshold of edge magnitude (hence 
the use of n thresholds) which affects the 2(s) term of 
equation 1. 

At the first sub-optimization step, edge segment- 
following is initiated at a terminal pixel (one which 
has a single neighboring edge pixel) in the correspond- 
ing edge image [-e.g. Fig. 6(b)]. To continue edge- 
following, a neighbor of the last selected edge seg- 
ment pixel is chosen that maximizes equation (1). 
To account for noise, our approach allows a gap 
length of up to two pixels in the edge segment. Once 
it is terminated within the current edge image, 
the process is continued (i.e. the next sub-optimization 
step) in the image obtained with the next lower 
threshold [-e.g. Fig. 6(c)]. The optimization process 
ends when the current edge image is the last of 
the edge-image set. Repetition of the optimization 
process for different starting pixels in the same initial 
edge image yields different contours having the same 
degree of saliency [e.g. contours belonging to 
Fig. 7(a)], while contours obtained with different in- 
itial edge images are said to have different saliency 
[e.g. contours belonging to Fig. 7(a) and (b)]. The 
contours having the same saliency are handed over to 
the primitive feature extraction process simulta- 
neously, starting with the top-level configuration, i.e. 
contours whose initial edge image is obtained with the 
highest threshold [e.g. contours belonging to 
Fig. 7(a)]. This approach of extracting salient con- 
tours from images has been applied to and should 
prove to be useful for other applications, particularly 
when an object of interest has enough background 
clutter for a local feature detector to perform unsatis- 
factorily. 

The extraction of primitive features from regulated 
edge contours utilizes edge-based representation 
of shapes. Since this representation is derived from 
polygonal approximations of B-spline CAD models, 
the primitive features comprise linear segments. 
In our system, we have implemented a line extrac- 
tion algorithm similar to the one proposed by 
Lowe.(s) 

4.2. Region feature extraction 

Given the input ROI image, regions corresponding 
to foreground objects are identified prior to feature 
extraction. The region segmentation process uses gray 
scale intensities together with edge information (mag- 
nitude and orientation) to extract image regions. It is 
based on the joint relaxation of a two-class (ob- 
ject/background) region-based approach and a two- 
class (edge/no edge) edge-based approach. °2) The 
joint relaxation provides edge and gray value interac- 
tions in the initial label (probability) assignment of 
each pixel. Only the edge orientation, and not the 
magnitude, is updated in each iteration. At the end of 
each iteration, the coincidence of edge and border 
values is determined. Requirement for a high degree of 
coincidence is necessary to obtain precise and accu- 
rate segmentation boundaries. 

An important 2-D feature that is derived from an 
object region is the dominant axis characterizing the 
shape of the object. It is the projection of the axis of 
the SHGC representation of a CAD model of the 
object. A generic aircraft CAD model, whose sub- 
parts are represented by individual SHGCs, exhibits 
multiple dominant axes in a plane projection. In our 
approach, the potential dominant axes of the generic 
aircraft shape are obtained by connecting the extremi- 
ties of a labelled region within a segmented image. To 
determine the extreme points, the smallest convex 
polygon surrounding the object region is found. It can 
be shown that the vertices of this polygon lie close to 
the local extrema of curvature points along the 
boundary of the labelled region. For  multiple local 
extrema, nearby points are grouped into clusters and 
the cluster centers are chosen to represent the region 
extremities. 

4.3. Nonshadow symbolic feature extraction 

Assuming that any arbitrarily shaped shadow 
boundary can be locally represented by straight lines, 
our algorithm to detect potential shadow lines is 
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based on the test of bimodality of the local histogram. 
Initially, region segmentation (12) is carried out within 
a window on either side of an extracted line and the 
largest region is retained. The most significant modes 
of the histograms of these two regions are then sub- 
jected to the bimodality test. If the separation between 
the modes is less than a threshold or the smaller of the 
two is greater than another threshold, the line is 
ignored. Otherwise, it is marked as a potential shadow 
line. 

In order to separate the shadow lines from the 
shadow-making ones, the algorithm obtains convex 
groups of lines. This is a two-pass process. During the 
first pass, the entire set of lines is decomposed into 
subsets based on proximity and collinearity, such that 
lines in a subset satisfy convexity criteria when con- 
sidered in pairs. This step also results in lines which 
fail the convexity test and are subsequently put in 
a pool. The second pass considers whether an isolated 
line from the pool can be put in a convex subset 
(subject to the convexity test) with relaxed proximity 
condition. The shadow and the shadow-making lines 
tend to form separate convex groups due to proximity 
of like physical features. 

For each marked shadow line in a convex group, 
a corresponding shadow-making line from another 
group is sought by searching in a direction towards 
(or away from) the projection of the illumination 
point, i.e. the sun. The latter is determined from the 
ancillary data about the camera-platform position/ 
orientation and the sun position together with the 
imaging parameters. The matching score of a pair of 
shadow-shadow making lines is computed from the 
degree of overlap of the two lines in the predicted 
direction. All the candidate matches of a selected 
shadow line are arranged according to the matching 
scores and marked with the corresponding group 
identifier. This entire matching process is repeated for 
all other shadow lines in that particular group. The 
most promising matching group is determined from 
the group identifiers of the candidate matches. Each 
line in the selected group is assigned a unique match 
from the candidate group based on the matching 
scores and enforcing similarity of spatial ordering of 
the selected lines and their matches. If most of the 

lines in the selected group have been assigned unique 
matches, then the group as a whole is marked as 
a shadow group and the matching group is marked as 
a shadow-making (i.e. nonshadow) group. 

Convex groups of nonshadow lines are used to 
derive the symbolic features of the generic aircraft 
class. Such features include trapezoid-like shapes for 
wings, tails, and rudder, and wedge-like shape for the 
nose part. To identify the trapezoid-like shapes, 
groups of three (partially closed contour) and four 
(fully closed contour) lines are considered. Pairwise 
intersections of lines are verified to occur near detec- 
ted corners. Nonoverlapping line pairs which are far 
apart are prevented to have a high collinearity value 
by enforcing the condition that the average separation 
between the lines of a pair be proportional to the 
smaller line length. To overcome the problem due to 
oversegmentation, i.e. fragmentation of long lines into 
smaller parts, candidate groups of lines are merged 
based on collinearity measures. If the total length of 
the lines in a group is smaller than a certain fraction, 
Tperi, of the perimeter of the trapezoid-like shape 
obtained by connecting these lines, then that group is 
discarded. 

It is important to note that a range of threshold 
values is associated with each perceptual measure of 
parallelism, proximity, and collinearity. Initially, the 
threshold values--Tp, T~, and Tp for parallelism, col- 
linearity, and proximity, respectively--are set to the 
maxima of the corresponding ranges. However, these 
values can be relaxed during symbolic feature extrac- 
tion based on the flow of evidence when multiple 
mutually supporting hypotheses interact (described 
next). 

4.4. Evidence-based model matching 

Once the symbolic features have been derived (see 
Sections 3.3 and 4.3), these need to be matched to the 
generic aircraft model through an evidence accumula- 
tion process which determines the number of positive 
evidences in support of a hypothesis. (In this paper, we 
do not consider negative evidences for a hypothesized 
object.) 

During the matching process, the supervisory con- 
trol module (see Fig. 5) checks each hypothesis to 

f 
Hypothesis: 

Wing-1 

Evidences: 
m Non-shadow lines 
[ ]  Trapezoid-like shape 
[] Aligned with Axis- 1 
[] Connected to Fuselage 
[] Symmetric with 

pothesis: 
uselage 

dences: 
arallel line group 
ligned with Axis-2 
onneeted to Wing-1 

H•Hypothesis: 
~'~ 

Wing-2 

Evidences: 
[ ]  Non-shadow lines 
[ ]  Trapezoid-like shape 
[] Aligned with Axis-1 
[] Connected to Fuselage 
[] Symmetric with 
~Wing--1 about Axis_-2¢, 

Fig. 8. Interacting hypotheses for the key structural sub-parts of a generic aircraft. The evidences 
(positive) are listed in the order they are sought while verifying the corresponding hypotheses. 
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determine its combined support based on the evid- 
ences associated with it. The combined support may 
be low if the evidence body is incomplete. Some pieces 
of evidence, known as the critical evidences, contribute 
higher support than others and must be present to 
accept a hypothesis. Examples of such evidences (see 
Fig. 8) are trapezoid-like shape, alignment with a 
dominant axis, and interconnection with the fuselage 
for the generic aircraft-wing hypothesis. During run 
time, the supervisory controller determines which 
critical evidences are missing. Typically, this situation 
is caused by insufficient data, either due to the screen- 
ing of features at the regulator level or due to the 
constraints on the imaging process for that particular 
viewpoint. In the former situation, the controller in- 
teracts with the low-level feature regulator so that less 
salient features may now be available along with the 
existing ones. Constraints due to the viewpoint war- 
rants the access of the qualitative database by the 
supervisory controller to obtain further knowledge 
about the alternate evidences for this hypothesis. 

Further refinement of the detected aircraft shape 
is required to improve upon the extracted symbolic 
information. This usually involves completing the 
generic aircraft description by accounting for the 
missing elements of the symbolic features. This is 
followed by obtaining a skeleton of the refined shape 
which is composed of the axes of symmetry of the 
structural subparts. The skeleton can be directly used 
for mensuration purposes when performing quantitat- 
ive matching. (1°) The final output consists of the 
identified symbolic parts of the generic aircraft. 

The labelled symbolic parts are next used to direct 
image-based search for more localized model features. 
Availability of these features at progressingly 
lower levels of the database hierarchy allows more 
precise classification of the recognized generic aircraft. 
The refocused matching process may utilize the 
symbolic/primitive features which have not been util- 
ized in the generic aircraft recognition step or may 
request new or less-salient primitive features. Current- 
ly, our algorithm handles only qualitative model 
features. 

5. E X P E R I M E N T A L  R E S U L T S  

The aircraft recognition system described in this 
paper is implemented on Sun Sparcstation. The in- 
formation about the software system, written in C 
language, is detailed in Table 2. The system consists of 
13 major modules. There are a total of 89 parameters, 
79 fixed and 10 adjustable, that are used in these 
modules. A UNIX shell-level program controls the 
entire system. Each run of the system, as described in 
this section, involves processing of a single region of 
interest (ROI) provided as an argument to the shell 
program. These ROIs are obtained from photographs 
analyzed by the multiresolution focusing algo- 
rithm.(11) The latter is also a C code, but outside the 
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Table 2. Organization of the qualitative aircraft recognition 
system into software modules 

Module Approx. c o d e  Parameters 
size (#Iines) Fixed Adjustable 

Region segmentation 1,500 0 5 
Dominant axes 3,600 3 0 
Extraction 
Saliency-based 
feature regulation 

Edge extraction 500 2 1 
Edge linking 600 5 1 

Primitive feature 
extraction 

Line 900 5 1 
Corner 800 3 1 

Convex grouping 2,300 6 0 
shadow detection 

Line extraction 2,100 3 1 
Line verification 2,400 3 0 

Symbolic feature 
extraction 

Trapezoid 3,800 15 0 
Aircraft features 7,100 9 0 

Symbolic feature 1,900 11 0 
refinement 
Model matching 1,800 14 0 
Total 29,300 79 10 

control of the shell program. The controller processes 
each ROI image autonomously and reports the inter- 
mediate results, including errors. In the event of 
premature termination of processing, such as file I/O 
error, the controller resumes at the point of termina- 
tion after the system is restarted. Ancillary data about 
camera-platform position/orientation, weather condi- 
tion (sunny/cloudy/hazy), sun angle, and camera 
parameters for the individual photographs are pro- 
vided in external files. The hierarchical model 
database for the reported results has three levels: 
generic, intermediate, specific. The intermediate level 
consists of three categories based on engine loca- 
t i o n ~ a r g e  (on-wing engine), medium (on-wing/on- 
fuselage engine), small (concealed engine). 

5.1. Dam and design of experiments 

The experimental results of qualitative aircraft rec- 
ognition are presented using ROIs extracted from 
large aerial photographs. These ROIs are shown in 
Fig. 9. They are ordered according to increasing level 
of recognition complexity determined by three factors: 
contrast, clutter, and shadow. Such factors can as- 
sume the following qualitative values: contrast--low 
(<25%), medium-low (25-50%), medium-high 
(50-75%), high (> 75 %), where % refers to percentage 
of object boundary which can be successfully seg- 
mented; clutter (due to markings on runway and 
c a m o u f l a g e ) -  sparse (<25%), medium-sparse 
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Fig. 9. Sample regions of interest extracted from large aerial images: (a) images of medium-high 
contrast, with sparse clutter and no shadows, (b) images of low contrast, with sparse clutter and no 
shadows, (c) images of medium-high contrast, with sparse clutter and shadows, (d) images of low 
contrast, with medium-dense clutter and no shadows, (e) images of low contrast, with medium-sparse 

clutter and shadows, (f) images of low contrast, with medium-sparse clutter and shadows. 
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(~) (b) 

(e) (d) 

Fig. 10. An aerial view of an airfield: (a) Original image (4K x 4K), (b) Preliminary regions of interest 
(ROIs, black regions) in (a), (c) A close-up of the preliminary ROIs of (b), (d) New ROIs found in (c). 

(25 50%), medium-dense (5~75%), dense (>75%), 
where % refers to percentage of nontarget features 
within a given neighborhood of a target feature; 
shadow - -  diffused (<25%), medium (25-75%), 
strong (>75%), where % refers to percentage of 
shadow boundary which can be successfully seg- 
mented. Rather than developing the statistics of 
performance on very similar images, we have selected 
three sample images from the ROIs of Fig. 9 that 
a system like ours will encounter in a practical ap- 
plication. We show detailed results of evaluation of 
the various components of our aircraft recognition 
system using these selected images. Our analyses are 
expressed in terms of hit-ratio, i.e. ratio of number of 
target features found and total number of features 

(target/clutter) found, and miss-ratio, i.e. ratio of num- 
ber of target features not found and actual number of 
target features present. Note that, by definition, hit- 
and miss-ratios are not complement of each other, i.e. 
hit-ratio ¢ 1 - miss-ratio. 

5.2. Examples of  varying complexities 

Example 1. Figure 10(a) shows an aerial photo- 
graph (4K x 4K) in which several ROIs, displayed in 
Fig. 10(b)-(d), are identified using the multiresolution 
focusing approach. These ROIs are analyzed by the 
object recognition system in succession. Here, we 
present the results of analyzing the bottom ROI 
(162 x 240) from Fig. 10(d). The output of the salient 
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contour detection step for this ROI  (see Fig. 6) has 
already been presented in Fig. 7. In  our  implementa- 
tion, we have selected the five threshold (t) values 
indicated in Fig. 6 which are fixed for all images. 
Figure 7(a) shows the top-level configuration, i.e. most 
salient contours, consisting of the aircraft in this case. 

The following step is to extract the primitive features 
from this contour  set. The result of line fitting to the 
salient structures is shown in Fig. ll(a). Segmented 
regions and the dominant  axes of regions are shown in 
Fig. ll(b), Figure 12(a) shows the six convex sets of 
lines identified using convex group!ag procedure. 

i 

(b) 

(d) 

(b) 

Fig. 11. Results of low-level processing of the bottom ROI in Fig. 10(d): (a) fitting straight lines to the 
contours of Fig. 7(a), (b) segmented regions and extracted dominant axes for the largest foreground 

region. 

Total Engines found on the Left Wing: 0 

Total Engines found on the Right Wing: 0 

Total Engines found on the Left Rear Fuselage: 0 

Aircraft Class: << small aircraft >> 

(e) 

Fig. t2. Results of qualitative object recognition: (a) six convex groups of lines identified in Fig. 1 l(a), 
(b) trapezoid-like shapes identified using these groups, (c) structural parts found during generic object 

recognition, (d) refined structural parts that are also labelled, (e) class recognition. 
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These are used to extract  t rapezoid-l ike features 
shown in Fig. 12(b) which are the symbolic  descrip- 
t ions of some of the subparts ,  like wings, tails, and  
rudder  (see Fig. 4). 

Dur ing  the generic object recogni t ion  step, the or- 
der  of evidence accumula t ion  is for the wings first, 
followed by tha t  for the fuselage, with the nose being 
the last. The  d o m i n a n t  axes are used to suppor t  or 
refute a selected symbolic  feature as a wing of the 
aircraft  or the fuselage. Once all the condi t ions  of 
connect ivi ty  and  relative local izat ion of the different 
subpar t s  as specified in Fig. 4 have been satisfied, can 
their  ensemble be recognized as a generic aircraft. The 
identified subpar ts  are shown in Fig. 12(c). Inabi l i ty  
to identify b o t h  wings or  the fuselage is considered to 
be a recogni t ion  failure for the generic aircraft  class. In 
this case, b o t h  wings are detected and  so also the 
fuselage, hence, the recogni t ion of a generic aircraft  is 
successful. The  connect ivi ty  in format ion  of the parts  is 
exploited to ob ta in  more  complete  descr ipt ions of the 

subpar t s  as shown in Fig. 12(d). Next, an  improved  
classification of the generic aircraft is sought  based on  
the engine locat ion (Fig. 4). However,  no  e longated 
blob-l ike region (symbolic descr ipt ion of an  engine) is 
detected tha t  may  indicate  presence of engines. There-  
fore, the generic aircraft is identified as belonging to 
a small  class [Fig. 12(e)~. 

The significance of salient feature selection is sum- 
mar ized  in Table  4. Al though,  a t radi t ional  feature 
ext ract ion process will result  in undersegmenta t ion  
(e.g. 18 lines for t = 225) or oversegmenta t ion  (e.g. 213 
lines for t = 50), the n u m b e r  of lines f rom the most  
salient s t ructure  [ shown in Fig. 7(a)] is 36. The set of 
lines belonging to the mos t  salient s t ructures  consti-  
tutes only 17% of the to ta l  lines ob ta ined  from the 
edge image of Fig. 6(f). At the same time, the salient 
con tour  set accounts  for nearly 84% of the "useful" 
lines associated with the aircraft. This percentage is 
referred to as the "g round  t ru th"  in Table  4. It ex- 
presses a significant gain in terms of computa t iona l  

Table 3. The factors which affect the feature extraction processes and, hence, determine the level of difficulty in categorizing 
the target object, i.e. a generic aircraft and its class, in the chosen examples 

Factors Example 1 Example 2 Example 3 

Contrast Medium-low Medium-high Medium-low 
(target/background) (target/background), (target/background), 

high low 
(target/shadow) (target/shadow) 

high low 
(shadow/background) (shadow/background) 

Clutter Medium-sparse Sparse Medium-dense 
Shadow Diffused Strong Strong 

Table 4. Significance of saliency-based feature regulation for the ROI of Example 1 

No. of lines detected using edge magnitude threshold of No. of lines from Ratio Fraction of 
from most salient l~/Ls aircraft contour 

t = 225 t = 200 t = 150 t = 100 t = 50 structures lines in 11 
(L1) (L2) (L3) (L~) (Ls) (ll) (ground truth) 

18 28 40 91 213 36 0.17 0.84 

The lines referred to in this table are those that are at least 10 pixels long. 

Table 5. Significance of symbolic feature extraction for the ROI of Example 1 

No. of lines from most No. of distinct lines No. of distinct lines No. of additional lines Ratio Ratio 
salient structures forming convex forming trapezoids needed for recognition 

groups 
(Is) (/2) (13) (/4) Iz/ll (13 +/4)/11 

36 18 13 5 0.5 0.5 

The lines referred to in this table are those that are at least 10 pixels long. 
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efficiency for any subsequent model-matching step. 
The computat ional  advantage gained because of the 
use of symbolic features is evident from the results of 
Table 5. The overall effect of salient structure deter- 
minat ion (17% of the original set of lines retained) 

Table 6. Performance evaluation of various feature extrac- 
tion processes in Example 1 under the conditions of Table 3 

Salient edge Region Non-shadow Symbolic 
features features edge features features 

H M H M H M H M 

0.84 0.10 0 .75  0.20 N/A N/A 1.0 0.20 

H and M represent hit- and miss-ratios, respectively. 

and symbolic feature grouping (50% of the salient 
lines used) is the retention of only 8.5% of the lines 
obtained from Fig. 6(f) for aircraft recognition. 
Table 6 presents the performance results of the feature 
extraction processes - -  salient edge, region, non- 
shadow edge, and symbolic - -  in terms of hit- and 
miss-ratios defined earlier. The merit  figures follow 
the experimental results discussed above, except for 
nonshadow feature extraction which is not  applicable 
(N/A) to this example. A hit ratio of 1.0 for the 
symbolic feature extraction process implies that no 
nonaircraft feature (trapezoid-shaped) has been ex- 
tracted. 

Example 2. A second aerial image is shown in 
Fig. 13(a). In this example, we present the results of 

(a) 

/ 

(b) 
Fig. 13. Aerial view of an airfield: (a) original image (4K x 4K), (b) a ROI image (120 x 140) of the 

aircraft marked with a x in (a), (c) most salient contour configuration. 
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(b) 

(c) (d) 

(e) (f) 

Fig. 14. Results of feature extraction: (a) straight lines fitted to the most salient contours, (b) segmented 
regions where 0 = shadow and 1 = background, (c) regions where 0 = object and 1 = background, (d) 
dominant axes for the largest object region where axis-1 - wing axis, axis-2 = fuselage axis, (e) potential 

shadow lines, (t) resolved shadow lines. 

analyzing the R O I  of Fig. 13(b). The top-level (most 
salient) configuration of perceptually salient contours 
is shown in Fig. 13(c). The linear segments of this 
structure are displayed in Fig. 14(a). The R O I  is seg- 
mented into three sets - -  shadow [Fig. 14(b)], object, 
and background [Fig. 14(c)]--using recursive ap- 

plication of the segmentation algorithm. The domi- 
nant axes of the largest object region are shown 
in Fig. 14(d). The potential  shadow lines based on the 
bimodali ty test of neighborhood histograms are dis- 
played in Fig. 14(e). To identify the nonshadow lines, 
the i l lumination point projection is first determined 
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(b) 

(c) (d) 

Total Engines found on the Left Wing: 1 

Total Engines found on the Right Wing: 1 

Aircraft Class: << large aircraft >> 

(e) 

Fig. 15. Results of qualitative object recognition: (a) trapezoid-like shapes identified using nonshadow 
groups, (b) symboIic features recognized with low confidence, (c) improved recognition using regulated 

features, (d) refined structural parts, (e) class recognition. 

using the ancillary data. The coordinates of the cam- 
era-platform position are (527, 337, 560) m and that of 
the point of the intersection of the line-of-sight (LOS) 
with the ground are ( -500 ,  -290 ,  -560 )m;  the roll 
of the camera about the LOS is 20 ° . The sun position 
is noted to be in front of the camera. The shadow lines 
which paired up with "nonshadow" lines are dis- 
played in Fig. 14(1). Next, convex groups of the 
nonshadow lines are used to extract trapezoid-like 
symbolic features of Fig. 15(a). 

Figure 15(b) shows the results of initial recognition 
during which only one trapezoid-like feature is avail- 
able to support a wing concept (for the right wing) due 
to its alignment with the wing axis (axis-I). Additional 
evidence for this hypothesized wing is obtained from 

a successful search for elongated blobs representing 
engine. Next, a search region for the second wing is set 
up along axis-1 on the other side (away from the 
hypothesized wing) of the fuselage axis (axis-2). A line 
pair is located within this region that aligns with 
axis-1 and for which the presence of engine can also be 
verified. Thus, the symbolic feature and the line pairs 
are retained as candidates for the two wings as shown 
in Fig. 15(b). 

The supervisory control now interacts with the 
feature regulator to identify candidate lines for the 
missing parts of the fuselage in the image region 
specified by the two hypothesized wings and the hy- 
pothesized fuselage subpart. The "shadow" lines 
removed earlier are considered first, since these are 
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perceptually more salient than any other "non- 
shadow" line that may be obtained from the next set 
of less salient contours. Two such lines are found 
which made up for the missing bot tom part of the 
fuselage. The final results are shown in Fig. 15(c) when 
an aircraft is said to be have been recognized. The 
symbolic parts are further refined as shown in 

Table 7. Performance evaluation of various feature extrac- 
tion processes in Example 2 under the conditions of Table 3 

Salient edge Region Non-shadow Symbolic 
features features edge features features 

H M H M H M H M 

0.54 0.14 0 .98  0.35 1.0 0.14 1.0 0.20 

H and M represent hit- and miss-ratios, respectively. 

Fig. 15(d). Finally, the class of the generic aircraft is 
determined to be large based on engine locations as 
seen in Fig. 15(e). 

The performance results of the feature extraction 
processes are summarized in Table 7. The relatively 
low value of the hit-ratio in the case of salient edge 
feature extraction process is attributable to the con- 
tours of the shadow cast by the aircraft. The self- 
shadowing of the aircraft seen in Fig. 13(b) is also the 
cause of the higher miss-ratio in the case of region 
feature extraction. 

Example 3. The third aerial image is shown in 
Fig. 16(a) of which Fig. 16(b) constitutes an ROI. The 
segmentation result and the extracted dominant  axes 
are shown in Fig. 16(c). The il lumination point projec- 
tion is determined using the ancillary data. The 
coordinates of the camera-platform position are 

. . . .  

(b) (c) 

Fig. 16. A second aerial image: (a) original image (4K × 4K), (b) a ROI image (300 x 450) of the aircraft 
marked with a x in (a), (c) extracted dominant axes. 
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Fig. 17. Results of feature extraction: (a) detection of most salient structure, (b) straight lines fit to the 
structure of (a) superimposed on the ROI image, (c) lines fit to the next incremental salient structure, (d) 
potential shadow lines, (e) resolved shadow lines, (fJ trapezoid-like shapes identified using nonshadow 

groups. 

(--984, - 115, 700) m, that of the point  of the intersec- 
tion of the LOS with the ground are (1150, 
150, - 7 0 0 ) m ,  and the roll of the camera about  the 
LOS is --21 °. The sun position is recorded as behind 
the camera. 

Figure 17(a) shows the top-level structure. The line- 
fits to this structure and the next incremental  salient 
structure are displayed in Fig. 17(b) and (c). Once 
again, the computat ional  advantage gained by using 
the salient structure detection step is indicated in 

Table 8. Here, the salient structures constitute only 
26% of the lines obtained from the edge image corres- 
ponding to the lowest edge threshold. Table 8 also 
illustrates the difficulty posed by shadows as nearly 
equal number  of lines (the ground truth) belong to the 
actual aircraft contour  (38% of the salient structure 
lines) and the shadows (35% of the salient structure 
lines). Convex groups are formed using the lines of 
Fig. (17b). The potential shadow lines identified 
among the lines of Fig. 17(b) are shown in Fig. 17(d). 



486 S. DAS and B. BHANU 

> % 

(a) (b) 

(e) (d) 

Total Engines found on the Left Wing: 1 

Total Engines found on the Right Wing: 2 

Aircraft Class: << large aircraft >> 

(e) 

Fig. 18. Results of qualitative object recognition: (a) a hypothesized wing and a search region for the 
second wing, (b) current nonshadow lines together with those of Fig. 17(c), (c) additional nonshadow 
lines within the search region of (a), (d) recognition after verification of the second wing, (e) refined 

structural parts, (f) class recognition. 

To resolve the nonshadow lines, the rightmost of the 
two nearly parallel axes of Fig. 16(c) is determined to 
be due to shadow based on  the i l lumination projec- 
t ion point  location. The final shadow lines are 
displayed in Fig. 17(e). The groups of nonshadow 
lines are next used to obta in  the trapezoid-like sym- 
bolic features of Fig. t7(0. 

One of the symbolic features of Fig. 17(0 that alig- 
ned with one of the dominant  axes, axis-l, is 

hypothesized as the wing, wing-1 (say). This is shown 
in Fig. 18(a). Further  evidence of wing is obtained 
from a successful search for engine feature in the 
vicinity of wing-1. To obtain evidence of the other 
wing, wing-2 (say), a search region is set up as shown 
in Fig. 18(a) based on  the image location of wing-1 
and the condit ion of s ~ m e t r y  of the wings about  the 
fuselage axis. However, the nonshadow lines con- 
tained within this region fail to identify any symbolic 



Perspective aerial images 487 

Table 8. Significance of shadow detection and symbolic fea- 
ture extraction for the ROI of Example 3 

No. of lines Fraction Fraction Fraction No. of 
from the of lines of 11 of 11 shadow 
most salient from Es0 belonging belonging lines 
structures in set 11 to aircraft to shadows found 
(11) (ground (ground (/2) 

truth) truth) 

150 0.26 0.38 0.35 36 

No. of No. of No. of Ratio 
additional lines distinct additional lines 
from the lines forming needed for 
next salient trapezoids generic 
structures recognition 
(13) (14) (15) (l~ + 15)/ 

(/1 q- 13) 

24 6 5 0.06 

The lines referred to in this table are those that are at least 10 
pixels long. The edge image obtained using a magnitude 
threshold of t = 50 is denoted by Es0. 

feature that may support a wing hypothesis. Addi- 
tional nonshadow lines derived from less salient 
contours of Fig. 18(b) are combined with the existing 
nonshadow lines within the search region [Fig. 18(c)]. 
The initial (maximum) values of the various percep- 
tual constraints fail to produce any meaningful 
perceptual grouping as the lines are few in number 
and are separated apart. However, since the hypothe- 
ses of wing-1 and wing-2 are mutually reinforcing, the 
constraints are relaxed in steps. Particularly, the 
lowering of the threshold of the proximity, Tp, of 
a line-pair intersection to a detected corner and 
Tperi (initial values of Tp = 30.0 and Tperi = 0.9 in 
steps ofATp = 7.0 and ATvori = 0.1) cause grouping of 
lines to occur. As a result, a trapezoid-like symbolic 
feature emerges (the left wing tip) that drives the 
subsequent steps of recognition shown in 
Fig. 18(d) (e). Finally, the refocused matching process 
determines the class of this aircraft as large as in- 
dicated in Fig. 18(1). 

Upon evaluating the processes of shadow identi- 
fication and symbolic feature extraction, it is seen 
(Table 8) that the number of useful lines for aircraft 
recognition is reduced to only 6% of the total number 
of lines which would have to be considered otherwise. 
Performance results of the four key feature extraction 
processes are included in Table 9. The numbers indi- 
cate the difficulty posed by the low contrast and the 
clutter of the image for these processes, i.e. smaller 
values of the hit-ratio and larger values of the miss-ratio. 

Evaluation of  results. Figures 18 and 19 illustrate 
the overall performance of the feature extraction pro- 
cesses for the examples considered in this section. The 
performance is measured under two of the conditions 
identified in Table 2: contrast and clutter. The effect of 

Table 9. Performance evaluation of various feature extrac- 
tion processes in Example 3 under the conditions of Table 3 

Salient edge Region Non-shadow Symbolic 
features features edge features features 

H M H M H M H M 

0.38 0.16 0.55 0.02 0.5 0.45 0.66 0.5 

H and M represent hit- and miss-ratios, respectively. 

shadows on the recognition process is implicit in the 
contrast factor, since presence of shadows may reduce 
the target contrast as in Example 3. It is evident from 
these performance figures that our chosen examples 
span the possible scenarios (with the exception of 
dense clutter) which may be encountered in practice, 
viz., the variations in contrast, clutter, and shadow. 
The figures of merit (hit-ratio and miss-ratio) are, 
therefore, reasonable indication of the capabilities of 
the system under real-world conditions. Our system 
fails on the very low-contrast images of Fig. 9, such as 
Fig. 9(b):(vi), Fig. 9(d), and Fig. 9(e):(i), (iv), (v), due to 
segmentation problem which we discuss later. 

5.3. Discussion of  problematic issues 

The current limitation of the aircraft recognition 
system is primarily due to image segmentation. The 
secondary factors include limited symbolic feature 
extraction, nonadaptive recognition strategy, and im- 
precise auxiliary data. 

Image segmentation is an extremely important and 
difficult low-level task. The difficulty arises when the 
segmentation performance needs to be adapted to the 
changes in image quality that is affected by variations 
in environmental conditions, time of day, etc., as illus- 
trated by the example images of this paper. Despite 
the large number of segmentation techniques present- 
ly available, none performs adequately across all 
possible scenarios likely to be encountered in practice. 
Any technique, including the segmentation algorithm 
employed in this research, yields poor performance if 
it cannot adapt to the variations observed in real- 
world images as shown in this paper. Genetic and 
reinforcement learning-based techniques can help 
here.(13,147 

The process of symbolic feature extraction in our 
system is based on grouping of primitive features, 
primarily lines and corners. Like most current group- 
ing techniques, our system uses only perceptually 
motivated, low-order geometric relationships (such as 
collinearity, cotermination, parallelism, proximity, 
etc.) to assemble simple features of the same type. The 
usefulness of the derived symbolic features is dependent 
on the reliability of the primitive feature extraction 
step, including image segmentation. Augmenting the 
domain-independent perceptual grouping process with 
model-based grouping of high-order structural features 
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Fig. 19. Overall performance, in terms of hit-ratios, of the feature extraction processes as functions of 
the contrast and clutter factors. Each quad element represents the processes in the following way: 
1 salient edge, 2---region, 3--nonshadow edge, 4---symbolic. The hit-ratio values range from 0 (black) 

to i (white); N/A implies that particular value is not available. 

(e.g. curves and blobs) will lead to increased robustness 
and indexing power of the symbolic features. 

The success of the final model matching step is 
determined by the scope of the implemented recogni- 
tion strategy. The effectiveness of a rigid recognition 
strategy in tackling the complex problem of model 
matching is bound to be limited in mnltiscenario 
environments. The limitation may be partially at- 
tributed to the initially unknown pose of the input 
instance of the model and the varying conditions 
(besides the camouflage, concealment, and deception) 
in which an object may appear in an image. Our 
system lacks the capability of automatic acquisition of 
recognition strategies, which remains a bottleneck in 
the development of automated IU systems applied to 
real-world problems. 

6. CONCLUSIONS 

In this paper, we have described a system for recog- 
nition of aircraft in complex, perspective aerial 
imagery and presented an algorithm to recognize and 
classify aircraft using qualitative features. Our ap- 
proach is motivated by the difficulties posed by real- 
world scenarios, such as occlusion, shadow, cloud 
cover, haze, seasonal variations, clutter and various 
forms of image degradation. The main contributions of 
this research are the extraction of perceptually salient 
primitive features and their use in a regulated fashion, 
use of heterogeneous geometric and physical models 
associated with image formation for feature extrac- 
tion and subsequent recognition, and integration of 
high-level recognition processes with low-level feature 
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Fig. 20. Overall performance, in terms of miss-ratios, of the feature extraction processes as functions of 
the contrast  and clutter factors. Each quad element represents the processes in the following way: 
1--salient edge, 2--region, 3 nonshadow edge, 4~symbolic. The miss-ratio values range from 

0 (black) to 1 (white); N/A implies that particular value is not available. 

extraction ones. Real-world data, highlighting the 
difficulties of aircraft recognition in practical situ- 
ations, are used to demonstrate the effectiveness of 
our proposed approach. We have provided both 
quantitative and qualitative figures of merit illustra- 
ting the performance of various aspects of our system. 
Elsewhere, we have utilized the qualitative results to 
search for more specific aircraft models. In its current 
state, the system can be operated by anyone without 
knowing the details of the algorithm. The intermedi- 
ate results are logged for off-line analysis of the 
performance of the system subcomponents. Our 
system needs further improvement in the integ- 
ration and the simultaneous hypothesis verification 
steps to handle scenarios like the one illustrated in 
Fig. l(c). In addition, more accurate auxiliary data, 

particularly those of camera/platform geometry, 
should facilitate robust feature extraction and hy- 
potheses verification. 

The issues and concerns related with extending the 
scope of our system to handle a wide variety of images 
in a practical setting can be addressed within the 
context of machine learning-based image understand- 
ing. Learning provides adaptation of algorithms to 
changes in environment and uses the experience to 
improve recognition performance. (15~ As a future step, 
we will integrate machine learning components into 
the current system to increase its scope and to im- 
prove its robustness. We invite pattern recognition 
and computer vision researchers to use the imagery, 
shown in this paper, for the development of robust 
aircraft recognition approaches. 
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7. S U M M A R Y  

An important goal of photointerpretation (PI) is 
image exploitation, particularly aerial imagery. The 
problem of PI is one of identifying instances of 
"known" object models, usually geometric models, in 
images acquired from a platform, such as by a satellite 
or a reconnaissance aircraft. In real-world PI scen- 
arios, there are factors which complicate the overall 
model-based object recognition process. These in- 
clude occlusion, shadow, cloud cover, haze, seasonal 
variations, clutter, and various other forms of image 
degradation. All of these problems put heavy require- 
ments on any image understanding (IU) system to be 
robust. Among the typical objects requiring identi- 
fication in PI tasks, buildings and aircraft have 
received the maximum attention in the literature. Rec- 
ognition of buildings has proved to be relatively easier 
than that of aircraft because of the structural simpli- 
city of the former. Although there have been several 
aircraft recognition systems proposed in the past, very 
few of these have actually addressed the concerns of 
real world or are demonstrated to be effective in 
practical scenarios. 

In this paper, we describe an IU system for aircraft 
recognition that addresses some of the issues related 
to geometric model-based object recognition and also 
the variabilities of real-world scenarios, such as 
shadow, clutter, and low contrast. Our system uses 
a hierarchical representation, consisting of qualitative- 
to-quantitative descriptions, of object models (aircraft 
in this case). Such descriptions vary from symbolic 
features (e.g. aircraft wing) to primitive geometric enti- 
ties (e.g. points, lines) and allow increasingly focused 
search of the precise models in the database to match 
the image features. The organization of our model 
database is in the form of a hierarchy of generic-to- 
specific information about generic objects (e.g. air- 
craft), object classes (e.g. jumbo aircraft), specific 
objects (e.g. Boeing 747), and aspects of an object. It is 
the specificity of the information available at any 
given level of the hierarchy that controls the focus of 
the search. Additionally, our approach emphasizes 
the importance of using symbolic features which are 
known to be aspect invariant in majority of the real- 
world perspective imagery except for extreme view- 
point situations. To account for image variabilities, 
our system exploits heterogeneous models such as 
those of camera/platform, sun, shadow to derive sym- 
bolic features for the objects in a robust manner. 
Finally, we have brought in a novel aspect to the 
recognition problem by regulating the extracted primi- 
tive features based on their saliency. We demonstrate 
that this step helps to distinguish the relevant features 
from the image clutter, thereby reducing the complex- 
ity of the search problem. 

The main contributions of this research are the 
extraction of perceptually salient primitive features 
and their use in a regulated fashion, the use of hetero- 
geneous geometric and physical models associated 

with image formation for feature extraction and sub- 
sequent recognition, and the integration of high-level 
recognition processes with low-level feature extrac- 
tion ones. Real-world data, highlighting the 
difficulties of aircraft recognition in practical situ- 
ations, are used to demonstrate the effectiveness of 
our proposed approach. 
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