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ABSTRACT

Reference-based image classification approach introduces a
reference-set for both image representation and dictionary
learning. It significantly reduces the dimensionality of rep-
resented images and shows outstanding performance even
with randomly selected reference images and simple dis-
tance measure. In this paper, we improve upon existing work
with two major contributions. First, we show that a more
representative reference-set contributes to better classifica-
tion accuracy. To this end, we carefully adapt the K-means
clustering algorithm in the feature space to select a distin-
guished reference-set. Second, in the image classification
process, we propose to represent each image by measuring
its betweenness centrality in a social network composed of
the representative reference-set in each class, leading to a
more coherent distance measure that considers the overall
connectivity between the probe image and the reference-set.
Extensive experiment results demonstrate that our proposed
scheme achieves better performance than existing methods.

Index Terms— Scene categorization, reference-based
scheme, K-means, social network, betweenness

1. INTRODUCTION

Image classification is a fundamental problem in computer
vision and has attracted a lot of attention in recent years. Cur-
rent research converges on leveraging bag-of-words (BoW)
representation combined with spatial pyramid matching
(SPM) [1]. Such scheme provides an effective way of captur-
ing image statistics for natural scene classification and reports
state-of-the-art performance. Recently, it has been shown that
combining the BOW modules with sparse representation is
very effective and has been successfully applied to object
categorization by many researchers, e.g. the sparse coding
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(SC) method [2] and local coordinate coding (LCC) [3]. In
particular, Wang et al. [4] present a simple but useful cod-
ing scheme called Locality-constrained Linear Coding (LLC)
which replaces vector quantization (VQ) and acquires non-
linear codes. With linear classifier, the presented approach
performs significantly better than the traditional nonlinear
SPM. Meanwhile, Li et al. [5] propose a novel reference-
based scheme for scene image categorization. They select a
set of images to form a reference-set and associate them with
training data in sparse codes during the dictionary learning
process. In the classification stage, they further represent each
image feature vector using the similarities between the image
and the reference-set, leading to a significant reduction of the
dimensionality of represented feature and achieve outstand-
ing performance even with a randomly selected reference-set
and the simple Chi-square distance between an image and the
reference-set.

In this work, we show that a more representative reference-
set and a more carefully selected similarity measure between
the probe image and the reference-set can further improve
the classification accuracy. We optimize the reference-set se-
lection procedure by carefully adopting K-means clustering
in the feature space, and combine the betweenness centrality
from social network with existing similarity measure to mea-
sure the overall connectivity between the probe image and
the reference-set. Betweenness centrality is a measure of a
node’s centrality in a network, which equals to the number of
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Fig. 1: An overview of improved reference-based scheme
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shortest paths from all vertices to all others that pass through
that node [6]. Betweenness centrality can be regarded as a
measure of the extent to which a node has control over the
information flowing among others.

The remainder of the paper is organized as follows: Sec-
tion 2 presents details about the representative reference-set
selection scheme based on the adapted K-means and how
we incorporate betweenness centrality in the classification
stage. Experimental results and analysis on three widely used
datasets are reported in Section 3. Section 4 concludes the
paper.

2. IMPROVED REFERENCE-BASED SCHEME FOR
SCENE CATEGORIZATION

2.1. An overview of our improved reference-based scheme

The overall improved reference-based classification process
is illustrated in Fig. 1. All the image features including the
reference-set used for our reference-based scheme are LLC
features, which are generated using the dictionary trained by
the reference-combined dictionary learning method [5].

A reference-based scheme for scene image categorization
adopts a reference-set composed by some images for images
representation by using the similarities between the probe im-
age and the reference-set. The reference-set is also associ-
ated to generate the dictionary by following the reference-
combined dictionary learning method [5] in sparse coding,
which is defined as Eq. (1),

< B,C, S >= argmin
B,C,S

||X −BC||22 + µ||R−BS||22,

s.t.||ci||0 ≤ T1, ||si||0 ≤ T2,∀i, (1)

where X denotes a set of input signal, X = [x1, . . . , xN ] ∈
RP×N , B = [b1, . . . , bM ] ∈ RP×M denotes the learned dic-
tionary, C = [c1, . . . , cN ] ∈ RM×N denotes the sparse code
of X , and Ti is the sparsity constraint factor, R ∈ RP×L is
the reference-set signal, S ∈ RM×L is the sparse code of R,
and µ balances the weights between training data reconstruc-
tion and reference-set reconstruction. The optimal solution
is efficiently obtained by the K-SVD algorithm with its ef-
fectiveness verified in [5]. Given the learned dictionary, our
improved reference-based scheme is described as follows:
(1) Select m images per class from different datasets to as-
semble a reference-set using adapted K-means clustering,
which will be introduced in section 2.2.
(2) Given the probe image, calculate the similarity between it
and each image in the reference-set as Eq. (2),

Sri
p = 1− F (drip ; k) = 1−

γ(k
2 ,

d
ri
p

2 )

Γ(k
2 )

, (r = α, β, . . . ), (2)

where drip presents the χ2 distance of the probe image p and
the i-th image of the reference-subset (class) r, F (drip ; k)

Algorithm 1 Adapted K-means based reference-set optimiza-
tion algorithm

Input: I,K. % I denotes the input images from differ-
ent classes, K is the number of images per class of the
reference-set.

Output: R. % R is the improved reference-set.
1: nr ← 0.
2: for each i ∈ [1, n] do
3: % n is the number of image classes.
4: K-means clustering in Ii;
5: sort clusters according to the number of images in per

cluster in descending order;
6: while nr < K, from high to low do
7: if ncluster ≥ 2 then
8: find N and F ; % ncluster presents the number

of images per cluster, N is the nearest neighbor
from the cluster center, F is the farthest one.

9: Ri(nr) = N ;nr = nr + 1;
10: if nr < K then
11: Ri(nr) = F ;nr = nr + 1;
12: end if
13: else
14: Ri(nr) = Ic; % Ic is the cluster center.
15: end if
16: end while
17: end for

is its cumulative distribution function, and k is a positive
integer that specifies the number of degrees of freedom.
γ(k/2, drip /2) denotes the lower incomplete Gamma func-
tion, Γ(k/2) is the Gamma function.
(3) Calculate the betweenness centrality brp after adding the
probe image to a social network composed of images in
reference-subset r, as detailed in section 2.3.
(4) Concatenate the betweenness centrality calculated in each
class with the average similarity per class to generate the final
representation of the probe image for classification, accoring
to Eq. (3) - Eq. (4).

frp = mean(

m∑
i=1

Sri
p ), (r = α, β, . . . ). (3)

Fp = (fp; bp)/norm2(fp; bp). (4)

(5) Finally, perform classification using the linear SVM.

2.2. Adapted K-means based representative reference-set
selection method

Unlike previous works that generate the reference-set ran-
domly, we further optimize the reference-set selection pro-
cedure. More specifically, we adapt the K-means clustering
method to assemble the representative reference-set. We ob-
serve that a more diverse reference-set leads to a more dis-
criminative representation, so we keep both the center image
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and the one farthest to the center image in each cluster, if they
are available, to form the reference-set. The reference-set op-
timization method is illustrated in Alg. 1.

2.3. Betweenness centrality as a distance measure

Betweenness centrality is a measure of the centrality of a node
in social networks. It reflects the influence a node has over
the spread of information through the network. Recently, var-
ious methods have been proposed to calculate betweenness
and closeness centralities [6]. We propose to use between-
ness centrality instead of a direct distance measure for the
following reasons: (1) it considers the overall connectivity
by measuring how well the probe image fits in a social net-
work composed of the reference images of one class. In this
way, it is also an image-to-class measure, instead of a image-
to-image measure used before (where each reference image
played equal importance). (2) Betweenness centrality can be
calculated very efficiently when given the small size of each
social network involved (reference images in one class plus
the probe image) and state-of-art algorithms developed in the
social network.

Betweenness centrality can be calculated as follows: sup-
pose that gsti is the number of geodesic paths from node s
to node t that pass through i, and nst is the total number of
geodesic paths from s to t. Normally, the betweenness of a
node i is calculated as the fraction of shortest paths between
node pairs in a network that pass through i. Then the be-
tweenness of node i is

bi =

∑
s<t g

st
i

(1/2)nst(nst − 1)
. (5)

Betweenness can be calculated for all nodes in time O(jk)
for a network with j edges and k nodes [6].

In our case, we first construct a social network for the
reference images in each class. Then given a probe image,
we add it to existing networks and calculate its betweenness
centrality to measure its connectivity to the corresponding
class. For each image in the constructed network, we use
the dimension of the biggest component in its LLC feature
as the node label, and the next 30 biggest components as its
friendship nomination data. Thus, we have a measurement
of how the probe image fits into a class-specific network by
letting it find “friends” that have similar LLC features in a
global sense. In the improved reference-based scheme, the
whole process is shown as follows:
(1) Construct a social network composed of reference images
per class.
(2) Given the probe image, add it to each class-specific net-
work and measure its betweenness centrality using the 31
biggest components in the LLC feature space.
(3) Concatenate betweenness centrality in all classes of the
probe image to generate its final betweenness representation
feature. In this way, the dimensionality of the feature is
bounded by the number of classes in the reference-set.

Table 1: Feature Dimensionality Comparison With 200, 400,
And 1024 Bases Dictionaries

Feature 200 400 1024
LLC[6] 4200 8400 21504
Ours 784 784 784

Table 2: Image Classification Results On Caltech101 Dataset

Classification Classification Accuracy(%)
Method 5 10 15 20 25 30

Lazebnik[1] - - 56.4 - - 64.6
Gemert[12] - - - - - 64.16

Yang[2] - - 67.0 - - 73.2
Wang[4] 51.15 59.77 65.43 67.74 70.16 73.44

K-SVD[13] 49.8 59.8 65.2 68.7 71.0 73.2
D-KSVD[14] 49.6 59.5 65.1 68.6 71.1 73.0

LC-KSVD1[10] 53.5 61.9 66.8 70.3 72.1 73.4
LC-KSVD2[10] 54.0 63.1 67.7 70.5 72.3 73.6

Reference-based[5] 72.5 77.9 79.7 81.4 82.3 83.0
Ours 72.9 78.6 80.7 82.3 83.5 84.2

Table 3: Image Classification Results On Scene15 Dataset

Classification Accuracy(%) ClassificationAccuracy(%)
Method 200 400 Method 200 400

Lazebnik[1] 74.5 74.8 Yang[2] - 80.28
Gemert[12] 74.3 76.67 Wang[4] 78.5 80.2

Reference-based[5] 82.8 83.2 Ours 83.4 84.2

3. EXPERIMENTAL RESULTS

We evaluate our approach on three diverse datasets: Caltech-
101 [7], fifteen scene categories [8], and Pascal VOC2007 [9],
and compare our results with several state-of-the-art methods,
including the original reference-based method. We use the
dense SIFT descriptors of 16 × 16 pixel patches computed
over a grid with a spacing of 8 pixels, and 4 × 4, 2 × 2, 1 ×
1 sub-regions for LLC, throughout all the experiments. The
dictionary size for Caltech101 and VOC 2007 is 1024, and for
fifteen scene categories the size is 200 and 400. We refer to
the publicly available software packages of [10] to set µ = 4.

The reference-set is collected by gathering 30 images
per class from 392 different classes by the adapted K-means
clustering in fifteen scene categories, Caltech101, Caltech-
256 [11], and Pascal VOC2007. The dimension of the final
image feature is presented in Table 1.

We repeat the experiments 10 times with different random
splits of the training and testing images to obtain reliable re-
sults. The final classification rates are reported as the average
of each run. All experiments are conducted on a Dell D01X
computer with 6G memory and 3.2 Ghz Quad Core CPU.
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Table 4: Image Classification Results On Pascal VOC 2007 Dataset

Object Class aero bicyc bird boat bottle bus car cat chair cow

LLC[4] 74.8 65.2 50.7 70.9 28.7 68.8 78.5 61.7 54.3 48.6

Best PASCAL’07[9] 77.5 63.6 56.1 71.9 33.1 60.6 78.0 58.8 53.5 42.6

Reference-based[5] 79.0 72.8 57.9 72.6 29.9 71.8 81.9 65.1 61.6 53.5

Ours 79.8 73.4 58.0 72.6 32.9 72.5 81.5 67.1 61.8 54.6

Object Class table dog horse mbike person plant sheep sofa train tv Average

LLC[4] 51.8 44.1 76.6 66.9 83.5 30.8 44.6 53.4 78.2 53.5 59.3

Best PASCAL’07[9] 54.9 45.8 77.5 64.0 85.9 36.3 44.7 50.9 79.2 53.2 59.4

Reference-based[5] 64.6 44.8 71.4 69.7 88.8 38.9 45.3 52.9 78.4 59.3 63.0

Ours 64.8 46.0 75.5 71.2 89.7 40.7 48.2 52.7 79.1 59.6 64.1
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Fig. 2: Confusion table of Scene15 dataset using 400 bases
dictionary, the grid detector and patch based representation.
The average performance is 84.2%.

3.1. Caltech-101

The Caltech-101 dataset [7] contains 9144 images in 101
classes, the number of images per category varies from 31
to 800. Most images are of medium resolution, i.e., about
300 × 300 pixels. We partition the whole dataset of Caltech-
101 into 5, 10, . . . , 25, 30 training images per class and the
rest for testing.

We compare our result with the original reference-based
scheme and other state-of-art approaches [1, 2, 3, 4, 10,
12, 13, 14]. As we can see from Table 2, our approach
achieves a 1.2% increase in terms of accuracy over the origi-
nal reference-based method, while noticeably outperforming
all the competing approaches with nearly 10% accuracy in-
crease compared to the former best result.

3.2. Scene Category Recognition

Our second set of experiments is performed on the fifteen
scene categories [8], including the COREL collection, per-

sonal photographs, and Google image search. Each category
has 200 to 400 images, and the average image size is 300 ×
250 pixels. We partition the whole dataset into 100 training
images per class and the rest for testing.

As shown in Table 3, our method is superior to all the oth-
ers with both 200 bases and 400 bases dictionaries. A closer
look at the confusion table (Fig. 2) reveals that the highest
block of errors occurs among the four categories: livingroom,
industrial, opencountry and bedroom.

3.3. Pascal VOC 2007

The PASCAL 2007 dataset is an extremely challenging one
which holds of 9,963 images in 20 classes. All the images are
daily pictures got from Flicker with different sizes, viewing
angles, illuminations. The appearances of objects and their
poses vary greatly, with frequent occlusions. We use the stan-
dard metric used by PASCAL challenge [9] to evaluate the
classification performance. It computes the area under the
Precision/Recall curve, and the higher the score, the better
the performance.

In Table 4, we list our scores for all 20 classes in com-
parison with one recent result in [4], as well as the best per-
formance of the 2007 challenge. As seen from Table 4, our
reference-based method can achieve the best performance in
the most of classes and the highest average rate.

4. CONCLUSION

In this paper, we present a new reference-based scene images
categorization approach which is based on adapted K-means
clustering for representative reference-set selection and be-
tweenness centrality for distance measure by treating images
in the reference-set as social networks. We perform experi-
ments on three widely used image datasets to verify the ben-
efits of the proposed method.
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