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Abstract— Aligning faces with non-rigid muscle motion in
the real-world streaming video is a challenging problem. We
propose a novel automatic video-based face registration ar-
chitecture for facial expression recognition. The registration
process is formulated as a dense SIFT-flow- and optical-flow-
based affine warping problem. We start off by estimating the
transformation of an arbitrary face to a generic reference
face with canonical pose. This initialization in our framework
establishes a head pose and person independent face model. The
affine transformation computed from the initialization is then
propagated by affine transformation estimated from the dense
optical flow to guarantee the temporal smoothness of the non-
rigid facial appearance. We call this method SIFT and optical
flow affine image transform (SOFAIT). This real-time algorithm
is designed for realistic streaming data, allowing us to analyze
the facial muscle dynamics in a meaningful manner. Visual and
quantitative results demonstrate that the proposed automatic
video-based face registration technique captures the appearance
changes in spontaneous expressions and outperforms the state-
of-the-art technique.

I. INTRODUCTION

Image registration is a classical topic in computer vision.

It aims to overlay images of the same scene taken under

different circumstances, such as time, viewpoint, and sen-

sor [1]. In the context of human facial expression analysis,

behavioral scientists have developed facial action coding

system (FACS) [2] as an objective standard. According to

FACS, human coders can decompose every possible facial

behavior into action units (AU), which roughly correspond

to the muscles that produce them, as shown in Fig. 1.

Automatic AU recognition [3], [4], has been quite suc-

cessful for well-aligned, posed data, such as MMI [5] and

CK+ [6] dataset. Unfortunately, AU recognition in an uncon-

trolled real-world environment remains a difficult problem,

as shown in the Facial Expression Recognition and Analysis

Challenge (FERA2011) [7]. This is due to the challenges in

the automatic face registration for realistic data:

1) The facial muscle motion is non-rigid.

2) In the real data facial expressions are coupled with

rigid motion of head pose.

3) The head pose comprises of both in-plane rotation and

out-of-plane rotation.

4) The data are streaming instead of being in a batch

form.

5) The consecutive frames should comply with temporal

smoothness constraint.
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6) The resolution of the face region is changing.

Existing face registration approaches attempt to solve

different aspects of the aforementioned challenges. In the

face recognition and image retrieval community, researchers

attempt to get rid of the non-rigid motion from fa-

cial data through registration using an ensemble of im-

ages [8], [9], [10]. These approaches are not suitable for

the facial expression and AU recognition community, where

registration is carried out so that the non-rigid facial muscle

motion is retained and robustly recovered from streaming

data in real-time. The state-of-the-art systems [4], [11] track

a set of anchor points on the face and estimate the affine

transformation based on which the entire face is warped.

However, as demonstrated by Fig. 2, these methods do not

address the temporal smoothness issue for proper alignment.

Besides, affine transform parameter estimation by a small set

of points can be susceptible to detection errors. In a realistic

case where the resolution of the face is not high enough, the

accuracy of feature point detection will also degrade. Yang

and Bhanu [12] adopt SIFT flow technique [13] to align every

frame to a reference face. As shown in Fig. 2 column 3, the

outcome of the SIFT flow transform has a large amount of

discontinuities and artifacts. Although they solve this issue

by generating image-based face representations (Emotion

Avatar Image) and a reference model (Avatar Reference),

carrying out the double layer loopy-belief propagation for

every frame is computationally expensive and not suitable

for real-time systems.

As illustrated in Fig. 2, we consider registration of frame

2 with respect to frame 1. All methods in this figure are able

to account for the in-plane head rotation. However, as seen in

the frame difference image (row 3) for the point-based affine

transformation (column 2) and the SIFT flow transformation

(column 3), there is a motion on most parts of the face. This

is similar to the original face image (column 1) where the

image is the output of Viola-Jones face detector [14] and

is not registered. This suggests us to impose the temporal

smoothness constraint so that the frame difference is small

for areas with no motion; while for areas with motion (mouth

area in this case), the frame difference should capture this

change, as demonstrated by our proposed method (column

4).

In this paper, we propose a video based face registration

approach, namely SOFAIT, that tackles all the aforemen-

tioned challenges in real-world datasets for facial motion

analysis. Inspired by the philosophy of [12] where the

alignment is done with respect to a reference face model,

we transform every frame of the streaming data onto a
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Fig. 1. Examples of AUs defined in the FACS.

reference with canonical pose, expression, and illumination.

This philosophy is significant in the facial expression anal-

ysis because facial muscle motion is similar for the same

expression irrespective of the person [2], but the facial feature

location (such as eyes, nose, mouth) of different people

varies. Thus, finding a canonical reference feature location

for all the faces is favorable for analyzing the dynamics of

facial features across population.

Original Point-based Affine SIFT flow Proposed

Frame 1

Frame 2

FrameDifference

Fig. 2. Comparison of registration results. Row 3 is the absolute difference
of frame 1 and frame 2. Column 2 follows the registration method used
in [11], where affine transformation is computed from the points shown in
column 1. Column 3 uses SIFT flow to align with the Avatar Reference
face model from [12]. Ideally, we would like the frame difference to only
show where the non-rigid motion is present (mouth area in this case). Our
proposed method achieves the most plausible result.

The architecture of the SOFAIT is illustrated in Fig. 3.

First, for faces extracted from Viola-Jones detector, we

analyze their low-rank component of the starting frame by

Transform Invariant Low-rank Texture (TILT) [15]. TILT

algorithm can accurately rectify a face with in-plane rotation

by recovering its intrinsic low-rank texture and domain trans-

formation. Second, we compute the affine transformation

from the dense SIFT flow of the rectified face to the reference

face. Different from the point-based affine transformation,

the dense flow-based affine is not only more robust to outliers

but also able to maintain the non-rigid muscle motion. This

solution is inspired by [16] in the image coding area where

multiple affine models are estimated for motion segmentation

of two images. We consider our face model subject to one

dominant affine transformation which approximates the rigid

head motion. Third, for consecutive frames thereafter, we

apply a similar idea of dominant affine motion of the scene,

and estimate the parameters for inter frame transformation

from the dense optical flow. Fourth, we train a learning-based

registration validation model to decide when to re-initialize

the process once our system encounters any undesirable

alignment result.

The contributions of this work are summarized as follows:

1) We propose a novel real-time video-based face regis-

tration technique, SOFAIT that aligns the real-world

face data with non-rigid muscle motion for the facial

expression analysis (Section II).

2) SOFAIT is an holistic approach and no detection of

local features (eyes, nose, mouth) is needed. Therefore,

it is tolerant to noise and low image resolution. The

proposed method is also robust to minor out-of-plane

head rotation, and it guarantees temporal smoothness

for image sequences, as shown in Section II-B.

3) We define a learning-based model to validate the face

registration results. The linear Support Vector Machine

(SVM) is trained on Histogram of Oriented Gradients

(HOG) features for classification (Section II-C).

4) We demonstrate that our registration method is appli-

cable in spontaneous facial expressions analysis and

existing AU recognition system performance enhance-

ment. We carry out an Independent evaluation by a

third party (the FERA2011 challenge organizer [7])

and show improvements over the state-of-the-art ap-

proach [12] and the baseline approach [7].

The rest of the paper is organized as follows: Section II

presents our formulation and solution to the face registration

problem using the dense flow information (both SIFT flow

and optical flow) to estimate the affine transformation param-

eters. The experimental results are provided in Section III.

II. REAL-TIME VIDEO-BASED FACE REGISTRATION

The objective of this work is to align real-world video-

based face data in an uncontrolled environment. If not other-

wise specified, the original input of our system is considered

to be the detected faces by the Viola-Jones detector [14].

We use images from the Belfast Naturalistic dataset [17] to

demonstrate that our approach is applicable in spontaneous

expression recognition. We first introduce how TILT [15] is

adopted in our system to accurately recover the in-plane head

rotation. Subsequently, we use the structural information

from SIFT flow to estimate the affine transformation for

aligning faces with respect to a reference face model. This

enables our system to tolerate an out-of-plane head rotation.

The steps of TILT and SIFT flow based affine transformation

are considered to be the initialization process. We then
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Fig. 3. The architecture of the proposed registration method SOFAIT .

impose temporal smoothness by computing the pairwise

dense optical flow between the original consecutive frames.

Finally, since the error is propagated during this process, we

address the issue by training a SVM classifier to validate the

registration results based on the HOG feature.

Original TILT Flow-based Affine Avatar Reference

Fig. 4. The initialization procedure. We first use TILT [15] to eliminate
the in-plane rotation of the face. Affine transformation is then estimated
from SIFT flow to align the facial features. For comparison, we also show
the level-1 Avatar Reference face model [12] (column 4) which is used for
computing SIFT flow. The facial features of the initialization result (column
3) are aligned with respect to the reference face.

A. Transform Invariant Low-rank Texture (TILT)

In [15], TILT aims to extract the invariant structures in a

2D image that correspond to a class of patterns on a planar

surface in 3D. One assumption is that the invariant structure

has regular patterns, whose appearance can be modeled as

a low-rank matrix, such as edges, corners, and symmetric

patterns. In the context of face registration, we adopt TILT

to recover the symmetric structure as well as the affine

transformation from a given face image. The fundamental

idea of TILT is to view the raw pixel values of an image

as a matrix and discover a transformation that results in a

low-rank matrix subject to sparse errors.

An m × n image I0 of a texture is considered to be of

low-rank if rank(I0) � min(m,n). For a given image

observation I , the scene could be warped and corrupted by

transformations, errors, or occlusions, such that I is not of

low-rank. Thus, a transformed image, I◦τ , can be considered

as of low-rank, subject to a sparse error matrix E that

models the errors and occlusions. This formulation leads to

the following optimization problem:

arg min
I0,E,τ

rank(I0) + γ ‖ E ‖0 subject to I ◦ τ = I0 + E

(1)

where ‖ E ‖0 represents the number of non-zero entries in

the matrix E; γ is a positive constant. However, this cost

function is intractable as it is non-convex and the constraint

is non-linear. Fortunately, recent work in compressive sens-

ing [18] suggests that the cost function can be relaxed as:

arg min
I0,E,τ

‖ I0 ‖∗ +λ ‖ E ‖1 subject to I ◦ τ = I0 + E

(2)

where ‖ . ‖∗ represents the matrix nuclear norm (the sum

of singular values); ‖ . ‖1 represents the matrix 1 − norm

(the sum of absolute values of all entries); λ is a positive

weighting factor. The cost function is now convex and con-

tinuous. The non-linear constraint is resolved by iteratively

linearizing the constraint.

We use a 100 × 100 face image as the input to recover

its low-rank component as well as the transformation itself.

The algorithm converges in about 5 iterations. As the results

of the TILT shown in Fig. 4, the in-plane head rotation is

rectified and the facial expression is retained.

B. Dense Flow-based Affine Transformation

After recovering the in-plane rotation of the first frame,

we align this frame (target face) to a reference face model

by computing the dense SIFT flow, based on which the

affine transformation parameters are estimated. The product

of the previous two affine warpings (TILT and SIFT flow

affine) is considered as the registration transformation for

the first frame. For the subsequent frames, we compute the

pairwise optical flow for the original input face sequence,

and estimate the affine parameters of the current inter frame

transformation.



1) Compute SIFT Flow for the Starting Frame: SIFT

flow [13] was originally designed to align an image to

its plausible nearest neighbor which can have large vari-

ations. The SIFT flow algorithm robustly matches dense

SIFT features between two images, while maintaining spatial

discontinuities. The local gradient descriptor, SIFT [19], is

used to extract a pixel-wise feature component. For every

pixel in an image, the neighborhood (e.g. 16×16) is divided

into a 4×4 cell array. The orientation of each cell is quantized

into 8 bins, generating a 4× 4× 8 = 128-dimension vector

as the SIFT representation for a pixel, or the so called SIFT

image.

After obtaining the per-pixel SIFT descriptors for two

images, a dense correspondence is built to match the two

images. Similar to optical flow, the objective energy function

is designed as:

E(w) =
∑

p

min(‖s1(p)− s2(p + w(p))‖1 , t)+ (3)

∑

p

η(|u(p)|+ |v(p)|)+ (4)

∑

(p,q)∈ε

min(α |u(p)− u(q)| , d)+

min(α |v(p)− v(q)| , d) (5)

where p = (x, y) is the grid coordinates of the images, and

w(p) = (u(p), v(p)) is the flow vector at p. u(p), v(p) are

the flow vectors for x direction and y direction respectively.

s1 and s2 are two SIFT images to be matched. ε contains

all the spatial neighbors (a four-neighbor system is used).

The data term in (3) is a SIFT descriptor match constraint

that enforces the match along the flow vector w(p). The

small displacement constraint in (4) allows the flow vector

to be as small as possible when no other information is

available. The smoothness constraint in (5) takes care of the

similarity of flow vectors for adjacent pixels. In this objective

function, the truncated L1 norm is used in both the data

term and the smoothness term with t and d as the thresholds

for matching outliers and flow discontinuities, respectively.

η and α are scale factors for the small displacement and

smoothness constraint, respectively. The dual-layer loopy

belief propagation is used as the base algorithm to optimize

the objective function. Then, a coarse-to-fine SIFT flow

matching scheme is adopted to improve the speed and the

matching result.

The SIFT flow computation from a target face with respect

to a reference face is demonstrated in Fig. 5. The raw flow

vectors (top row) are discontinuous, and the corresponding

warping result has strong artifacts.

Remark. How to Choose a Reference Image: The ref-

erence frame is the level-1 Avatar Reference face model

generated from the GEMEP-FERA training dataset [12]

(Fig. 4 column 4). It can be viewed as the super-resolved

version of the mean face of the entire dataset. This reference

face model should be in canonical pose and expression. As

demonstrated later in the experiment results in Section III,

the choice of the Avatar Reference from different datasets

will not significantly affect the registration and AU recogni-

tion results.

2) Flow-based Affine Transformation: Instead of de-

tecting feature points (such as eye corners, nose tip etc.)

and inferring affine transformation from them, we use the

dense flow information to estimate the affine transformation,

namely the dominant motion. In homogeneous coordinates,

we represent the pixel location of a target frame and a

reference frame by p = (x, y, 1) and p′ = (x′, y′, 1),
respectively. Given the target frame pixel location and its

corresponding flow vectors, the reference frame pixel loca-

tion can be written as x′ = x+ u(p), y′ = y + v(p). Thus,

we can model the affine transformation for all N pixels in a

image as follows:




x′

1 · · · x′

N

y′1 · · · y′N
1 · · · 1



 =





a11 a12 a13
a21 a22 a23
0 0 1



 ·





x1 · · · xN

y1 · · · yN
1 · · · 1



 (6)

where x and y components of the reference frame can be

decomposed as:






x1 y1 1
...

...
...

xN yN 1











a11
a12
a13



 =







x′

1
...

x′

N






(7)

and







x1 y1 1
...

...
...

xN yN 1











a21
a22
a23



 =







y′1
...

y′N






(8)

As flow vectors may suffer from outliers, we solve for the

maximum likelihood estimates of this overdetermined system

robustly by iteratively reweighted least squares (IRLS) [21].

Fig. 5 shows the affine transformation estimated from the

SIFT flow vectors. The corresponding flow field captures the

characteristics of the raw SIFT flow field in a continuous

manner. With this, we finish the initialization process.

Consider the sequence of unregistered face images there-

after, their size may vary from Viola-Jones face detector even

when the original images have the same scale. A naı̈ve way

of scale normalization cannot solve this problem. In order

to align features under different scale and extract non-rigid

facial muscle motion, we have to generate temporally aligned

faces.

After registering the starting frame of the face sequence,

we now consider processing the frame right after the starting

frame. We compute the optical flow from the current frame to

the unregistered previous frame (starting frame, in this case).

As shown in Fig. 6(a), the warping based on optical flow

almost perfectly aligns the entire face. Applying the afore-

mentioned dominant motion philosophy, we compute the

affine transformation from this dense optical flow. This trans-

formation is considered as the warping of the current frame

to the unaligned previous frame. Their results (Fig. 6(a) and

(b)) are similar, but (b) is more smooth and able to retain the

non-rigid motion in the mouth area. We then incorporate this
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Fig. 5. The affine motion estimation from SIFT flow. The SIFT flow of the input is computed with respect to the level-1 Avatar Reference. The visualization
of the flow field uses the color-coding scheme of [20]. For comparison, we also show the warped input image based on: (a) SIFT flow and (b) affine
estimation of SIFT flow.

Input 2 Input 1 Input Frame Difference

Output 2 Output 1 Output Frame Difference

Input 2 Input 1
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Affine Estimation

Input 2 warped from flow

Output 2

IncorporateInitialization

(a) (b) (c)

(1)

(2)

Fig. 6. (1) The affine motion estimation from optical flow. The optical flow of the input 2 is computed with respect to the the input 1. For comparison,
we show the input 2 warped based on (a) optical flow; (b) affine estimation of optical flow; (c) incorporation of initialization transformation (from Fig. 5)
and the flow from (b). (2) Temporal smoothness analysis. The output 1 is initialization result in Fig. 5 (b). The frame difference represents our registration
method captures the non-rigid motion in mouth area.

affine transformation with the transformation of the previous

frames (only the initialization in this case) by simple matrix

multiplication, resulting in the registration transformation for

the current frame. This process is repeated for the frames

thereafter. To analyze the temporal smoothness, we also

compare the frame difference of the original input image

pair and the registered image pair in Fig. 6(2). The frame

difference of the registered image pair represents the non-

rigid motion in mouth area (similar to what the human visual

system captures).

C. Evaluation of Registration Results - Learning-based Val-

idation

Since the error is propagated by the affine matrix mul-

tiplication, we need an automatic approach to evaluate the

current registration result. In this work, we treat this process

as a binary classification problem. For 1200 positive and

2000 negative examples (samples are shown in Fig. 7),

we compute Histogram of Oriented Gradients (HOG) [22]

features. The edge and structure information captured by

the HOG feature is used to train a linear SVM classifier.

Since the true negative examples are limited (about 80 out
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Fig. 7. Training examples for the registration validation model.

of 1100 face images from the GEMEP-FERA [7] dataset), we

generate synthetic data by applying the affine transformation

of misaligned examples to the entire dataset. This approach

achieves 94.7% accuracy in predicting more than 5000
unseen examples.

Remark. Computational Cost Analysis: For SOFAIT

registration architecture, we train our validation classifier in

an offline phase. During the online phase, we only compute

TILT and SIFT flow for the starting frame as the initialization

step. The steps to be carried out for every frame are the

following:

1) Compute the dense optical flow with respect to the

previous frame

2) Estimate the affine transformation from the dense

optical flow

3) Accumulate affine transformation by matrix multipli-

cation

4) Apply affine transformation to register the current

image

5) Calculate HOG feature for current image

6) Classify the feature using the trained validation model

We adopt both the optical flow and the LBP implementation

in OpenCV [23]. The classification step is realized using

the liblinear [24] library. The aforementioned steps can be

finished in less than 20ms for a 100 × 100 image on a

dual-core Intel 3.40GHz machine with 8GB memory, which

means that we can carry out real time registration process at

about 50 fps.

The initialization step takes on the average 1.69 second

using the aforementioned settings. In the meantime, our

system stores all the extracted face images in a buffer

to prevent any information loss. After the system finishes

initialization, we process the frames in the buffer. In our

experiment, the video frame rate is 25 fps, our system takes

another 1.72 second to empty the images in the buffer.

Therefore, after 3.41 second, our system is able to process a

face image right after it has been extracted from the face

detector. Although the initialization delay will not affect

processing a single frame of the video after initialization or

causing any information loss, our system works in real-time

after 3.41 seconds, literally.

III. EXPERIMENTAL RESULTS

We demonstrate SOFAIT face registration technique by

facial action unit (AU) recognition on FERA Challenge

dataset [25]. We use the exact same feature as the baseline

approach for better comparison and show superior perfor-

mance. We also compare our approach with the state-of-the-

art registration technique [12].

The goal is to detect 12 frequently occurring AUs

(Fig. 1) on a per-frame basis. We use the same protocol

as the Facial Expression Recognition and Analysis Chal-

lenge (FERA2011) [7] AU sub-challenge. The data we use

for training is the GEMEP-FERA training dataset, which

includes 87 sequences and around 5400 frames. The pose

and gesture of the subjects in this dataset are uncontrolled,

and therefore, this dataset is more realistic and complex

compared to MMI [5] and CK+ [6] datasets.

The baseline registration method detects both eye loca-

tions of the face, scale, and in-plane rotate the face. This

registration belongs to in-plane image transformation cate-

gory as summarized in [26]. The state-of-the-art registration

technique is called Emotion Avatar Image (EAI) [12], [26].

It is another variation of SIFT flow method [13].

To demonstrate how our registration technique can im-

prove the existing AU recognition system, we adopt ex-

actly the same procedure and parameters as in the baseline

approach [7] except the face registration step. After we

extracted the face from Viola-Jones face detector [14], we

resize them to 100×100 images and register them using the

proposed method. Subsequently, we divide the image into

10×10 blocks, where the same type of Local Binary Pattern

(LBP) [27] texture feature for each block is computed and

concatenated as in the baseline approach. We then train 12
linear SVM binary classifiers based on the implementation

of [28].

0.0
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0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 SOFAIT

EAI
Baseline

Fig. 8. (a) F1-score visualization between the proposed SOFAIT ap-
proach, EAI registration approach [12], and the baseline approach [7].
The corresponding number can be found in Table I. The performance of
baseline algorithm is enhanced by our registration technique in all the AU
classes except AU10 and AU25. The overall performance of the proposed
registration method is also superior over the state-of-the-art EAI registration
technique.

In order to compare our registration technique with EAI

registration technique, we use the level-1 Avatar Reference

generated from FERA Challenge training data [25]. In gen-

erating a EAI representation, we need to select a temporal



TABLE I

F1-SCORE COMPARISON WITH THE BASELINE APPROACH [7] AND EAI APPROACH [12] FOR THE COMBINATION OF PERSON SPECIFIC AND PERSON

INDEPENDENT TEST.

AU 1 2 4 6 7 10 12 15 17 18 25 26 Mean

SOFAIT 0.58 0.69 0.41 0.70 0.52 0.40 0.81 0.15 0.40 0.33 0.74 0.48 0.52

EAI 0.53 0.52 0.38 0.69 0.58 0.44 0.81 0.05 0.00 0.39 0.78 0.43 0.48

Baseline 0.57 0.59 0.19 0.46 0.49 0.48 0.74 0.13 0.37 0.18 0.80 0.42 0.45

length parameter. The author of the original EAI paper [12]

chooses the length of a single video (around 2 seconds) for

this parameter for facial expression recognition on a per-

video basis. To generalize this registration technique in AU

recognition on a per-frame basis, we heuristically determine

the best value for the temporal length parameter. We carry

out a leave-one-subject-out cross validation on the FERA

Challenge training data, and determine the parameter value

to be 0.56 second for the best F1 score over all AUs.

This means for each frame in a video, approximately 14
closest frames will be used to compute EAI representation.

For the boundary frames, i.e. the starting and ending 7
frames, we simply assign their values to be the 8th frame

from the beginning and the 8th from the end, respectively.

Thereafter, the aforementioned features are extracted from

the EAI representations.

We submitted the predictions on 71 testing sequences

(around 4000 images) for both the SOFAIT and the EAI

method to the FERA2011 organizer [7] for an independent

evaluation. The organizer evaluated our predictions using the

same FERA2011 challenge protocol and provided us the re-

sults. The result for baseline method can be found on FERA

challenge website [25]. The overall performance (including

person-independent and person-specific tests) is shown in

Table I and Fig. 8. Our SOFAIT method outperforms the

other two registration techniques in most AU classes. Fig. 9

illustrates that SOFAIT registration is able to enhance the

baseline method in the majority of the AU classes (maximum

improvement is 24%) as well as the overall performance

(7% increase on average). SOFAIT did not help in AU10

and AU25 as for the 2 sequences which includes AU10 and

AU25, our registration achieve poor results because of major

-0.1
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0.1

0.2

0.3

Fig. 9. F1-score percentage improvement over the baseline algorithm [7]
using SOFAIT registration technique.

out-of-plane head rotation.

To demonstrate that choosing different reference face

model will not significantly affect the AU recognition results,

we carry out three experiments using level-1 Avatar Refer-

ence [12] computed from MMI, CK+, and GEMEP-FERA

datasets. Their corresponding F1 scores of the leave-one-out

cross validation are similar, as shown in Fig. 10.

0.6

0.7

0.8

0.9

1.0

AR-FERA
AR-CK
AR-MMI

Fig. 10. F1-score comparison using Avatar Reference from different
datasets. The variation in results is minor, which means the choice of the
reference model will not affect the recognition result significantly.

IV. CONCLUSIONS

We developed a video-based real-time face registration

technique, SOFAIT, and demonstrate its applications in AU

recognition. This approach utilizes holistic dense flow-based

information, and therefore, it is robust to detection error and

noise. Minor out-of-plane head rotation can also be corrected

by employing structural information from SIFT flow. Be-

sides, this method is able to generate temporally smooth

registration results which are essential for spontaneous facial

expression analysis and super-resolution. Last but not the

least, this method performs registration at 50 fps, and is

suitable for real-time processing.
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