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ABSTRACT

In this paper, we first propose a general Multi-Scale Fuzzy
Model (MSFM) which handles distortions at different s-
cales in Histogram-Based Descriptors(HBDs). This model
can be applied both on one-dimensional HBDs and multi-
dimensional HBDs. We then focus on applying MSFM on
the widely used Shape Context for a Simplified Multi-scale
Fuzzy Shape Context (SMFSC) descriptor. Fuzzy models are
barely used in multi-dimensional HBDs due to the significant
increase of computational complexity. We show that by intro-
ducing an intra-bin point location approximation and an ap-
proximate iterative fuzzification approach, the algorithm can
be simplified and thus SMFSC hardly increases computation-
al complexity. Experiments on standard shape dataset show
that SMFSC improves upon the Inner Distance Shape Con-
text. We also applied SMFSC on Content-Based Product Im-
age Retrieval and the experimental results further validate the
effectiveness of our model.

Index Terms— histogram-based descriptors, multi-scale
fuzzy model, simplified multi-scale fuzzy shape context

1. INTRODUCTION

Histogram-based descriptors (HBDs) have played an impor-
tant role in various multimedia and vision tasks such as image
retrieval [1, 2] and shape analysis [3, 4]. HBDs have sever-
al advantages. Firstly, the histograms are well-defined and
have clear physical interpretations. Secondly, the similari-
ty between two HBDs is easy to measure by using existing
distances such as Euclidean distance, χ2 distance, Histogram
Intersection distance and Earth Mover’s Distance (EMD) [5].
Thirdly, most HBDs have achieved basic necessary built-in
invariances such as translation, scale and rotation invariance.
Nevertheless, there is one crucial drawback of HBDs. HBD-
s can only precisely measure the similarity of two images
based on the assumption that the two images are perfectly
aligned, which is hardly the case in most real-world applica-
tions. That’s because to capture rich and precise information,
the image blocks corresponding to histogram bins in HBDs
are usually small and absolute, and small distortion or noise
will lead to misalignment.

Fig. 1. An illustration of effect of different fuzzification s-
cales. Point a and point b fall into different grids of shape
context of point o due to deformation. (c) and (d) show how
the two points are assigned to different histogram bins of dif-
ferent fuzzification scales.

Targeting to address this problem, many solutions fol-
lowed the idea of fuzzy model have been proposed. The basic
idea is to use one-to-many correspondences instead of using
the one-to-one patterns in crisp models when matching the
bins in histograms. These solutions fall into two categories:
feature domain methods [6, 7, 8, 9, 10, 11, 12] and measure
domain methods [5, 13, 14, 15, 16] (see section 2 for a de-
tailed discussion). Generally, well-designed measure domain
methods can be used to measure the similarity of differen-
t descriptors. But feature domain methods are usually more
effective and flexible because they can be optimized based on
in-depth study of the specific descriptor. More importantly,
for many tasks including image retrieval and image recog-
nition, increased computations of applying feature domain
fuzzy methods is in the off-line stage, while that of measure
domain methods is in the on-line stage. Hence in these cir-
cumstances, feature domain methods are favorable options.



An important problem with existing feature domain meth-
ods is that they are all designed to handle histogram distor-
tions of one certain scale, while the scales of histogram distor-
tions vary a lot from image to image. The preset fuzzification
scale may be of little or no help for other deformation scales.
Fig. 1 illustrates the effect of different fuzzification scales.
We can see that fuzzification scale (d) can better mitigate
the deformation between shape (a) and shape (b). Besides,
the histogram distortion problem in multi-dimensional HBD-
s have been realized and discussed but few rigorous multi-
dimensional fuzzy models are proposed.

To overcome these problems, we propose a general fea-
ture domain multi-scale fuzzy model termed Multi Scale
Fuzzy Model (MSFM) which handles multi-scale distortion-
s. It can be applied on any HBDs, both one-dimensional ones
and multi-dimensional ones. To verify the effectiveness of
our model, we apply it on the widely used two dimension-
al Inner Distance Shape Context descriptor. We introduce t-
wo approximations in the generation of the descriptor to re-
duce the computational complexity, and name this relaxed
version Simplified Multi scale Fuzzy Shape Context (SMFSC).
The simplified fuzzification process hardly increases compu-
tational complexity but still results in better performance.

2. RELATED WORK

2.1. Feature domain fuzzy models

Fuzzy logic [17] was introduced to the image processing so-
ciety to mitigate the distortions of ordinary crisp HBDs. The
first and most successful feature domain methods are applied
in color descriptors. In [6], Konstantinidis et al. proposed a
new fuzzy linking method of color histogram creation based
on the L*a*b* color space and provided a histogram which
contains only 10 bins. In [7], a fuzzy system was proposed
to produce a fuzzy linking histogram, which takes the three
channels of HSV as inputs, and forms a 10-bin histogram as
the output based on the color selection method in [6]. Wang
et al. proposed a robust kernel tracking method using fuzzy
color histogram in [8]. Chuang et al. [9] presented a ratio his-
togram based on fuzzy color histogram to detect suspicious
objects in an abnormal event.

There are many widely used multi-dimensional HBDs
such as SIFT [18], HOG [19] and Shape Context [3]. And
multi-dimensional histogram distortion problem has been dis-
cussed and some solutions have been proposed, but they are
not rigorous or well-defined fuzzy models.Liu et al. proposed
a soft shape context descriptor in which one point is assigned
to angular neighboring bins [10]. Wang et al. tried to address
histogram distortion by angular blur [11]. They enlarged an-
gular span, letting bins be overlapped in angular directions.
These two solutions only deal with one dimension in shape
context, namely the angular dimension. In this sense, Ayed
et al. went much further, they defined fuzzy rulers on both

angular and radial dimension and got a fuzzy descriptor [12].
However, in their algorithm points are treated equal, no mat-
ter they are in the center of a bin or near the boundary. This
is not reasonable because points near the boundary are more
possible to deform to another bin.

2.2. Measure domain fuzzy models

In general, measure domain methods use cross-bin distances
to handle histogram distortions in HBDs and many distance
measures have been proposed. The Earth Mover’s Distance
(EMD) proposed by Rubneret et al. [5] defines the distance
computation between distributions as a transportation prob-
lem. EMD is very effective for distributions with sparse struc-
tures. However, the time complexity of EMD is larger than
O(N3) where N is the number of histogram bins. This pro-
hibits its application from multi-dimensional HBDs. Indyk
and Thaper [13] proposed a fast (approximative) EMD algo-
rithm by embedding the EMD metric into an Euclidean space.
The time complexity of the embedding isO(Ndlog4), where
N is the size of feature sets, d is the dimension of the feature
space and 4 is the diameter of the union of the two feature
sets to be compared. Grauman and Darrell [14] used the pyra-
mid matching kernel for feature set matching. A pyramid of
histograms of a feature set is extracted as a description of an
object. Then the similarity between two objects is defined by
a weighted sum of histogram intersections at each scale.

Ling et al. also proposed a fast EMD algorithm, name-
ly EMD-L1 [15]. EMD-L1 utilizes the special structure of
the L1 ground distance on histograms for a fast implemen-
tation of EMD. Later Ling et al. proposed another cross-bin
distance, diffusion distance, for histogram comparison [16].
They defined the difference between two histograms to be a
temperature field, and treated the histogram similarity as a d-
iffusion process. The diffusion distance is much faster than
EMD-L1 and has comparable performance with EMD-L1.

2.3. Shape context

The original shape context was introduced by Belongie[3] for
shape description. It describes the relative spatial distribution
(distance and orientation) of landmark points around feature
points. Given N sample points p1, p2, . . . , pN on a shape, the
shape context at point xi is defined as a histogram hi of the
relative coordinates of the remaining N − 1 points. The dis-
tance between two shape context histograms is defined using
the χ2 statistic.

Based on shape context, Ling et al. proposed a new In-
ner Distance Shape Context (IDSC) descriptor in [20]. They
extended the shape context by replacing the Euclidean dis-
tance with the inner-distance. They also designed a dynamic
programming based method for shape matching and compar-
ison. Their algorithm demonstrated much better performance
in comparison with the original shape context.



3. MULTI-SCALE FUZZY MODEL

We now describe our proposed general multi-scale fuzzy
model (MSFM) in detail.

3.1. Fuzzy Histogram-based Descriptors

Let x represents a datapoint p. The possible value range Ω of
x is divided to L subranges {Xi}, each of which corresponds
to one bin in the feature histogram {bi}. In traditional crisp
histograms, the assignment to bin bi from p is determined as:

∆bi =

{
1, if x ∈Xi

0, otherwise
, i = 1, 2, . . . , L. (1)

To handle the possible distortion of image features, in
fuzzy logic the datapoint p is represented by a distribution,
denoted by d(x), which satisfies:

d(x) ≥ 0 , and (2)

∫
Ω

d(x) = 1. (3)

Then the assignment to each bin from p is determined as:

∆bi =

∫
Xi

d(x). (4)

Since d(x) determines the component the histogram
draws from each data point, it is called the membership func-
tion. Many kinds of membership functions have been used.
Fig. 2 shows some of them.

Fig. 2. Examples of membership functions. (a) is the impulse
function, which can be used to analyze crisp histograms in
fuzzy models. (b) is a triangular function. (c) is a trapezoidal
function. (d) is a normal distribution function.

3.2. Multi-Scale Fuzzy Model

Generally fuzzy HBDs have better performance than crisp
HBDs because fuzzy models have a better representation of

image features with distortions and noises. However, how to
build an appropriate fuzzy model is still an open question:
what scale of fuzzification should the feature have? What
makes the problem even more difficult is that the distortion
may be different in each pairwise comparison, so it is im-
possible to learn a global distortion scale. Another way is to
check the distortion in each fuzzification scale, which is the
basic idea of our MSFM. We check K levels of distortion s-
cales and the final fuzzy HBDs H is the concatenation of each
fuzzy histograms of each fuzzification scale:

H = [H1,H2, . . . ,HK ]. (5)

The distance between two MSFM fuzzy HBDs H and G
can be measured as:

disMSFM (H,G) =

K∑
i=1

disSC(Hi,Gi), (6)

where disSC(X , Y ) can be any traditional distance measures
of the corresponding crisp HBD. Note that there is a trade-
off between the number of scale levels and the computational
complexity of the descriptor. The appropriate number of s-
cale levels is determined by the distortions of the histogram,
which is further determined by the distortions and noises of
the images.

4. SIMPLIFIED MULTI-SCALE FUZZY SHAPE
CONTEXT

We apply our proposed MSFM model on the Shape Context-
based shape descriptor IDSC introduced in [20] (see Section
2(3)). In each fuzzy scale, every datapoint sampled from the
contour is represented by a two dimensional normal distribu-
tion with covariance matrix

Cov = α

[
1 0
0 1

]
, (7)

where α is a parameter. However, this will lead to huge com-
putational cost. Considering the shape context of one sampled
point, in traditional IDSC, we just need to check which bins
the other N − 1 points belong to, where n is the number of
sampled points. But in fuzzy histogram with MSFM applied,
we must calculate K ×M × (N − 1) two dimensional inte-
grals, where K is the number of fuzzification scales and M is
the number of bins each point belongs to.

In order to reduce the high computational complexity, We
use two approximation techniques. The first one is an intra-
bin point location approximation. The idea is to pretend that
all points falling in each image block are at the center of that
block. In this way all these points have the same assignment
to their correspondence bins. Then the assignment can be
pre-calculated and saved, and the time-consuming integral of
d(x) is no longer needed.



The second approximation is using an approximate itera-
tive fuzzifying approach. According to the characterization of
normal distribution, about 95% of the integral value is drawn
within two standard deviations from the mean, so we can as-
sign the shape context value only within this range. Also, for
K scales of fuzzification, we need K assignments and calcu-
late them respectively. To further reduce the time complexity,
we approximate the fuzzication in an iterative manner. In the
kth level we fuzzify the output histogram from the (k− 1)th
level.

With these two approximations, the computational cost is
greatly reduced. The fuzzy inner distance shape context is
simplified, and we name this relaxed fuzzy descriptor Simpli-
fied Multi-scale Fuzzy Shape Context (SMFSC). A description
of our fuzzification process is illustrated in Algorithm 1.

Algorithm 1: SMFSC extraction of an image
Input: sampled points P = {p1, . . . , pN}; f(·) is datapoint-
to-bins assignment derived from the two dimensional normal
distribution.

for n = 1 to N do
Step 1: Calculate a IDSC histogram h0

n= {b0j} for pn.
for i = 1 to N without n do

if pi in image block corresponding to b0j then
b0j ← b0j + 1;

end if
end for

Step 2: Iteratively calculate a fuzzy histogram hk
n= {bkj }

for pn at the kth fuzzification scale, and append it to the
fuzzy histogram of the whole image Hk at the kth scale.

for k = 1 to K do
for j = 1 to J do

bkj = f(hk−1
n );

end for
Hk(n)=hk

n;
end for

end for
Output: H= [H1, H2, ..., HK]

5. EXPERIMENTS

In this section the proposed SMFSC is tested for two tasks.
The first experiment is performed on the widely tested shape
data sets, MPEG7 CE-Shape-1 shapes. The result shows that
SMFSC outperforms traditional methods. We then evaluate
SMFSC on a real-world application, Content-based Product
Image Retrieval (CBPIR), which further demonstrates the ef-
fectiveness of SMFSC.1

1Matlab code implementation of SMFSC can be downloaded for research
usage at https://dl.dropboxusercontent.com/u/57435211/icme2013w.zip.

5.1. MPEG shape database

The widely tested MPEG7 CE-Shape-1 database consists of
1400 silhouette images from 70 classes. Each class has 20
different shapes. The recognition rate is measured by the so-
called Bullseye test: For every image in the database, it is
matched with all the images and the top 40 most similar can-
didates are counted. At most 20 of the 40 candidates are cor-
rect hits so the possible best result is 20 for one image. The
Bullseye score of the test is the ratio of the number of correct
hits for all images to the number of possible best result for all
the images.

We use the same setting as in [20]. The number of sam-
pled points is 100 (300 were used in [3]); the number of radial
bins is 8; the number of angular bins is 12, and the number of
fuzzification scales is 2. In Table 1 SMFSC is compared with
other algorithms. It shows that our algorithms outperform all
the alternatives. The speed of our is almost the same with ID-
SC, and in the same range as as those of shape contexts [3],
curve edit distance [21] and generative model [22].

To further analyze the effectiveness of our algorithm, we
did two other experiments in the same setting with different
scale levels of fuzzification. In the first experiment, we only
use one scale level, which means the output of first fuzzifica-
tion level is directly used as descriptor. The Bullseye score of
this experiment is 85.63%. The result demonstrates that both
the fuzzification and the extension to multi-scale contribute
to the improvement of retrieval performance. In the second
expriment we use three scale levels, and the bullsey score is
85.74%, only a slight improvement for the additional scale.
This shows that for the MPEG7 CE-Shape-1 database, a two
scales fuzzification is enough to handle the distortions.

5.2. Content-based Product Image Retrieval

Content-based Product Image Retrieval(CBPIR) is an emerg-
ing application-oriented field of Content-based Image Re-
trieval with the prevalence of E-Commerce sites such as A-
mazon and eBay. Image segmentation is the bottle neck of
using shape feature in many tasks such as image classification
and general image retrieval. But in CBPIR, the background
is mostly very simple and the shapes of the products can be
easily extracted. So Shape feature can be an important cue in
the retrieval task.

In this part, we build a retrieval system utilizing SMFSC.
The retrieval results are compared with the retrieval system
in [27] with Radial Harmonic Fourier Moments (RHFM) [28]
and Elliptical Fourier Shape Descriptors (EFSD) [29]. We
conduct the experiment on two databases, the Product Im-
age Categorization Data Set (PI100) [30] and the CPIm-
age10 [31]. We choose 10 categories from PI100 (see exam-
ples from the 10 categories in Fig. 3). There are 100 images
in each category’s samples gallery and 20 query images for
each category, which are not included in the sample gallery.
CPImage10 is a subset of the CPImage dataset (see examples



Table 1. Bullseye scores of different methods for MPEG7 CE-SHAPE-1
Alg. CSS [23] Vis. Parts [24] SC+TPS [3] Curve Edit [21] Dis. Set [25]

Score 75.44% 76.45% 76.51% 78.17% 78.38%
Alg. MCSS [26] Gen. Mod. [22] MDS+SC+DP [20] IDSC+DP [20] SMFSC(2 scales)

Score 78.8% 80.03% 84.35% 85.40% 85.73%

in Fig. 4 ). There are also 10 categories with 100 images in
each category, and we randomly choose 20 of them as query
images and perform retrieval in the whole dataset.

Fig. 3. Example images of the selected PI100 images

Fig. 4. Example images of the CPImage10

Precision ratio and recall ratio criterion are used to eval-
uate the retrieval result. Fig. 5 shows the precision ratio and
recall ratio at the first R retrieval result. From these result-
s, we can see that SMFSC performs consistently better than
RHFM and shape histogram at all R values. In addition, the
feature extraction time of SMFSC is in the same range with
moment.

6. CONCLUSION AND FUTURE WORK

In this paper we first proposed a new fuzzy model, MSFM.
The model is novel in two respects. Firstly, it is a general
model which can be used on both single dimensional HBDs
and multi-dimensional HBDs. Secondly, it formulates dif-
ferent scales of histogram distortions, which makes it more
robust and effective. Then we apply this model on the wide-
ly used two dimensional shape descriptor IDSC, and propose
SMFSC. Experiment on the MEPG shape dataset shows that
SMFSC outperforms traditional algorithms. Experiments on

a real-world application , CBPIR, also demonstrate its effec-
tiveness. We make our code and dataset with experiment set-
ting publicly available for easy future references.

We are interested in generalizing our model to other wide-
ly used multi-dimensional HBDs, such as SIFT and ORB. We
also plan to go further with SMFSC, including finding ways
to conduct fuzzification with no or less approximation, and
exploring the possibility of using Bag-of-Feature-like model
to speed up the matching.
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