21st International Conference on Pattern Recognition (ICPR 2012)
November 11-15, 2012. Tsukuba, Japan

Zombie Survival Optimization:
A Swarm Intelligence Algorithm Inspired By Zombie Foraging

Hoang Thanh Nguyen and Bir Bhanu
Center for Research in Intelligent Systems, University of California, Riverside

nthoang @cs.ucr.edu

Abstract

Search optimization algorithms have the challenge
of balancing between exploration of the search space
(e.g., map locations, image pixels) and exploitation of
learned information (e.g., prior knowledge, regions of
high fitness). To address this challenge, we present a
very basic framework which we call Zombie Survival
Optimization (ZS0), a novel swarm intelligence ap-
proach modeled after the foraging behavior of zombies.
Zombies (exploration agents) search in a space where
the underlying fitness is modeled as a hypothetical air-
borne antidote which cures a zombie’s aliments and
turns them back into humans (who attempt to survive by
exploiting the search space). Such an optimization al-
gorithm is useful for search, such as searching an image
for a pedestrian. Experiments on the CAVIAR dataset
suggest improved efficiency over Particle Swarm Op-
timization (PSO) and Bacterial Foraging Optimization
(BFO). A C++ implementation is available.

1 Introduction

Swarm intelligence is a family of decentralized
stochastic algorithms inspired by the behavior of
swarms. Since standard particle filter implementations
are outperformed by evolutionary computation methods
such as Particle Swarm Optimization (PSO) [6], we set
out to develop a framework which outperforms PSO and
present a novel algorithm inspired by the foraging be-
havior of zombies.

The scenario is the following. A virus has broken out
and a number of N zombies or agents occupy a search
space. An airborne antidote has been dispersed into the
search space in which the zombies randomly walk (ex-
ploration mode). The concentration of the antidote at
any given location corresponds to the fitness function of
that location (i.e., high fitness = high antidote concen-
tration). Sufficient levels of antidote are able to “cure”

978-4-9906441-1-6 ©2012 IAPR

987

bhanu@cris.ucr.edu

Exploration mode Exploitation mode

Hunter mode

Figure 1: Agents automatically switch between
3 modes: random walking (search space explo-
ration), survival mode (search space exploita-
tion), and hunter mode (swarming).

any zombies who happen to breathe it in, turning the
zombie agent into a human agent (exploitation mode).
Other zombies sense this human and attempt to catch
them (hunter mode). Since high concentrations of an-
tidote in turn can cure the chasing zombies, the human
attempts to survive by exploiting the local fitness space,
searching for the position of highest fitness which best
barricades them from the impending zombies. Zombies
which are able to successfully reach the human agent
acquire sustenance and the resulting bite turns the hu-
man agent back into a zombie.

2 Related work

Tracking is traditionally performed using particle
filter. Swarm intelligence algorithms include Particle
Swarm Optimization (PSO) [3], Bacterial Foraging Op-
timization (BFO) [4], and Ant Colony Optimization
(ACO). The ultimate goal of any of these optimization

| Symbol | Definition

Number of zombies/agents

Speed of zombies, e.g., step size in pixels

Variance of zombie walk direction

Fitness threshold which “cures” a zombie

Max generations for stop condition

N Q|| <|® =

Target fitness for stop condition

Table 1: Definitions of symbols used in the
Zombie Survival Optimization algorithm.

algorithms is to find the global best fitness as efficiently
as possible. Since fitness/objective function calls are
often the most resource-intensive component of an op-
timization algorithm, efficiency is often defined as using
the fewest number of fitness function calls as possible,
i.e., fastest convergence to the global optimum.

Unique to ZSO is the automatic balance between ex-
ploration and exploitation, which is traditionally done
via explicit parameters (e.g., PSO, BFO) or in a fixed
manner (e.g., 90% exploration, 80% exploration).

3 Technical approach

Agents are initialized in the search space with a uni-
formly random location and direction. There are three
states or modes in which agents can be in:

1. Exploration mode: random search

2. Hunter mode: actively hunting a human

3. Human mode: local intelligent search
Agents are initialized in the first mode which attempts
to explore the search space. Table 1 defines all symbols
used in the algorithm.

3.1 Zombie exploration mode

While the exploration search function is generic, the
default exploration function is defined as follows: at
each time step, each zombie moves forward in a step of
size S in the current direction with a variance of V. This
variance adds noise to the system which aids in climb-
ing out of local optima. Zombies continue in this man-
ner until they either 1) sense a human in which case they
start chasing them, 2) stumble upon a position of high
fitness and turn into a human, or 3) reach the boundary
of the search space in which case they simply change
direction.

3.2 Zombie hunter mode

Zombies are attracted to humans and chase after
them. At each time step, if there are any humans, zom-

988

1) Initialization

2) Exploration

3) One agent is “cured” 4) Hunter mode

5a) Outcome: Defeat ~ 5b) Outcome: Survival

Figure 2: 1-2) Initialize and explore. 3) One
or more agents turn into humans (green) due
to high antidote concentrations. 4) Zombies
pursue humans. 5a-5b) Humans are either de-
feated or survive.

bies will change their direction to face the nearest hu-
man and continue to stumble toward them. Stumbling
consists of the same variation when walking as in explo-
ration mode (i.e., zombies can’t walk in perfect straight
lines) with the exception that the general direction is
continually reset to face the nearest human.

3.3 Human exploitation mode

Zombies can become humans if the fitness of their
current position exceeds threshold A, which can be dy-
namically defined by the mean of the range R of fitness
values so far:

max(R) + min(R)
2

Humans realize that they will be chased and attempt
to find a local optimum near their current position.
Knowing that this improves the odds of pursuant zom-
bies turning into humans themselves, this offers them
the best long-term strategy for survival. Like the explo-
ration function, the exploitation search function is also
generic but is defined as a local mean shift search [1].

The algorithm ends when either a target fitness value
T is reached or a maximum number of generations GG

A:

Algorithm 1 Zombie Survival Optimization (ZSO)
1: I < image to search
2: procedure ZOMBIESURVIVALOPTIMIZATION
3: > Initialize N zombies in search space
4 for all zombies z do
5 z.location < random point,
6: €.g. ([Oa Iwidth]a [Oa Ihsight])
7
8
9

z.direction < random direction,
e.g., [0,360) degrees
end for

> Zombies hunt for humans
11: for GG generations do
12: for all zombie z (asynchronous) do
13: z.location < z.location +
14: (z.direction * V * S)
15: f < evaluate fitness at z.location
16: > Search exploitation mode (human)
17: if f > threshold A then
18: z.as_human < true
19: Gradient ascent search
20: of local neighborhood
21 if any zombie 2’ within S reach then
22: > Bitten by zombie
23: z.1s_human < false
24: end if
25: else > Exploration mode (zombie)
26: if any humans exist then
27: Find closest human h
28: z.direction < toward h
29: end if
30: end if
31: end for > Zombie loop
32: end for > Iteration loop
33: return Location of best fitness

34: end procedure

is reached, whichever comes first. Algorithm 1 details
the full pseudo code for the ZSO algorithm. A C++
implementation can be downloaded at http: //www.
cs.ucr.edu/~nthoang/zso/.

4 Experimental results
4.1 Dataset

Experiments are performed on the CAVIAR [2]
dataset (see Figure 3). 1,843 search spaces were gen-
erated from objects in the first 300 frames of the
six recommended [5] corridor videos EnterExitCross-
ingPathsicor, OneStopMoveNoEnterIcor, ShopAssis-
tant2cor, ThreePastShoplcor, TwoEnterShop3cor, and
WalkByShop1cor. These fitness spaces were generated

989

Figure 3: Top: sample frames from the CAVIAR
dataset [2]. Bottom: four of the 1,843 fithess
space images generated from the dataset us-
ing HSV signatures initialized on Viola-Jones
pedestrian detections. Resolution is 384x288
with higher (red) locations representing high
fitness and lower locations (blue) representing
low fitness.

by automatically detecting pedestrians using a Viola-
Jones head and shoulders detector and tracking the ini-
tialized signature on all the frames using the exhaus-
tive search. These fitness spaces range in difficulty from
simple to complex (see Figure 3).

4.2 Maetrics and effect of parameters

Number of fitness evaluations is the number of
function calls made to the fitness function (the lower,
the better). Given a number of evaluations, the best av-
erage fitness is defined as the average of the best fitness
of all 1,843 search spaces (the higher, the better).

Figures 4 and 5 demonstrate the effects of the param-
eters on algorithm performance.

4.3 Results

Figure 6 shows the performance of ZSO (100 agents,
100 generations, 25px step, 25deg variance, 0.50
threshold) in comparison with standard PSO (50 agents,
200 generations) and BFO (10 agents, 500 reproduc-
tions, 10 swims, 5px step, 90% disperse) algorithms as

Effects of Parameters N and G
051(# of agents vs. # of generations)

——10 agents, 1000 generations

100 agents, 100 generations

Best Average Fltness
(higher is better)

——1000 agents, 10 generations

Number of Fitness Evaluations
(fewer is better)

Effect of Parameter S (step size)

—10px step
~——15px step
—20px step

Best Average Fitness
(higher is better)

—25px step
——30px step

Number of Fitness Evaluations
(fewer is better)

Figure 4: Effects of params N, G, and S.

well as with random search. Parameters were individu-
ally optimized for each algorithm using a random sub-
set and fixed for all remaining tests. As the number of
fitness evaluations increases, ZSO achieves higher per-
formance over PSO and BFO, suggesting that ZSO may
be better suited for finding the global optimum.

5 Conclusions

A new swarm intelligence algorithm modeled after
the behavior of zombies vs. humans is proposed to ad-
dress the challenge of balancing between exploration
and exploitation for search optimization. Experiments
on real-world multi-person tracking data show that it
can be more efficient than BFO as well as PSO which
in turn outperforms traditional particle filter [6].

Acknowledgements

This work was supported in part by NSF grants
0727129 and 0905671 and ONR grant N00014-09-C-
0388.

990

Effect of Parameter A (threshold)

0.51

0.505

e
i

2 0495 ——0.25 thresh
~—0.50thresh
——0.75 thresh

—1.00 thresh

Best Average Fitness
(higher is better)

Number of Fitness Evaluations
(fewer is better)

Figure 5: Effects of parameter A.

Experimental Results

—PS0 (50 agents, 200
generations)

——BFO (10 agents, 500
reproductions, 10 swims,
Spx step, 90% disperse)

——Random Search

Average Best Fltness
(higher is better)

— 750 (100 agents, 100
generations, 25px step, 25
deg variance, 0.50 thresh)

SN ERBLBREEELBERASEH
BHEERREFE0EEERERRAEEE
mmmmmmmmmmmmmmmmmm

Number of Fitness Evaluations
(fewer is better)

Figure 6: Experimental results comparing ZSO
with PSO and BFO.

References

[1] M. Deilamani and R. Asli. Moving object tracking based
on mean shift algorithm and features fusion. In /EEE
AISP, pages 48 =53, June 2011.

R. B. Fisher. The PETS04 surveillance ground-truth data
sets. In IEEE PETS, pages 1-5, 2004.

J. Kennedy and R. Eberhart. Particle swarm optimization.
ICNN, 4:1942-1948 vol.4, 1995.

K. M. Passino. Biomimicry of bacterial foraging for dis-
tributed optimization and control. [EEE CSM, Vol. 22,
No. 3:52-67, 2002.

B. Song, T.-Y. Jeng, E. Staudt, and A. K. Roy-
Chowdhury. A stochastic graph evolution framework for
robust multi-target tracking. In ECCV, pages 605-619,
Berlin, Heidelberg, 2010. Springer-Verlag.

X. Zhang, W. Hu, S. Maybank, X. Li, and M. Zhu. Se-
quential particle swarm optimization for visual tracking.
In IEEE CVPR, pages 1 -8, June 2008.

(2]
(3]
(4]

(5]

(6]

