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ABSTRACT

Image super-resolution is the process to generate high-
resolution images from low-resolution inputs. In this pa-
per, an efficient image super-resolution approach based on
the recent development of extreme learning machine (ELM)
is proposed. We aim at reconstructing the high-frequency
components containing details and fine structures that are
missing from the low-resolution images. In the training step,
high-frequency components from the original high-resolution
images as the target values and image features from low-
resolution images are fed to ELM to learn a model. Given
a low-resolution image, the high-frequency components are
generated via the learned model and added to the initially
interpolated low-resolution image. Experiments show that
with simple image features our algorithm performs better in
terms of accuracy and efficiency with different magnification
factors compared to the state-of-the-art methods.

Index Terms— Image, super-resolution, feature, learning

1. INTRODUCTION

Often due to the various limitations such as moderate imaging
sensors, the environmental conditions, or the limited trans-
mission channel capacity, the images that we acquire are of
low-resolution (LR). The generation of the LR images is com-
monly modeled with a blurring process followed by down-
sampling. Visually the LR images are blurred with loss of
details in structures that usually reside in the high-frequency
(HF) components of the original high-resolution (HR) image.
Image super-resolution (SR) consists of the approaches that
try to solve the inverse problem of recovering the HR images
from the LR images. For some applications where the qual-
ity of the images greatly affects the subsequent processing,
SR as a preprocessing step is quite desirable. For example,
face images in surveillance cameras often have poor resolu-
tion, which makes the face recognition algorithms difficult to
achieve high accuracy. By using super-resolution (SR) tech-
nique to feed HR images to the recognition algorithm, the
recognition accuracy can be improved significantly [1].

There has been extensive work on SR methods. Tradi-
tional SR algorithms require multiple LR images of the same
scene to generate a HR image by integrating all the informa-
tion from different images [2, 3]. However, registration at
sub-pixel accuracy is indispensible in order to perform SR

successfully. Another type of SR algorithms requires single
LR image as input [4, 5, 6]. These reconstruction based meth-
ods often use some heuristics or specific interpolation func-
tions. The performance of these techniques degrades espe-
cially when the magnification factor becomes large.

In recent years, learning based approaches for image SR
have received a lot of attention in which patterns of the images
from the training set are explored. Freeman et al. [7] proposed
an example-based method by predicting the HR images from
the LR images using Markov Random Field (MRF) computed
by belief propagation. Yang et al. [8] solved the SR problem
from the perspective of compressive sensing, which ensures
that under mild conditions the sparse representation of a HR
image can be recovered from the downsampled signal.

In this paper, we tackle the SR problem using a learning
based approach. Our SR algorithm is based on the extreme
learning machine (ELM) [9]. The focus is to recover the HF
components of the HR image efficiently and accurately. In
the training step, features are extracted from the initially in-
terpolated LR images (e.g., using bicubic interpolation) and
a model that maps the interpolated images to the HF compo-
nents from the HR images is learned. Given a test LR image,
we first interpolate the image. Then the HF components are
estimated using the model learned during the training. By
combining the interpolated image and the HF components, a
final HR image is generated faithfully with sufficient details.

The remainder of this paper is organized as follows. In
Section 2 ELM is briefly introduced. The proposed SR al-
gorithm is described in Section 3. Section 4 shows the ex-
perimental results and their comparison to the state-of-the-art
methods. Finally Section 5 concludes the paper.

2. EXTREME LEARNING MACHINE

ELM was initially developed for single-hidden-layer feedfor-
ward neural networks (SLFNs) [10]. One of the major merits
of ELM is that the hidden layer needs not to be tuned. The
output function of ELM is given by

fL(x) =
L∑

i=1

βihi(x) = h(x)β (1)

where β = [β1, β2, ..., βL]
T is a vector consisting of the out-

put weights between the hidden layer and the output node.
h(x) = [h1(x), h2(x), ...hL(x)]T is the output of the hidden
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layer given input x. Function h(x) maps the original input
data space to the L-dimensional feature space.

According to [9], ELM does not only aim at reaching the
minimum training error but also the smallest norm of the out-
put weights, which would yield a better generalization perfor-
mance. Thus, in ELM the following quantities are minimized

minimize

{
‖Hβ − T‖2
‖β‖ (2)

where T contains the training target value and H is the the
hidden-layer output matrix

H =

⎡
⎢⎣

h1(x1) · · · hL(x1)
...

...
h1(xN ) · · · hL(xN )

⎤
⎥⎦ (3)

In the implementation, the minimal norm least square
method was used instead of standard optimization method [10].
One advantage of ELM is that in the training process the
hassle of parameter tuning is avoided. The generalization
performance of ELM is not sensitive to the number of hidden
nodes as tested in [9]. In addition, ELM has very fast learning
speed. These merits make ELM user-friendly and efficient.

3. TECHNICAL APPROACH

The proposed algorithm consists of two steps: training and
testing. Figure 1 gives an overview of the proposed method.
Similar to [8] we apply our method on the luminance channel
only since humans are more sensitive to luminance changes.
For the chrominance channels bicubic interpolation is ap-
plied.

In the training process, a number of HR images are used.
The HR image IHR is first blurred and downsampled by a
factor of k. The downsampled image is then interpolated by
a basic interpolation method (bicubic interploation in this pa-
per) with a magnification factor of k. This step yields an ini-
tially upscaled image I0 with the same size as IHR. The HF
components IHF are obtained by

IHF = IHR − I0 (4)

Simple features from I0 are extracted and the feature vec-
tors fed to ELM for training consist of two components: pixel
intensity values from local image patches and 1st and 2nd or-
der derivative magnitudes.

At each pixel location (i, j) of I0, a local patch Pi,j of
size m ×m centered at (i, j) is extracted. This image patch
is then reshaped into a row vector p(i,j) of size m2. Thus, the
information about local pixel intensity values is encoded.

In order to account for the directional change in pixel
intensity values, we calculate the 1st order derivatives in the
horizontal and vertical directions. In addition, 2nd order
derivatives are calculated to capture the rate of change in the
1st order derivatives. For each pixel 5 derivative values are

obtained (∂I0∂x , ∂I0
∂y , ∂2I0

∂x2 , ∂2I0
∂y2 , ∂2I0

∂x∂y ).

Fig. 1. The system diagram of the proposed super-resolution
algorithm. LR image is obtained by blurring and downsam-
pling the HR image. I0 is the initially interpolated image. In
the training process, feature vectors from I0 (X) and the target
values (Y) from HF (the high-frequency components obtained
by subtracting I0 from the HR image) are sent to ELM to gen-
erate a model. In the testing process, HF is predicted by ELM
using trained model and the ouput is the combination of the
predicted HF image and the initially interpolated image.

To calculate the 1st and 2nd order derivatives we adopt the
method in [11] which is more accurate than common routine
by taking difference between the adjacent pixels. Mathemat-
ically, here the derivative is formulated as an optimization of
the rotation-invariance of the gradient operator. In the dis-
crete implementation, to design a filter of length L, the error
functions for the 1st and 2nd order derivatives are given by

E(�p, �d1) =

∣∣∣jwFs�p− Fa
�d1

∣∣∣2
|Fs�p|2

(5)

E( �d2) =
∣∣∣j2w2Fs�p− Fa

�d2

∣∣∣2 (6)

where �p is a defined parameter vector of length L+1
2 contain-

ing the independent prefilter samples. �d1 contains the inde-

pendent derivative kernel samples of length L−1
2 . �d2 con-

tains one half of the full filters taps. Fs and Fa are matrices
containing the real and imaginary components of the discrete
Fourier basis. For details please refer to [11]. In our case we
use the 5-tap filter. The computed 1st and 2nd order derivative
values are padded to form a row vector d(i,j).

Combining all the features together, we now have the fea-
ture vector at (i, j) as v(i,j) = [p(i,j), d(i,j)]. The length of

this feature vector is m2 + 5. For the corresponding target
value, we take the pixel value i(i,j) from IHF . For each train-
ing image, the pixels are traversed in a raster scan manner.
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The instances [v(i,j), i(i,j)] from all of the HR training im-
ages are stacked together as input to ELM. After training, a
model is generated that describes the mapping from the ini-
tially interpolated image to the HF image.

To super-resolve a LR image ILR, the same initial inter-
polation is applied, generating a base image I0. At each pixel
position (i, j) in I0, we extract the same features as we did
in the training step. With the input feature vectors and the
trained model, the predicted value i(i,j) is obtained. After
going through every pixel in I0, we then have the HF compo-
nents IHF . The final output IHR is constructed by combining
I0 and IHF together as shown in Figure 1.

4. EXPERIMENTS

In the experiment, we use 20 hidden neurons and sigmoid
function as the activation function in ELM (the results are not
sensitive to the number of hidden neurons as tested in our ex-
periments). The input attributes in the feature vectors are nor-
malized to [−1, 1]. Eight 512 × 512 sized HR images from
USC SIPI image database (http://sipi.usc.edu/database/) are
used for training. We use a 5× 5 Gaussian blur function with
standard deviation of 1 to preprocess the HR images before
downsampling. For testing, we use 25 various images from
the morgueFile online archive different from the training im-
ages (http://morguefile.com, same collection of images were
used in [5]). The HR images are of the size 512 × 512. Ex-
periments are conducted with magnification factors of 2 and
4. The corresponding sizes of the LR images are 256 × 256
and 128× 128. The size of the local image patch is 3× 3.

We compare our method to three state-of-the-art methods:
iterative curve based interpolation (ICBI) [5], kernel regres-
sion based method (KR) [6] and sparse representation based
method (SP) [8]. The implementations of these methods are
from the authors’ websites. The default parameters and set-
tings of these methods are used in our experiments. Figure 2
shows some sample results of the four methods (Electronic
version is recommended for better comparison).

As can be seen from the results, ICBI and KR are not
able to recover the HF components and the generated images
suffer from blurriness at both 2x and 4x magnification. KR
tends to over-smooth the images especially in the texture-rich
regions. SP and our methods produces more details on the
super-resolved images. However compared to SP, the results
by our method are visually superior. At 2x, our method pro-
duce HR images that have vivid details and are very close to
the ground truth. Even at 4x in which case the resolution of
the inputs is very low, our method is still able to achieve good
performance.

To measure the performance quantitatively, peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) [12]
are calculated as shown in Table 1. At 2x the numerical scores
of our method are better than all the other methods. When
the magnification factor becomes 4, SP and our method both
offer competitive results compared to ICBI and KR. Note that
the above performance of our method is achieved by using
very simple image features and the calculation involves very

Method ICBI [5] KR [6] SP [8] Proposed

PSNR (2x) 35.03 34.64 35.95 36.74
PSNR (4x) 33.77 32.55 33.94 34.02
SSIM (2x) 0.9227 0.9125 0.9628 0.9750
SSIM (4x) 0.8520 0.7749 0.8804 0.8680

Table 1. Average PSNR and SSIM scores for different super-
resolution methods (2x and 4x).

Method ICBI [5] KR [6] SP [8] Proposed

Time (2x) 3.23 21.10 727.34 3.71
Time (4x) 3.52 18.97 720.82 3.74

Table 2. Average time (in seconds) to super-resolve an image
for different super-resolution methods (2x and 4x).

small feature vectors of length 14 (pixel intensity values 3 ×
3+derivative magnitudes 5). The proposed algorithm is less
complicated as compared to the other methods.

We also computed the average time to super-resolve an
image with different magnification factors. The programs
were executed on a desktop with Intel Core2 2.4 GHz CPU
and 3 GB of RAM. Here we do not compare the training time
since this is a one-time offline process, although in the train-
ing process ELM converges very fast (within 20 seconds).
From Table 2 we can see that the running time of all the
methods are not sensitive to the magnification factors. Our
method without code optimization is very fast with different
magnification factors. The running time of ICBI is close to
our method but the output quality is less satisfactory. KR
processes images at a moderate rate without competitive per-
formance. Although SP achieves similar performance to our
method at 4x, it takes much more time to generate the output.
Due to the efficiency of our method, many real-time applica-
tions are possible.

5. CONCLUSIONS

In this paper, an efficient algorithm for image super-resolution
based on extreme learning machine (ELM) is proposed. Dur-
ing the training process, simple features including pixel in-
tensity values in a local image patch and the 1st and 2nd
order derivative magnitudes are extracted. The target value
is the high-frequency components obtained by subtracting
the initially interpolated low-resolution image from the high-
resolution one. ELM then learns a model that maps the
interpolated image to the high-frequency components. Given
a low-resolution image, same features are extracted from the
interpolated image. By applying the trained model, ELM
is able to predict the high-frequency components. The fi-
nal output is the combination of the interpolated image and
the high-frequency components. Compared to the state-of-
the-art methods, our method achieves high performance in
both subjective and quantitative evaluations, and less compli-
cated. Furthermore, the computation of our method is very
efficient. Involving a more comprehensive dataset and more
sophisticated image features would be promising for better
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Fig. 2. From left to right: results by ICBI [5], results by KR [6], results by SP [8], results by the proposed method, original
images. From top to down: super-resolution at 2x and 4x.

performance and these aspects will be investigated in our
future work.
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