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ABSTRACT

Facial emotion recognition, the inference of an emotion from
apparent facial expressions, in unconstrained settings is a
typical case where algorithms perform poorly. A property
of the AVEC2012 data set is that individuals in testing data
are not encountered in training data. In these situations,
conventional approaches suffer because models developed
from training data cannot properly discriminate unforeseen
testing samples. Additional information beyond the feature
vectors is required for successful detection of emotions. We
propose two similarity metrics that address the problems of
a conventional approach: neutral similarity, measuring the
intensity of an expression; and temporal similarity, measur-
ing changes in an expression over time. These similarities are
taken to be the energy of facial expressions, measured with a
SIFT-based warping process. Our method improves correla-
tion by 35.5% over the baseline approach on the frame-level
sub-challenge.

Categories and Subject Descriptors

H.4 [Information Systems Applications]: Miscellaneous;
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

General Terms

Experimentation, performance, theory

Keywords

Computer vision, image representation, video analysis

1. INTRODUCTION
Facial emotion recognition has applications in medicine

[6], video games, human-machine and computer-interaction
and affective computing [4].
Challenge data sets, such as the 2nd International Au-

dio/Visual Emotion Challenge and Workshop (AVEC2012)
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[11], have advanced state-of-the-art by standardizing the
data used by algorithms. This grand challenge provides a
common ground with which these algorithms can be com-
pared. However, an algorithm has yet to be revealed that
can correctly identify emotions when there is not sufficient
training data for an individual, or that individual was not
encountered in the training data. This was demonstrated
in Maronidis et al. [9] with inter-database experiments, and
such is the case in AVEC2012. A conventional approach that
classifies the samples solely on their feature vector performs
poorly. The decision surface has been trained on particular
expressions from the individuals in training data. If a new
expression is queried, such as if a previously un-encountered
individual expresses an emotion in a different way, it would
not be properly labeled by the model. This is a similar situ-
ation to the face recognition challenge in the Labeled Faces
in the Wild data set, where most individuals have only a
single sample in the data. Wolf et al. [12] proposed the use
of similarities that captured additional information based
on relationships with other samples. That approach and
the approach detailed here fall into a specific category of
learning titled, “learning with side information” [12], where
a discriminating relationship between the samples is learned.
We propose the following similarities to improve classifica-
tion for facial emotion recognition:

Neutral Similarity (Sec. 2.2). This similarity addresses
the question, “how intense is the emotion?” When an expres-
sion has not been encountered, it may be useful to measure
the difference between the current frame and some reference
of a face which is not expressive. This similarity is impor-
tant in measuring the degree of an emotion, which is a new
requirement with AVEC2012.

Temporal Similarity (Sec. 2.3). This similarity addresses
the question, “how is the expression changing?” If there is
a significant difference between the current frame and the
previous frame, it may indicate particular emotions. E.g., a
neutral expression followed by furrowing of the brows may
indicate anger. This similarity also adds temporal informa-
tion to the approach.

These proposed similarities are inspired by One-Shot and
Two-Shot similarities [12], but are substantially different.
One-Shot and Two-Shot similarities are both based on unla-
beled background data, not deviation from a neutral face or
temporal changes. Additionally, we compute these similari-
ties with a SIFT-based warping process, whereas One-Shot
and Two-Shots are computed with a vector difference.

The rest of the paper is organized as follows: Sec. 2 details
the approach for measuring expression energy, and Sec. 2.5
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Figure 1: System overview.

details the appearance features also used in the approach.
Sec. 3 details the experimental parameters used in the paper
and presents the results on AVEC2012. A discussion is given
in Sec. 4 that compares the appearance features and also
compares the feature space of a conventional approach and
the proposed approach. A conclusion is given in Sec. 5.

1.1 Contribution
Our contribution is the following: (1) two novel similari-

ties, neutral and temporal similarity, to be used in uncon-
strained scenarios where samples in testing were not encoun-
tered in training; (2) a novel SIFT-Flow energy function for
quantification of these similarities; and (3) improvement of
the average correlation of emotion detection on AVEC2012
for both the frame-level and word-level sub-challenges.

2. TECHNICAL APPROACH
The proposed system approach is given in Fig. 1: (A)

frames are extracted from the video and face region of in-
terest is detected on a per-frame basis with a cascade of
Haar-like features. In a conventional approach, (B) faces
would be registered. We register faces with Avatar Image
Registration. After registration, (C) an ensemble of low-
level appearance features are extracted, re-projected with
PCA and then fused at the feature level and (D) a model
is trained with Support Vector Regression to estimate la-
bels. With the proposed approach, in a separate pipeline,
(E) neutral similarity is measured from a neutral reference
that has been estimated during registration, and (F) tem-
poral similarity is measured between frames. (G) These two
similarities and the decision values from the conventional
approach are fused to calculate (H) the emotion labels.

2.1 Facial Extraction and Registration
Face region of interest (ROI) is detected with Viola and

Jones. Within each video, ROI detection errors are pruned
with the following schema: a mean face image is generated
for that video. If a frame in that video has an L2 differ-
ence from the mean face image of more than four standard
deviations away from the mean difference of the mean face

image, it is considered an ROI detection error. In training,
the frame is removed when training a model. In testing,
the frame is not classified; its emotion label is taken to be
the nearest frame with a successfully extracted ROI. Four
standard deviations was determined empirically, to be ro-
bust versus face morphology and slight translation errors
from Viola and Jones while removing ROI’s that were not a
whole face.

The extracted face ROI is aligned with Avatar Image Reg-
istration (AIR). In AIR, faces are aligned with SIFT-Flow
[7] to an estimated neutral face, titled the Avatar Reference
Image. The reader is referred to Cruz et al. [2] for a more
in depth explanation of AIR.

2.2 Neutral Similarity
Neutral similarity measures the intensity of an emotion.

In the conditions described in the motivation in Sec. 1,
the difference of the current frame from a neutral face may
provide discriminative information. The metric should indi-
cate when facial expressions are close to neutral, such as in
Fig. 2-B, and when facial expressions are intense, such as
in C. This is computed by comparing a given frame, I (x, t),
to some reference of a neutral face, such as A. The Avatar
Reference Image, a neutrally expressive reference image, is
taken to be the neutral reference. It is the mean face image
generated from SIFT-registered face ROI’s across all train-
ing videos and individuals. The reader is referred to Cruz
et al. [2] for a proof of this as an estimate of a neutrally ex-
pressive face. The similarity is measured with the expression
energy function to be described in Sec. 2.4.

2.3 Temporal Similarity
Temporal similarity measures the amount of change be-

tween frames. It provides additional information of how
expressions are changing temporally. In Fig. 3 there are
two pairs of frames taken from the sam video at different
times, both spaced 1s apart. Between A and B, the indi-
vidual is smirking, and the metric should detect the small
change. Between C and D, there are many changes in ex-
pression, and the metric should reflect this with a higher
energy than the energy given to frames A and B. This simi-
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Figure 2: (From left to right): (A) A neutral face.
(B) A slightly expressive face. (C) A very expressive
face. The energy for C should be higher than B.

Figure 3: Frames spaced 1s apart. (A-B) A face
with slight change in expression. (C-D) A face with
large change in expression. The energy of A to B
should be lower than for C to D.

larity is computed by comparing I (x, t) with I (x, t− δ). It
is also measured with the expression energy function.

2.4 Measuring Expression Energy
Let I1 and I2 be two images. We want to quantitatively

measure the similarity between two expressive face ROI’s.
We propose measuring the similarity as the energy of the
cost function of a SIFT-based warping process. The en-
ergy function used in the warping process can be used as
a metric to take this measurement. This similarity is more
meaningful than a distance metric between two feature vec-
tors because SIFT-Flow warps the intensity values to match
the two images, based on SIFT features. The original SIFT-
Flow energy function [7] is as follows:

E (w) =
∑

x

min ‖s1 (x)− s2 (x+w (x)) ‖1

+ γ
∑

x

(

(u (x))2 + (v (x))2
)

+ α
∑

(x,y)ǫNx

(

min |u (x)− v (y) |

+min |u (x)− v (y) |
)

(1)

where x is a pixel in the image; w (x) is the motion vector
at pixel x between I1 and I2; w (x) = |u (x) , v (x)|; and s1
and s2 are the dense SIFT descriptors of I1 and I2 respec-
tively; y is a pixel that iterates for each member of the Nx

neighborhood of x; and γ is a normalization constant. The
first summation term measures the L1 difference between
the two SIFT descriptors. The second summation term is
the squared magnitude of the motion vector and measures
the magnitude of motion in between the two images. The
third summation term enforces homogeneity. We propose

the following, modified SIFT-Flow energy function:

E (w) =
∑

x

min ‖s1 (x)− s2 (x+w (x)) ‖1

+ γ
∑

x

(

(u (x)− µu)
2 + (v (x)− µv)

2 ) (2)

where µu and µv are the mean of u (x) and v (x) respectively.
Eq. 2 differs from the original SIFT-Flow energy function in
the following ways: (1) the second term has the mean vector
subtracted from u and v. Viola and Jones is accurate but
not precise; the face ROI suffers from translation errors. The
mean is subtracted from w to reduce the impact of a whole-
plane translation from the ROI translation errors. (2) There
is no term that measures the homogeneity of motion. The
homogeneity term in the original implementation of SIFT-
Flow is enforced to improve visual quality of the warping
result; we seek the similarity between two images and do
not care for visualization of the result.

An example of neutral expression energy is given in Fig.
5. The frames are ordered according to neutral similarity,
measured with expression energy, from left to right, top to
bottom. The faces in the first row have close to neutral ex-
pression, whereas the faces in the bottom row have strong
expressions. An example of temporal expression energy is
given in Fig. 4. Temporal expression energy correctly in-
dicates the amount of change between frames: in Fig. 4A,
there is only mouth movement, whereas in I, there is move-
ment of pose, gaze, cheeks, etc.

The energy for neutral and temporal similarities and the
decision values from a conventional approach are fused at the
decision level with support vector regression (SVR). Tempo-
ral smoothing is introduced by aggregating all the similar-
ities in a window: at t, the three similarities about t in a
window size of l are concatenated to form the features for
the SVR.

2.5 Conventional Approach
We employ four appearance features: (1) Uniform Local

Binary Patterns (ULBP). An image is encoded in terms of
micro-patterns at the pixel-neighborhood level [1]. (2, 3)
Three-Patch (TPLBP) and Four-Patch Local Binary Pat-
terns (FPLBP). These features were proposed by Wolf et
al. [12] as features that were complimentary to LBP fea-
tures. In TPLBP, a pixel’s neighborhood is compared to
neighborhoods about the pixel. In FPLBP, the pixel’s neigh-
borhoods are compared to further neighbors. (4) Discrete
Cosine Transform (DCT) [8], the DCT of the face. It was
shown that a feature fusion of LBP, TPLBP and FPLBP im-
proved classification rates on the non-trivial Labeled Face
in the Wild data set [12]. For that reason, we hypothe-
size that this fusion captures meaningful facial appearance
information, and we employ a similar fusion for facial emo-
tion recognition. We re-project the feature vectors for each
feature set with PCA before concatenating them to reduce
dimensionality.

2.5.1 Local Binary Patterns

Local Binary Patterns (LBP) are a dense low-level appear-
ance feature that have been used for both face recognition
and facial emotion recognition [1]. While the method used
to generate the features is commonly referred to as LBP,
the features are actually a histogram of an LBP image. In
classical 8-neighborhood LBP images, the pixel value x of a
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Figure 4: An example of temporal similarity measured with expression energy. Images are sorted from left
to right, then top to bottom in order of neutral to most expressive. Beneath the frame is the measured
expression energy.

Figure 5: An example of neutral similarity measured with expression energy. Images are sorted from left
to right, then top to bottom in order of neutral to most expressive. Beneath the frame is the measured
expression energy.
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Figure 6: An example of TPLBP.

grayscale image is compared to its 8 member neighborhood
Nx. It is characterized by three steps: (1) Let LBP (x) be
the LBP image. It takes on an 8 bit integer, where each
bit reflects whether or not the intensity value at x is greater
than one of its neighbors:

LBP (x) =
8

∑

i=1

2i−1
H

(

〈Nx〉i − I (x)
)

(3)

where H (.) is a step function and 〈Nx〉i is the i-th neighbor
of x. (2) Assuming an 8-bit gray level image, a 256-bin his-
togram is generated from LBP (x). It was found that a sim-
plification to 59-bins results in a rotation invariant property
[10], and this simplification is referred to as Uniform Local
Binary Patterns (ULBP). (3) To account for face morphol-
ogy, a face image is reduced to M × M evenly sized local
regions.

2.5.2 Three-Patch LBP

Whereas ULBP encodes micropatterns–how a pixel x com-
pares to its immediately surrounding patch of pixel values
C, TPLBP encodes how a the neighboring patches of C are
changing with each other, i.e. how homogenous the region
about C is in terms of texture. That is, ULBP encodes a
micropattern in a compact 8-bit representation and TPLBP
encodes a larger pattern and homogeneity, also with a com-
pact 8-bit representation. To compute TPLBP, the values of
three patches are compared to produce a single bit value in
the code assigned to x. Let Cx be an 8-neighborhood patch
of a given pixel. S is the number of patches surrounding
Cx. The patches are evenly distributed about x along a cir-
cle of radius r. The encoding compares two patches spaced
α apart and compares their values to Cx. This is done S

times, resulting in S bits per pixel. A visual example is
given in 6.

TPLBP (x) =
S
∑

i=1

2i−1
H(d (Ci, Cx)−

d (Ci+αmodS , Cx)− τ) (4)

where Ci and Ci+αmodS are two patches along the ring; Cx

is the central patch; the function d (.) is the L1 distance
function between two patches; H (.) is the step function;
and τ is an offset to make Eq. 4 robust to small intensity
changes due to noise.

2.5.3 Four-Patch LBP

FPLBP continues the comparison of texture about Cx by
further comparing the neighbors of Cx to their neighbors.
It resembles TPLBP, except S patches are examined of a
radius r1 from x, and an additional S patches examined of a
radius r2 from x. Instead of comparing two pairs of patches
from the same ring, a pair consists of a patch in ring 1 and
a patch in ring 2. The second pair is circularly symmetric
to the first pair. A bit is encoded based on which pair has
a greater difference. An visual example is given in Fig. 7.
The formal definition of the FPLBP code is as follows:

FPLBP (p) =
S
∑

i=1

2i−1
H(d (C1,i, C2,i+αmodS)−

d
(

C1,i+S/2, C2,i+S/2+αmodS

)

− τ) (5)

where the variables are the same as in Eq. 4; except Ci,j is
the ith patch surrounding Cx, rj away from Cx.

Figure 7: An example of FPLBP.

3. EXPERIMENTATION
The reader is referred to the challenge paper for a descrip-

tion of the data [11]. This is a video only approach that com-
putes features at the frame level. Videos are sub-sampled
at 1fps. For training, we use a two-fold cross-validation,
where the training set is used to classify the development
set, and vice versa. The reported correlation scores are the
mean and standard deviation of the correlation of both folds:
E 〈ρ〉 ± Std 〈ρ〉. Avatar Image Registration is run for three
iterations, which is empirically selected from previous work
[2]. LBP is computed at a radius of 1 and for 8 neighbors,
with a 59 bin simplificiation s.t. the feature is rotationally
invariant. For TPLBP, α = 2, S = 8 and w = 3. For
FPLBP, α = 2, S = 8 and w = 3. For TPLBP and FPLBP,
these parameters were empirically selected in previous work.
For PCA, we rank the eigenvectors by eigenvalue and retain
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Table 1: Training Results on AVEC2012 for Feature Fusion
Arousal Expectancy Power Valence Avg.

With Extreme Learning Machine With Support Vector Machine
LBP .221± .096 .027± .007 .037± .044 .136± .030 .105 .380± .006 .166± .007 .031± .014 .263± .122 .210

TPLBP .064± .063 .021± .020 .072± .067 .058± .052 .054 .292± .051 .164± .019 .046± .060 .198± .067 .183
FPLBP .139± .098 .022± .098 .026± .027 .051± .010 .059 .311± .046 .165± .042 .094± .077 .237± .014 .198
DCT .221± .026 .019± .007 .007± .001 .058± .006 .076 .258± .026 .170± .007 .017± .022 .183± .103 .163
Fusion .133± .016 .045± .011 .022± .031 .059± .031 .065 .323± .034 .189± .027 .046± .012 .219± .005 .194

Table 2: Training Results for Proposed Similarities
Arousal Expectancy Power Valence Avg.

Video-Only Baseline
Conventional .380± .160 .189± .049 .094± .077 .263± .126 .231
Proposed .454± .042 .176± .043 .139± .064 .378± .099 .264

Table 3: Official AVEC2012 Testing Results
Ar. Exp. Pow. Val. Avg.

Video-Only Baseline
FCSC .092 .121 .064 .140 .104
WLSC .091 .114 .121 .143 .117

Proposed Approach
FCSC .227 .093 .102 .141 .141
WLSC .258 .049 .039 .153 .125

the eigenvectors that account for 95% of the total variance.
For similarity fusion, γ = .008 and l = 5.

3.1 Results
For the conventional method, SVR with a Radial Basis

Function kernel and Extreme Learning Machine [5]–a su-
pervised learning algorithm based on a single hidden layer
feedforward network–are compared in Tab. 1. Tab. 1 also
compares which features are suitable for each class. In Tab.
2, we compare the performance of the best performing fea-
tures when using a conventional approach versus the pro-
posed similarity fusion. For Arousal and Valence we use LBP
features; Expectancy, feature fusion; and Power, FPLBP. All
classes employ SVR. The official testing results are given
in Tab. 3, where FCSC indicates frame-level scoring and
WLSC indicated word-level scoring.

4. DISCUSSION
From Tab. 1, SVR with a radial basis function kernel is

the best performer for all classes and features. We postulate
that the feature space was not discriminative, and had to be
projected into a more highly dimensional space with SVR’s
radial basis function. Also, from Tab. 1, feature fusion of
all the features sets does not always increase performance.
Feature fusion of LBP, TPLBP, FPLBP and DCT features
gives better classification performance and the least variance
for Expectancy. However, for Arousal and Valence, LBP is
the best performer. For expectancy, FPLBP is the best
classifier. We use best performing feature for each class.
FPLBP’s performance is surprising because Wolf et al. [12]
designed FPLBP to be a complimentary feature to be fused
with LBP and TPLBP–their experimental results showed
no performance gain when using FPLBP alone for a face
recognition task. FPLBP encodes large edges. In Fig. 8,
large facial features such as folds in the cheek, eyebrows and

Figure 8: FPLBP encodes large edges.

lips are encoded. In the Fontaine emotion model [3], anger
and sadness are on opposite ends of the spectrum. These two
emotions elicit expressions that strongly distort the large
facial feature on the face such as the mouth and eyebrows,
e.g., in anger the eyebrows are furrowed and the mouth is
open with teeth clenched. We posit that FPLBP better
encodes these expressions versus other features, leading to
the increase in performance.

For the official testing results in Tab. 3, the proposed ap-
proach doubles the correlation with arousal and power emo-
tional states. Neutral and temporal similarities provide a
more discriminative feature space than feature fusion alone.
Note that neutral and temporal similarities are computed
pre-registration. In Fig. 9, we provide examples compar-
ing the feature space of a conventional method with feature
fusion and the feature space of the proposed neutral and
temporal similarities for arousal, expectancy and valence.
The conventional feature space has the feature correspond-
ing to the highest eigenvalue along the y-axis and the second
highest eigenvalue along the x-axis. The proposed similar-
ity feature space has neutral similarity along the x-axis and
temporal similarity along the y-axis. The color indicates a
quantized emotional state into bins of high and low, simi-
lar to AVEC2011–high is greater than the mean, low is less
than the mean value of the label. Note that for all classes
the conventional feature space is not very discriminative. It
would require a complex decision surface. This is not so
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Figure 9: (Left Column) Feature space of feature fusion with the conventional approach and (Right Column)
feature space of the propose neutral and temporal similarities. Blue indicates a high value in that emotion,
whereas and yellow indicates a low value.
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with the proposed methods feature space, the differences of
which are described below. Note that in each figure the axes
were z-normalized.
For arousal, positive (blue) indicates love and anger, whereas

negative (yellow) indicates contentment and disappointment.
The proposed method creates a perfectly linearly separable
feature space. Note that negative arousal tends to have lower
values in neutral and temporal similarities. Intuitively, a
person that is content or disappointed will not make as many
expressions as a person who is expressing love or anger, two
emotions that elicit strong expressions. This is visible in the
feature space, as face frames with less than average arousal
form a distinctly close to neutral, lacking motion area in the
space.
For expectancy, positive (blue) indicates surprise, whereas

negative (yellow) indicates guilt and other emotions. It
should be noted that while surprise has a high value along
this dimension–a value of 3– the majority of big-six emo-
tional states fall densely packed near neutral, zero [3]. This
is manifested by in the proposed methods feature space by a
very dense concentration of positive expectancy exhibiting
less motion and more closeness to neutral than in the pre-
vious case with arousal. We can infer from this figure that
AVEC2012 contains mostly examples of subtle surprise, e.g.,
an individual is being mildly impressed or unsure of how to
answer the embodied agent. The individual is not shocked;
strong surprise would have a high value along the neutral
similarity axis. Positive expectancy is located in all other
parts of the feature space, corroborating that this emotion
is best described as surprise versus other, as defined in the
model [3].
For valence, positive (blue) indicates happiness and love,

whereas negative (yellow) indicates contempt and disgust.
The figure contains examples of happiness ranging from sub-
tle happiness to over happiness. This class is an example of
the quality of motion estimation from temporal similarity.
The degree of happiness tends to be described by temporal
change. A large smile means a large change, as the mouth
is moving and it is a large facial feature.

5. CONCLUSION
We proposed novel similarities for facial emotion recog-

nition to be used in scenarios where new individuals are
introduced in the testing data. The expression energy mea-
sures these similarities with a modified SIFT-Flow energy
function. We found that in conventional methods, feature
fusion does not always lead to performance increases with
AVEC2012. We found that the feature space created by neu-
tral and temporal similarities bears a resemblance to the di-
mensions defined by the Fontaine emotion model. The pro-
posed method increases correlation over the video-baseline
by a ratio of 1.355.
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