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Abstract

Facial emotion recognition–the detection of emo-

tion states from video of facial expressions–has appli-

cations in video games, medicine, and affective com-

puting. While there have been many advances, an ap-

proach has yet to be revealed that performs well on the

non-trivial Audio/Visual Emotion Challenge 2011 data

set. A majority of approaches still employ single frame

classification, or temporally aggregate features. We as-

sert that in unconstrained emotion video, a better clas-

sification strategy should model the change in features,

versus simply combining them. We compute a deriva-

tive of features with histogram differencing and deriva-

tive of Gaussians and model the changes with a hidden

Markov model. We are the first to incorporate temporal

information in terms of derivatives. The efficacy of the

approach is tested on the non-trivial AVEC2011 data

set and increases classification rates on the data by as

much as 13%.

1. Introduction

Facial emotion recognition has applications in

medicine (treatment of Asperger’s), video games (Xbox

Kinect), human-computer interaction (intelligent tu-

toring systems) and affective computing (embodied

agents). A recognition system must detect a subject’s

underlying emotional state from video of apparent fa-

cial expressions.

State of the art approaches use the recently available

Facial Emotion Recognition and Analysis Challange

2011 (FERA2011) and Audio/Visual Emotion Chal-

lenge 2011 (AVEC2011) data sets [4, 5], where state-of-

the-art approaches perform poorly and the videos of ex-

pressions are spontaneous and natural. These data sets

fall into two categories: (1) videos are pre-segmented

so that each video captures only one emotion (as is the

case in CK+, MMI-DB and FERA2011); or (2) videos

are continuous, spontaneous and unsegmented. This

 

  
 

 

Figure 1. Ambiguity in transitions.

second case is unique to AVEC2011. Videos are in-

terviews, where an embodied agent, the Sensitive Arti-

ficial Listener causes emotional reactions. An example

is available on the internet [2].

1.1 Motivation

Because the subject can transition freely between

emotions within the same video, paradigms from the

previous challenges do not hold. In most approaches,

features are extracted from the current time t0, and clas-

sification is carried out using this single time point. In

Schuller et al. [4], facial features (Uniform Local Bi-

nary Patterns and pose tracked with Active Appearance

Models) and audio features are fused and classified with

a SVM, on a per-frame basis. In Fig. 1, at t0, the emo-

tion of the subject is ambiguous; either the subject is

concerned or happy, and classification using this frame

alone would be unsatisfactory. Aggregating appearance

features about t0 would capture previously arched eye-

brows, and the smile in the following frame. These

are typical expressions associated with either emotion.

We propose classifying emotion considering the change

in facial features between t0 and t−∆, or the temporal

derivative. Comparing t0 and t−∆, the eyebrows lack

an arch, and the lip corners have returned from a down-

ward curl. It can be stated with confidence that she is

no longer concerned.

This information needs to be combined with the fea-

ture information. Typically this is accomplished with

fusion, another paradigm. In these approaches, a fusion

approach aggregates results with an averaging process
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Figure 2. System overview.

to reduce the impact of frames that are labeled differ-

ently from their temporal neighbors. Valstar et al. [5]

uses a voting approach. Glodek et al. [1] employs fea-

ture fusion. The features are not heterogeneous; they

perform well in different, exclusive situations. Feature

derivatives are useful when emotion is weak or transi-

tioning, while the original features have enough infor-

mation when emotion is strong. The classifier must be

aware of when certain features are performing well, and

when some are not–it must be aware of co-occurrences–

so it must hold a state.

1.1.1. Contributions. Our contributions to state-of-

the-art facial emotion recognition are: (1) to the best of

our knowledge, we are the first to use feature deriva-

tives, and (2) we propose a novel algorithm that esti-

mates the derivative of features with respect to time and

fuses the information from features and feature deriva-

tives with a hidden Markov model for facial emotion

recognition.

2. Technical Approach

The proposed system overview is shown in 2: (1)

Face ROI is detected with a boosted cascade of Haar-

like features, aligned with SIFT Flow to a reference im-

age, and Local Phase Quantization (LPQ) texture fea-

tures are extracted. The derivative of features are esti-

mated with two methods: (2) with a fine spatial granu-

larity with Difference of Gaussians (DoG) and (3) with

a course spatial granularity with histogram differenc-

ing (HD) of LPQ histograms. (4) A support vector ma-

chine (SVM) outputs posterior probabilities for emotion

labels from each of the three feature vectors and yhe

posterior probabilities are quantized into a single obser-

vation vector. (5) A hidden Markov model computes

the optimal emotion labels, taking of advantage of the

co-occurances between x (t) and x′ (t). where T is the

length of the video. U has mi observable symbols.

2.1. Detection, Alignment and Features

Faces are extracted with a boosted cascade of Haar-

like features. After extraction, faces are aligned with

SIFT Flow to the Avatar Reference Image [6]. The pa-

rameters of this algorithm are the number of iterations

I . After alignment, Local Phase Quantization (LPQ)

histograms are extracted [3] in each of n × n local re-

gions and the histograms are concatenated to form the

feature vector (this process is also called cells, or grid-

ding).

2.2. Modeling Temporal Changes

The derivative of features x′ (t) is approximated by

two methods: convolution with a DoG filter and dif-

ference of feature histograms. DoG has a fine spatial

granularity, in that it captures local changes happening

at the pixel. Histogram differencing has a course spatial

granularity, in that captures global changes happening

between the histograms of each cell.

2.1.1. Local Derivatives with DoG. A DoG filter is

employed as opposed to a finite difference because the

finite difference is sensitive to noise. The i-th feature

〈x (t)〉i is convolved with the DoG filter to approximate

the gradient of x (t) with the following equation:

〈x′

DoG (t)〉i ≈ 〈x (t)〉i ⊗ h (t) (1)

where h (t) ∼ N (0, σ1) − N (0, σ2) and σ1 = 4σ2.

The effect of Eq. 1 is a 1-D temporal gradient of 〈x (t)〉i
that has been low-pass filtered to remove noise. h (t) is

discretized to 2l, where 3σ2 = l, retaining approx. 99%

of the energy of the larger Gaussian.

2.1.2. Global Derivatives with HD. Let the feature

vector x (t) be composed of a set of n2 histograms

{H1 (t) , H2 (t) , ..., Hn2 (t)}. The histogram differ-

ence is computed with the l1 metric, for each histogram,

between t − δ and t + δ. This is similar to shot transi-

tion detection for key frames, except the histogram of

features is used, as opposed to color histograms. A new

feature vector x′

HD (t) ǫℜ1×n2

is generated where:

〈x′

HD (t)〉i = ‖Hi (t− δ)−Hi (t+ δ)‖1 (2)

where Hi (t) is the ith histogram at time t, and δ is a

spacing parameter.
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Figure 3. Examples of a co-occurrences.

2.1.3. Observation Quantization. A linear SVM is

trained to output posterior probabilities. Let w̃i (t) be

the estimated label at time t from a matcher using the i-

th feature set. We hypothesize that a co-occurrence ex-

ists, where the feature derivatives perform better when

emotion is weak or transitioning, e.g. w̃DoG (t) would

properly classify t0 in Fig. 1, and w̃LPQ (t) would not.

The output of the SVM must be fused in such a way

as to capture the combination of outputs of the SVM.

First, the posterior probabilities across all videos for

each matcher are quantized into m bins with k-means

clustering. Let vi (t) be the set of membership of w̃i (t)
at time t, ranging from 0 to m − 1. Second, the quan-

tized probabilities vi (t) of each matcher are combined

into a single observation matrix. Let u (t) be the com-

bined, quantized observation at time t:

u (t) =
n∑

i=1

m(i−1)vi (t) (3)

where n is the number of different matchers. Let U be

the observation sequence defined as:

U = {u (t) : 0 < t ≤ T} (4)

2.1.3. Hidden Markov Model. Co-occurance aware

fusion is realized with a Hidden Markov model (HMM).

We formulate out HMM as follows: given the obser-

vation sequence U, and the HMM, am optimal corre-

sponding state sequence Y = y (0) y (1) ...y (T ) must

be chosen. Y is taken to be the estimated labels; the

number of states of the model are equal to the number

of classes p. The state transition probability distribu-

tion matrix A and observation probability distribution

matrix B are estimated from training data. We assign

Act. Pow. Unpred. Val.

LPQ+DOG 0.373 -0.274 -0.345 -0.407

LPQ+HD 0.732 -0.373 -0.543 -0.224

Table 1. Q-statistics for each feature set.

labels with:

Y = argmaxy(0)...y(T )p(y (0) ...y (T ) , ...

U |λ (A,B) ) (5)

where λ is the model. Eq. 5 is solved with dynamic

programming, with the Viterbi algorithm. Because the

joint probabilities of the matchers are estimated, the

model can fuse information from each matcher in a

more meaningful way, as opposed to simply aggregat-

ing the labels.

3. Experimental Results and Discussion

The training and development sets of the AVEC2011

dataset [4] consists 63 videos of 13 different individu-

als, where frontal face videos are taken during an in-

terview when a subject is engaged in conversation by

an embodied agent. We divide the set of videos into

four roughly equal, mutually exclusive sets for cross-

validation (one set is used to testing; the rest for train-

ing). The frames are originally ∼ 50fps resulting

in 868999 frames. We subsample by a factor of 16.

AVEC2011 quantizes emotion along four dimensions:

arousal, power, valence and expectancy. An emotion

consists of a real value along each of these four emo-

tions. AVEC2011 quantizes each dimension into bins

of high and low, therefore p = 2.
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3 63.1 56.3 56.0 58.3 58.4

5 64.3 56.5 56.1 58.2 58.8

7 64.2 55.5 56.3 57.4 58.4

H
D

(δ
) 3 64.5 57.1 60.8 67.2 62.4

5 64.3 58.3 61.4 60.1 61.0

7 65.0 58.7 60.9 60.0 61.2

Proposed 64.8 69.5 65.8 74.2 67.7

A priori 51.1 42.6 55.0 59.2 -

[4] 60.2 56.0 58.3 63.6 59.5

[1] 58.2 53.7 53.7 53.2 54.7

Table 2. Results on AVEC2011 data.

For Avatar Image Registration I = 3. For LPQ fea-

tures, n = 8 with a dimensionality of 16384. δ, the his-

togram differencing spacing, and l, the half-width of the

DoG filter, are selected experimentally from {3, 5, 7} to

give the best classification rate, see Tab. 2 (l = 5 and

δ = 3). For the quantizer, m = 2. The proposed ap-

proach uses the parameters that give the best classifica-

tion rate.

In Sec. 1, we hypothesized that a cooccurance ex-

isted where LPQ and derivative of LPQ features per-

form well in different, exclusive situations and that the

HMM could take advantage this co-occurrence. In Fig.

3 we provide examples of co-occurrences, where LPQ

features perform poorly, but feature derivatives were

able to properly classify emotion during the transition.

In the figure, “GT” stands for ground truth, for each fea-

ture set, the class with the favored posterior is shown in

white for low, and black for high. We verify that such

a co-occurrence has an impact on classification with a

Q-statistic:

Qij =
(n00n11 − n01n10)

(n00n11 + n01n10)
(6)

where Qij is the Q-statistic metric that measures how

disparate the performance is between i and j; n00, the

number of samples where i and j misclassified the same

sample; n11, the number of samples where i and j

correctly classified the same sample; n01, the number

where i misclassified and j correctly classified; n10, the

number where j misclassified and i correctly classified.

Note that Qijǫ [−1, 1]. Two disparate feature sets that

have coocurances where one performed better than the

other should have a low Qij . The Q-statistics are given

in Tab. 1. The Q-statistics are low in most cases, veri-

fying the hypothesis of cases of disparate performance.

In Tab. 2, a priori indicates the a priori rate of the

classes. The baseline approach [4] and Glodek et al. [1]

are included for comparison (a ranking approach from

AVEC2011). The proposed method improves state of

the art by 7.6% over the top performer in the FERA2011

emotion challenge [6].

4. Conclusion

In this paper we verified that, for facial emotion

recognition where a subject can freely express emo-

tions, a derivative of features was more suitable than

using the features themselves. The derivative was esti-

mated with histogram differencing and DoG features.

A HMM fused the output of SVM matchers. Co-

occurrences were demonstrated to exist between feature

derivatives and features, and their impact on classifi-

cation was positively demonstrated. The proposed ap-

proach increased classification results on the non-trivial

AVEC2011 data set.
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[3] V. Ojansivu and J. Heikkilä. Blur insensitive texture clas-

sification using local phase quantization. In Proc. Image

and Signal Processing, 2008.
[4] B. Schuller, M. Valstar, F. Eyben, G. McKeown,

R. Cowie, and M. Pantic. Avec 2011: The first inter-

national audio/visual emotion challenge. In Proc. Affec-

tive Computing and Intelligent Interaction Workshop on

AVEC, 2011.
[5] M. F. Valstar, B. Jiang, M. Méhu, M. Pantic, and
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