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Abstract— This paper proposes an automated detection 
method with simple algorithm for detecting human embryonic 
stem cell (hESC) regions in phase contrast images. The 
algorithm uses both the spatial information as well as the 
intensity distribution for cell region detection. The method is 
modeled as a mixture of two Gaussians; hESC and substrate 
regions. The paper validates the method with various videos 
acquired under different microscope objectives.    
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I.  INTRODUCTION 
Human embryonic stem cells (hESCs) are important in 

the development of regenerative medicine for diseases such 
as Parkinson’s disease, diabetes, etc. The hESCs are 
pluripotent cells that can differentiate into any cell type. 
They can prevent embryotoxic chemical, which is a disease 
causing agent, from releasing into the environment [5] [6]. 
Therefore, hESCs also have applications in preventive 
medicine. The detection of hESC regions in phase contrast 
images is essential for hESCs research. Accurate and fast 
hESCs region detection can boost the throughput for 
analyzing  hESCs  properties and behaviors. 

II. RELATED WORK AND CONTRIBUTION 
K-means and mixture of Gaussians by Expectation-

Maximization (EM) algorithm are widely used techniques 
for image segmentation. K-means segmentation by Tatiraju 
et al. [9] considers each pixel intensity values as an 
individual observation. It partition these observations into k 
clusters in which each observation belongs to the cluster with 
the nearest mean intensity value [3] [10]. The method does 
not consider the intensity distribution of its clusters. On the 
contrary, the mixture of Gaussians segmentation method by 
EM (MGEM) algorithm proposed by Farnoosh et al. [7] 
heavily depends on the intensity distribution models to group 
the image data. The MGEM method assumes the image’s 
intensity distribution can be represented by multiple 
Gaussians [4] [8] [9]. However, it does not take into account 
the neighborhood information. As the result, segmented 
regions obtained by these algorithms lack connectivity with 
pixels within their neighborhoods. Their lack of connectivity 
with pixels within their neighborhoods is due to the 
following challenges: (1) incomplete halo surrounding the 
cell body; (2) cell body intensity values are similar to the 

substrate intensity values. Our proposed method is intended 
to solve these problems by using spatial information as well 
as the intensity distribution of the image data. We evolve the 
cell regions based on the spatial information until the optimal 
intensity distributions of background and foreground 
(hESCs) regions are obtained. The proposed method is 
simple, fast and automated. 

 
III. TECHNICAL APPROACH 

A. Mixture of Two Gaussians 
hESCs are pipette into the petric dish with a layer of 

substrate. The substrate becomes the background after the 
hESCs are placed on its surface. Therefore, we model the 
hESC image with two regions of interest: foreground and 
background regions. The intensity distributions of those 
regions are represented as a mixture of two Gaussians with 
different mean and variance. 

 

 
Figure 1:  Intensity distribution of foreground and background. 

 
 We consider that the foreground is the cell region with 

mean  and variance , and the background is the 
substrate region with mean  and variance . Therefore, 
our problem becomes maximizing the absolute difference of 
two signal-to-noise ratios (SNRs); the absolute difference of 
the foreground SNR and background SNR. Equation (4) 
shows the metric that is used to determine how much the cell 
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region data are different from the data of the substrate 
region.  The SNRs of the foreground and background 
datasets are calculated by the following equations [2]:  

                                                                      (1) 

                                                                      (2)       
where  and  are the SNRs for the foreground and 
background datasets respectively.  

 The metric M is formulated as such: 
                                                     (3) 

Substituting equation (1) and (2) into equation (3), we get the 
following. 

                                                             (4)  

Therefore, our solution becomes finding the  as 
described below: 

               (5) 

B. Spatial Information and Intensity Distribution 
The hESC region, F, is a high intensity variation region 

while the substrate region, B, is a low intensity variation 
region. As the result, we exploit the gradients of the image to 
segment out the cell region from the substrate region. The 
following equations show how we exploit the gradients of 
the image: 

                                                                       (6) 

                                                        (7) 

                                   (8) 

where  is the squared gradient magnitude of image, I.  

and  are gradients of image, I, in the x and y direction.   
is the spatial information result after equation (8), which 
further emphasizes the  difference between cell and substrate 
region. Equation (8) normalizes G as well as enhances its 
intensity distribution to become a more visible bimodal 
distribution.  

The proposed algorithm also uses an average filter on  
at each iteration to evolve the cell regions. It is able to group 
the cell region pixels together based on local information; the 
size of the average filter dictates how fast the cell region is 
evolved. The method updates  and evolves the cell region 
until  is maximized. 

Equation (4) is calculated based on the mean and 
variance of the intensity distributions of cell and substrate 
data.  The cell region , F, and substrate region, B, are 
updated by thresholding  with OTSU’s method at each 
iteration. The intensity distribution’s mean and variance of 
the cell region and substrate region data are also updated at 
each iteration by the following equations: 

                                                                     (9) 

                                                                   (10) 

                                                         (11) 

                                                              (12) 
Where  and  are total numbers of foreground and 

background pixels in the image, f and b are the intensity 
value in the corresponding foreground and background. 

C. Algorithm 
=========================================== 
Input:  
I: hESC phase contrast image. 
Output: 
F:the hESC region (foreground). 
B:the substrate region (background). 
 
Procedure Cell_Region_Detection(I); 
{  
Set  
Calculate G and with equation (7) & (8).  
Spatial grouping by applying an average filter on . 
Determine  and  regions by apply OTSU on . 
Calculate , ,  and  with equation (9)-(12) 
Calculate   with equation (4).        
While( ){ 
               := spatial grouping by applying an average filter 

on . 
Determine  and  regions by applying OTSU 
thresholding on . 
Update , ,  and  with equation (9)-12). 
Update   with equation (4). 

} 
F:= ; 
B:= ; 
}; 
=========================================== 

IV. EXPERIMENTAL RESULTS 

A. Data 
All time lapse videos are obtained with BioStation IM 

[1]. The frames in the video are phase contrast images with 
600 x 800 resolutions. The videos are acquired under three 
different objectives: 10x, 20x and 40x . 

B. Parameters 
Each video with different objective has a different default 

size of neighborhood for spatial grouping. The default sizes 
are determined by observing the ROC plots with various 
window sizes for each objective. Figure (2) shows that the 
optimal neighborhood sizes for 10x, 20x and 40x are 5 x 5, 7 
x 7 and 11 x 11 windows respectively. The selection criteria 
of the neighborhood sizes are based on finding a window in 
which its ROC plot yields high true positive rate while 
keeping the false positive rate low. 

C. Results/Disccusion 
The proposed method was tested with three videos that 

were acquired with 10x, 20x and 40x objectives.  Figures (3-
5) show the intermediate and final results of the proposed 
method on those image data. Figure (3b), (4b) and (5b) are 
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                (a)                                                                                    (b)                                                   

  
          (c) 

  Figure 2:  (a-c) ROC plots for 10x, 20x and 40x data at various windows by the proposed method. 

   
                                                  (a)                                                                                                  (b) 

0.024 0.026 0.028 0.03 0.032 0.034 0.036
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

3 x 3 Window
5 x 5 Window
7 x 7 Window
9 x9 Window
11 x 11 Window
13 x 13 Window
31 x 31 Window

0.045 0.05 0.055 0.06 0.065

0.88

0.9

0.92

0.94

0.96

0.98

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

3 x 3 Window
5 x 5 Window
7 x 7 Window
9 x9 Window
11 x 11 Window
13 x 13 Window
31 x 31 Window

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

0.74

0.76

0.78

0.8

0.82

0.84

0.86

False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

 

 

3 x 3 Window
5 x 5 Window
7 x 7 Window
9 x9 Window
11 x 11 Window
13 x 13 Window
31 x 31 Window

the spatial information when  is reached for their 
respective data. Figure (3d), (4d) and (5d) are the plots of 
foreground and background’s intensity distributions at . 
The three sets of foreground and background’s intensity 
distributions match our model shown in Figure (1). The 
foreground distribution of Figure (4d) shows a high 
probability at its tail. The high probability at its tail is due to 
the strong presence of halo information in the image. Figure 
(5) shows the results of a noisy image with the proposed 
method.  The roughness on the foreground and background’s 
distribution curves is because of the noise in the image data.  

In this paper, we compare the proposed method with K-
means and mixture of Gaussians segmentation methods. 
Figures (7-8) show the results of the K-means and MGEM 

segmentation. The results of both methods show the lack of 
connectivity within their neighborhoods.  K-means clusters 
the image data based only on the nearest mean while MGEM 
method groups the data solely on the modeled intensity 
distribution. Consequently, both methods were not able to 
detect the entire cell regions. Instead, they have detected 
fragments of the actual cell regions. Their performance is 
further worsened by the presence of noise as shown in Figure 
(7c) and (8c). The proposed method as shown in Figure (9) 
solves the lack of connectivity problem. More importantly, 
the proposed method’s performance is still robust on the 
noisy image. However, pre-filtering can greatly improve its 
performance shown in Figure (6) and (10d). 
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                                                  (c)                                                                                                  (d) 

Figure 3: (a) The original 10x image; (b) spatial information at ; (c) detected cell regions; (d) histgram of the foreground and background . 
 

 
                                                (a)                                                                                                  (b) 

 
                                                (c)                                                                                                  (d) 
 

Figure 4: (a) The original 20x image; (b) spatial information at ;(c) detected cell regions; 
 (d) histgram of the foreground and background. 
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                                                (a)                                                                                                  (b) 

 
                                                (c)                                                                                                  (d) 
 

Figure 5: (a) The original 40x image; (b) spatial information at ; (c) detected cell regions; 
 (d) histgram of the foreground and background  data. 
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                                                                                                      (c) 

Figure 6: (a) Spatial information at ; (b) detected cell regions; 
(c) foreground and background  histogram of the 40x data after the 5x5 median filter. 

 

                                
    (a)                                                                                            (b) 

                                                            
                                                                                                (c) 

Figure 7:  (a-c) K-means results for 10x, 20x and 40x.  
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  (a)                                                                                              (b) 

                                                                    
                                                                                                (c) 

Figure 8: ( a-c) Mixture of two Gaussians by EM,  results for 10x, 20x and 40x. 
 

                      
  (a)                                                                                             (b) 

                                                            
                                                                   (c)                                                               

Figure 9: The results(a-c) of the proposed method for 10x, 20x and 40x respectively. 
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    (a)                                                                                      (b) 

                         
                                                        (c)                                                                                       (d) 

Figure 10: (a) The results of  the video under 10x objective; (b) results of the video under 20x objective; 
(c) results of the noisy video under 40x objective; (d) results of the video under 40x objective after 5 x 5 median filter; 
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V. CONCLUSIONS 
 
The proposed method incorporated the concept of spatial 

information and intensity distribution of the data for cell 
region detection.  It uses the spatial information to improve 
the connectivity of local pixels to their corresponding data 
set. More importantly, it enables the fast convergence to the 
maximum absolute difference of foreground and background 
SNRs. The proposed method is able to split the image data 
into two Gaussian distributions; intensity distribution of the 
foreground and background data. Figure (10) shows that the 
proposed method achieves higher true positive rate. In case 
of noisy images, the pre-filtering of the image data can 
greatly improve the performance of the algorithm. In term of 
speed, the proposed method converges in less than 1.2 
seconds while K-means and MGEM take about 3.61 and 
25.3 seconds on a laptop with a Intel(R) Core™ 2 Duo CPU 
processor that run at 2.53GHz.  
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