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Abstract—Pedestrian tracking is an important problem with
many practical applications in fields such as security, animation,
and human computer interaction (HCI). In this paper, we
introduce a previously-unexplored swarm intelligence approach
to multi-object monocular tracking by using Bacterial Foraging
Optimization (BFO) swarms to drive a novel part-based pedes-
trian appearance tracker. We show that tracking a pedestrian
by segmenting the body into parts outperforms popular blob-
based methods and that using BFO can improve performance
over traditional Particle Swarm Optimization and Particle Filter
methods.

Index Terms—monocular pedestrian tracking, swarm intelli-
gence, bacterial foraging optimization, uncalibrated cameras.

I. INTRODUCTION

Tracking is a classic computer vision problem of significant
importance where the objective is to continuously locate an
object (e.g., a cell, pedestrian, vehicle, or crowd) in sequential
frames of a video. Pedestrian tracking in particular poses
considerable interest in fields such as surveillance, scene anal-
ysis, human-computer interaction, pervasive computing, and
computer animation. A complete tracking system generally
consists of 4 main components: object detection (detecting the
objects to track), object tracking (tracking the objects across
frames), track association (joining short-term “tracklets” into
long-term tracks), and analysis (utilizing the data for high-
level understanding). Since much of the computation effort is
spent on tracking, making robust tracking approaches faster
helps to move tracking systems into the real-time domain and
more accurate low-level tracking improves the performance of
higher-level track association.

In order to further explore algorithms with less exposure,
this paper extends the general object tracking approach pro-
posed in [11] to the real-world problem of pedestrian tracking
and asks the question: can Bacterial Foraging Optimization
outperform more popular search algorithms for real-world
tracking applications? This paper is organized as follows:
Section II discusses related work and contributions, Section
III details the technical components of the proposed tracking
approach, Section IV presents experimental results on the
CAVIAR [5] dataset, and Section V offers closing remarks.

II. RELATED WORK AND CONTRIBUTIONS

Traditional approaches toward pedestrian tracking focus
around Particle Filters [8], Mean Shift [2], or detection-based
tracking [15]. An alternative approach considers a family

(a) Input video (b) Background subtraction

(c) Pedestrian detection (d) Body segmentation

(e) Tracking in fitness space (f) Final track

Fig. 1. Bacterial Foraging Optimization-based pedestrian tracker. (a) Input
video, (b) background subtraction to extract areas to perform detection, (c)
pedestrian detection on blobs not already tracked, (d) segment the bounding
box using statistical body ratios, and (e) track in the fitness space using
Bacterial Foraging Optimization, (e) output final tracks.

of biologically-inspired evolutionary computation algorithms
known as swarm intelligence. In this category, the most
popular approaches are Particle Swarm Optimization (PSO) [9]
or a combination of Ant Colony Optimization with the above
approaches [6]. These trackers are often used to generate short-
term “tracklets” which are then used for methods such as Data
Association Tracking (DAT) [10], [14] to produce long-term
inter or intra-camera tracks.

This paper focuses on a less-widely known swarm intel-
ligence algorithm and is the first paper to propose Bacterial
Foraging Optimization for pedestrian tracking. We show that
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Fig. 2. Body segmentation of two pedestrian rectangles of interest using
fixed statistical ratios.

it is a viable approach for fast appearance-based tracking and
we make the following claims:

• Segmenting the body into separate regions of interest
(ROIs) improves tracking performance as opposed to
popular single ROI-based approaches.

• Bacterial Foraging Optimization offers improved perfor-
mance over traditional Particle Filter and over Particle
Swarm Optimization utilizing the same resources.

This paper assumes tracking is to be performed using uncal-
ibrated monocular cameras. This is a reasonable assumption as
it is the characteristic of most of the existing camera systems.
Figure 1 outlines the proposed approach.

III. TECHNICAL APPROACH

A. Pedestrian detection

Tracking requires an initial estimate of an object’s location
in order to begin. Background subtraction is first used to
extract a rough foreground mask for every frame. This paper
uses the modified Gaussian mixture model (GMM) proposed
in [16] to segment the foreground by dynamically learning the
background as the video progresses.

Labeling the connected components of the foreground mask
gives a set of blobs which can be input into a pedestrian de-
tector. Since detection algorithms are often resource-intensive,
executing them only on the blobs not already covered by any
current tracker (as opposed to the entire image) provides a
significant speed-up in performance. This paper uses the Viola-
Jones Haar wavelet-based detector [3], [15] trained to detect
the head and shoulders of pedestrians. Performing detection
on upper bodies (as opposed to full or lower bodies) makes
detection more robust to occlusion, e.g., when facing crowds
where only the head/top portion of the body is visible and
when pedestrians enter/leave through the bottom of the video’s
field of view. The ROIs of detected upper bodies are then
extended to encompass for the full body to match the upper
body’s ratio. This paper takes a square detection box of a
person’s head and shoulders and extends it down to a rough
location of the feet by increasing the box height by a fixed
ratio and preserving the top-left coordinates and width of the

(a)

(b) (c)

Fig. 3. Fitness space for tracking a pedestrian using color similarity in the
HSV color space (brighter = higher fitness). (a) Detected pedestrian, (b) fitness
space for the pedestrian’s signature in the original image, (c) fitness space for
the pedestrian in the background-subtracted image.

original detection box:

full bodyheight = upper bodyheight ×R

full bodyx,y,width = upper bodyx,y,width

The value of ratio R is dependent on the detection classifier
used and experimentally selected to be 3.1 in this paper.

B. Body segmentation

In most cases, it is reasonable to assume that most peo-
ple do not dress from head to toe in a single solid color
(though exceptions exist, e.g., students at a graduation). In
addition, people in a single video’s field of view can often
be distinguished based on general appearance alone. To make
use of these observations, we take a parts-based approach to
identifying an individual in the short-term by segmenting a
pedestrian’s ROI into a number of distinct horizontal segments
based on statistical percentages of body ratios [1], [4], [7].
Figure 2 shows the resulting body segments overlaid on a
pedestrian.

The foreground mask is then applied to the image in order
to prevent background pixels from affecting a pedestrian’s
signature. Once the body has been segmented into 5 main
parts (head, torso, upper legs, lower legs, and feet), signature
extraction (e.g., generating color histograms) is performed on
each body part separately (the more common alternative is to
extract a single signature for the entire ROI). This is performed
by sampling every foreground pixel in each body part’s ROI,
though further speedups can be achieved though the use of
subsampling. This paper uses color histograms extracted in
the HSV color space to generate signatures, extracting a fixed
N = 32 bins from the hue and saturation components and
normalizing to sum. Calculating the similarity between two
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Fig. 4. Behavior of a single Bacterial Foraging Optimization swarm searching for a pedestrian. (a) Random initialization, (b) gradient-hill climbing in random
directions, (c) death/rebirth of agents with poor fitness to location of agents with best fitness, (d) target location based on consensus of the best agents.

histograms A and B of length N bins is performed using
histogram intersection:

hist intersect(A,B) =

N∑
i

min(Ai, Bi)

The average percentage intersection of the body part his-
tograms can then be used to compute a fitness between a
query location and the original initialized target signature. This
fitness function can then be used by any search algorithm
to track the pedestrian. Figure 3 shows the exhaustively-
generated fitness space for an initialized ROI.

C. Tracking with Bacterial Foraging Optimization

Bacterial Foraging Optimization (BFO) [12] is a stochastic
evolutionary swarm intelligence search algorithm designed to
model the movement and feeding behavior of E.coli bacteria.
A swarm consists of a number of particles or “agents” which
move or “swim” and “tumble” through an environment search-
ing for concentrations of food (or regions of high fitness from
a feature space point of view). Given an image, a swarm of
agents is first randomly initialized on the image. The algorithm
consists of R “reproduction” loops which execute a number
of C “chemotaxis” or movement loops. In each chemotaxis
loop, all agents “tumble” (choose a random direction) and
are allowed to “swim” (or sample) up to S times in steps
of size Step in a gradient hill-climbing manner. At the end
of each reproduction step, the bottom T agents with the worst
fitness scores die off and an equal number of agents are born
at the locations of the T best agents. In this manner, resources
are quickly allocated to regions of higher fitness. At the end
of the algorithm, the agents undergo an elimination/dispersal
step which randomly relocates agents with probability P . This
step helps to simulate a changing environment such that the
swarm does not fully converge and cease to track in succeeding
frames. Figure 4 shows the behavior of a BFO swarm in a
fitness space.

BFO has never been used previously for pedestrian tracking,
yet possesses traits which make it suitable to the problem.
The near-uniform coverage of the search space is useful for
overcoming occlusion (whereas many other approaches lose
track once they converge). In addition, the fast propagation of
agents to regions of high fitness reduces overhead of having

the agents gradually making their way toward global-best
fitness regions. This paper utilizes BFO with the enhancements
proposed in [11] for additional characteristics such as early
termination, lookahead, and elitism. Algorithm 1 summarizes
the full procedure.

D. Track smoothness

In the event that there are multiple people in a single frame
who both have similar appearance signatures (e.g., similar
clothing such as uniforms), it is helpful to add an additional
smoothness constraint to the fitness function. This allows a
tracker to prefer a location which more closely resembles
a pedestrian’s current trajectory rather than, for instance, a
location of slightly higher fitness that is clear across the frame.
From [13], smoothness at a current trajectory point Pi can
be computed as the difference between the vectors V of the
previous trajectory point Pi−1 and a proposed point Pi+1:

Vi = Pi+1 − Pi

smoothnessi = W × Vi−1 · Vi

|Vi−1||Vi|
+ (1−W )×

2
√
|Vi−1||Vi|

|Vi−1|+ |Vi|
where W is a weight value between 0 and 1 (a higher
value favors smoothness in direction, a lower value favors
smoothness in velocity). W is set to 0.50 in this paper to give
both smoothness components equal weight. After normalizing
the scores of the histogram intersections, the smoothness
function can then be integrated into the final fitness function:

fitness = Ws × smoothness+ (1−Ws)× hist intersect

where Ws is experimentally set to 0.01 for all videos in
this paper to favor smoother locations when deciding between
locations of similar fitness.

IV. EXPERIMENTAL RESULTS

The proposed tracking system is tested on 7 videos from
the CAVIAR dataset [5] which are considered to be the most
challenging [14]. The CAVIAR videos show the following
challenges: 1) relatively low resolution CIF video (382×288),
2) pedestrian size changes dramatically depending on the
position in the corridor (e.g., ROI sizes change by up to 450%),
and 3) pedestrians occlude each other not only in the middle
of a pedestrian’s path, but also when pedestrians first enter as
well as leave the field of view. Table I shows frame, pedestrian,
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Algorithm 1 BFO algorithm modified for tracking [11]
1: I ← image to search
2: Target← hist and prev. location of object to search for
3: R← number of reproduction steps
4: C ← number of chemotaxis steps per reproduction
5: S ← max number of swims per chemotaxis step
6: Step← swim step size in pixels
7: T ← number of agents to relocate per reproduction
8: P ← probability a non-immune agent gets relocated
9: Thresh← minimum fitness to trigger early termination

10:
11: procedure BACTERIALFORAGING
12: if I is first frame of target then ◃ Init first frame
13: Initialize agent locations on I
14: end if ◃ Early termination?
15: if fitness(Targetloc, I, Targethist ≥ Thresh then
16: return Targetloc
17: end if
18: for R reproduction steps do ◃ Begin search
19: for C chemotaxis steps do
20: for all agents A do
21: d← random direction
22: for up to S swims do
23: l← new location Step pixels from A
24: toward direction d
25: f ← fitness(l, I, Targethist)
26: if f > Acurrent fitness then
27: Acurrent fitness ← f
28: Acurrent location ← l
29: else
30: Break
31: end if
32: end for
33: end for
34: end for
35: for all top T agents A with best fitness do
36: Aimmunity ← true
37: end for ◃ Death/rebirth
38: Move the T agents with worst fitness to
39: locations of the T agents with best fitness
40: end for

◃ Elimination/dispersal
41: for all agents A where Aimmunity ̸= true do
42: Relocate A to random position with
43: probability P
44: end for

◃ Return updated location
45: Targetloc ← best location based on all agents A
46: where Aimmunity = true
47: return Targetloc
48: end procedure

(a) (b)

(c) (d)

(e) (f)

(g)

Fig. 5. Sample frames from the CAVIAR dataset [5]. (a) OneSho-
pOneWait1cor, (b) OneStopMoveEnter1cor, (c) ThreePastShop1cor, (d) Three-
PastShop2cor, (e) TwoEnterShop1cor, (f) TwoEnterShop2cor, (g) TwoEnter-
Shop3cor.

Video # Frames # Pedestrians # ROIs
OneShopOneWait1cor 1,377 6 4,496
OneStopMoveEnter1cor 1,590 19 13,691
ThreePastShop1cor 1,650 8 9,642
ThreePastShop2cor 1,521 9 9,452
TwoEnterShop1cor 1,645 11 7,190
TwoEnterShop2cor 1,605 15 7,930
TwoEnterShop3cor 1,149 14 6,856
Total 10,537 82 59,257

TABLE I
VIDEOS USED FROM THE CAVIAR DATASET.

and ROI information about the CAVIAR videos and Figure 5
shows sample frames from the videos.

For the results, tracking accuracy is defined as the percent-
age of groundtruth ROIs covered by the tracker initialized for
that pedestrian. An ROI is considered to be tracking a target
if its intersection with the groundtruth ROI exceeds at least
50% of their union:

is tracked(ROIquery, ROIgt) =
ROIquery ∩ROIgt
ROIquery ∪ROIgt

> 0.50

i.e., a tracking accuracy rate of “44%” means 26,000 of
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Fig. 6. Tracking accuracy of traditional single blob-based tracking vs. body
segments, averaged over 10 runs across the 7 CAVIAR videos seen in Table
I.

the 59,000 ROIs were correctly located with at least 50%
groundtruth intersection.

Figure 6 shows the tracking accuracy results on the
CAVIAR dataset when histograms are extracted for each body
segment versus traditional single blob approaches. All tests are
averaged across 10 runs. For BFO and PSO, the parameters
were manually optimized such that each algorithm made on
average 300 calls to the fitness function (a number which
allows the tracker to perform at a reasonable speed of 20
frames per second on the test machine, a 2.40GHz Intel
Q6600 CPU), i.e., PSO uses 30 particles with 10 iterations
and BFO uses A = 10 particles, R = 12 reproductions,
C = 1 chemotaxis step, S = 5 max swims per chemotaxis,
Step = 5px, T = 1 death/rebirth per reproduction, and P =
90% dispersal rate. Segmenting the body achieves roughly 5%
increase in tracking performance over conventional single-blob
approaches. Speed-wise, since the total ROI area for an object
is equivalent between the two approaches, there is only the
negligible overhead of computing the segmented ROIs and 4
more histogram intersection comparisons.

Figure 7 shows a tracking accuracy comparison of the
proposed BFO approach with PSO using the same body
segmentation scheme, Particle Filter, CamShift, and the Viola-
Jones based detection-based tracker.

V. CONCLUSIONS

We proposed using Bacterial Foraging Optimization swarms
for pedestrian tracking and showed that using a parts-based
segmentation approach can outperform both PSO and tradi-
tional Particle Filter methods. Future work involves addressing
noisy histogram initialization caused by occlusion and bad
foreground segmentation and using the low-level tracker de-
signed in this paper to improve the performance of higher-level
DAT-based trackers and on investigating alternative pedestrian
signatures for improved monocular and multi-camera associa-
tion.

Fig. 7. Tracking accuracy of multiple trackers, averaged over 10 runs across
the 7 CAVIAR videos seen in Table I.
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