
978-1-4244-4620-9/09/$25.00 c©2009 IEEE

VideoWeb: Design of a Wireless Camera Network
for Real-time Monitoring of Activities

Hoang Nguyen, Bir Bhanu, Ankit Patel, and Ramiro Diaz
Center for Research in Intelligent Systems

University of California, Riverside
Riverside, California 92521 USA

Email: nthoang@cs.ucr.edu, bhanu@cris.ucr.edu, pankit@cs.ucr.edu, rdiaz005@student.ucr.edu

Abstract—Sensor networks have been a very active area of
research in recent years. However, most of the sensors used in
the development of these networks have been local and non-
imaging sensors such as acoustics, seismic, vibration, tempera-
ture, humidity, etc. The development of emerging video sensor
networks poses its own set of unique challenges, including high
bandwidth and low latency requirements for real-time processing
and control. This paper presents a systematic approach for the
design, implementation, and evaluation of a large-scale, software-
reconfigurable, wireless camera network, suitable for a variety of
practical real-time applications. We take into consideration issues
related to the hardware, software, control, architecture, network
connectivity, performance evaluation, and data processing strate-
gies for the network. We perform multi-objective optimization
on settings such as video resolution and compression quality to
provide insight into the performance trade-offs when configuring
such a network.

I. INTRODUCTION

We describe the development of a new laboratory called
VideoWeb to facilitate research in processing and understand-
ing video in a wireless environment. While research into large-
scale sensor networks has been carried out for various appli-
cations, the idea of massive video sensor networks consisting
of cameras connected over a wireless network is largely new
and relatively unexplored.

The VideoWeb laboratory entails constructing a robust
network architecture for a large number of components, in-
cluding wireless routers and bridges, video processing servers,
database servers, and the video cameras themselves. Hardware
and equipment selection needs to take into account durabil-
ity, performance, and cost. In addition, VideoWeb requires
a number of software applications including those for data
recording, video analysis, camera control, event recognition,
anomaly detection, and an integrated user interface.

Challenges for the design of VideoWeb include creating
a wireless network robust enough to simultaneously support
dozens of high-bandwidth video cameras at their peak perfor-
mance, providing power and connectivity to cameras, building
a server farm capable of processing all the streaming data
in real-time, implementing a low-latency control structure for
camera and server control, and designing algorithms capable
of real-time processing of video data.

The paper is organized as follows. In Section 2 we cover
related work and contributions of this paper. Section 3 dis-
cusses the requirements and specifications used in designing

Fig. 1. Overall architecture. Top down: a single interface is used for direct
control of any server/camera and high-level processing (e.g., user-defined face
recognition). The server connects to a switch which hosts a database and joins
two sets of servers: a series of mid-level (e.g., feature extraction) and low-level
processors (e.g., detecting moving objects). The switch connects to routers
which communicate with wireless bridges connected to the IP cameras.

the system. It discusses the technical challenges and solutions
for actual implementation. Section 4 delves into characterizing
the performance metrics from which to evaluate the system.
Finally, Section 6 includes concluding comments and Section
7 suggests future and ongoing work.

II. RELATED WORK AND CONTRIBUTIONS

Many wireless camera platforms have been proposed [1],
[2], [3] and emerging research in the design of wireless camera
networks includes those with customized camera hardware
nodes (e.g., CITRIC [4], eCAM [5]) including iMote2 and
WiCa-based networks ([6], [7]), as well as networks with
carefully-calibrated cameras ([8]).

This paper makes the following contributions:
1) We make the case for IP cameras and server-side

processing by designing and implementing a system
utilizing network cameras running on a software-
reconfigurable server and network architecture. That
is, while we use conventional IP cameras without on-
camera processing, the configuration of the server-side
processing is user-configurable and allows on-the-fly
changes such as going from the default tiered-processing
(e.g., low-level processing servers do object detection
and send silhouettes to mid-level processors which
generate object signatures and broadcast to high-level
servers) to 1-to-1 camera-to-server processing which
simulates the behavior of on-camera processing net-
works.

2) The VideoWeb system is designed to be flexible; every
hardware component is interchangeable and replaceable.
For instance, cameras can be heterogeneous (e.g., color
and infrared videos) with different models from different
vendors. The wireless routers and bridges can be inter-
changed or have their firmware updated to keep up with
new wireless technologies, and the software architec-
ture requires no specific server hardware. The software
system has also been designed to be vendor-independent
and cross-platform (e.g., any IP camera which can output
Motion JPEG (M-JPEG) [9] is supported, a standard
feature of many consumer and commercial cameras).

3) This paper describes performance metrics on which
to evaluate a video network’s performance and uses
multi-objective optimization in order to discover Pareto-
efficient settings for camera configurations.

III. DESIGNING THE VIDEO NETWORK

A. Architecture

The complete architecture (Figure 1) is comprised of a cam-
era component, a wireless component, an application server
component (e.g., database servers, digital video recording
servers), and a processing component comprised of 3 levels:
a set servers which process camera feeds at a low level (e.g.,
human detection, per-camera tracking), a set of servers which
use this information for mid-level processing (e.g., feature
extraction, multi-camera tracking), and a master server which
uses this data for high-level processing and user control (e.g.,
task assignment, scene analysis, face recognition). The high-
level server is also used as an interface for the network.

Since processing is not always oriented at a per-camera level
(e.g., a processing task may be specific toward a group of
cameras), a multi-tiered architecture is used to delegate camera

Fig. 2. Camera layout of the building.

control and processing responsibilities; the server architecture
is designed as a 3-level tree hierarchy: a master high-level in-
terface server communicates with a set of mid-level processing
servers. Each of these process data received from a number of
low-level processing servers. A server architecture physically
connected in this fashion would entail cameras forwarding data
to one set of servers which forward low-level data to another
set of servers, and once more to the high-level server. To
avoid the delay in data transfer, we do not physically connect
server nodes directly to one another, but rather connect each
node to a central network switch and implement this hierarchy
in the networking configuration (i.e., DNS configuration) and
communication-strategy in our software.

The processing component handles all the control, interface,
and processing servers. A key feature of the processing level is
that all components can communicate with each other through
a central network switch. An interface server is employed to
allow users to view live or processed data from the cameras
and to manually assign processing tasks (such as running a
particular algorithm on some arbitrary number of cameras)
from a central location. In the wireless component, cameras
and servers are bridged through a single-hop wireless network
using wireless routers connected to the servers to communicate
with wireless bridges located throughout the building which
connect to the cameras.

B. Cameras

1) Camera requirements: For this research, we use the
VGA standard 640×480 pixels as the minimum video res-
olution requirement and a reasonable 20 frames per second as
a threshold for acceptable real-time performance. In addition,
we utilize digital IP cameras which provide a range of ben-
efits such as streamlined processing (no digitizing required),
relatively easy data storage, and simplified connectivity.

Cameras are to be installed in an indoor and outdoor
building environment which includes locations such as remote
open spaces exposed to rain and corridors void of sunlight. As

a camera network for long-term applications with year-round
use, battery-powered cameras are not sufficient and we instead
use network cameras with power adapters.

2) Camera selection: Among conventional pan/tilt/zoom
(PTZ) cameras considered was the Panasonic WVNS202, Axis
214, and Axis 215 cameras. Besides cost, factors influenc-
ing camera choice include physical size, and availability of
non-intimidating outdoor enclosures, and performance. The
Panasonic cameras were deemed unsuitable after experiments
which showed that the video stream begins to lag when the
network becomes congested (Table I). That is, in the event
of network throughput issues which limit cameras to low
frame rates, instead of dropping frames, the Panasonic resends
cached video frames stored in its buffer. The Axis cameras
on the other hand, drops frames, maintaining a relevant video
stream despite low frame rates. Between the two Axis cameras,
the 215 was selected as the primary camera due to lower cost
and lower mechanical latency when issuing PTZ commands.

3) Camera installation: Using a 45-degree field of view for
the cameras, 37 locations were selected for complete coverage
of the monitored building (Figure 2). As such, the network
consists of 37 cameras: 36 Axis 215 PTZ cameras and a
larger Axis 214 PTZ camera overlooking a courtyard. Each
camera is capable of outputting a sustained 2.65 MB/second
of Motion JPEG (M-JPEG) video at a peak of 30 frames per
second when set to the maximum resolution of 704×480 pixels
and a minimal compression setting of 0 (out of 100). This
represents the maximum throughput and frame rate in an ideal
environment (i.e., connecting to a camera via a direct ethernet
connection and experiencing no frame drops). Other available
resolutions of the cameras include 704×240, 352×240, and
176×120.

While the selected Axis 215 camera offers an outdoor dome
enclosure, a dilemma was faced with the Axis 215 cameras,
as there were no discreet outdoor enclosures for them; we had
to find a way to make the cameras relatively weatherproof
to withstand humidity and moisture. By choosing the Axis
215, we had to compensate for the lack of an available out-
door enclosure and improvise using the supplied flush-mount
enclosures with smoked domes and surface-mount enclosures
with clear domes, both designed for indoor installation. The
solution was to use the surface-mount enclosures and make
them waterproof by sealing the plastic seams with silicone
sealant. In addition, the clear domes were interchanged with
the smoked domes. The end result was a non-threatening
camera dome suitable for surface-mounting at any of the 37
locations. Long-term effects of humidity, heat, and moisture
on the cameras despite the sealed domes remains to be seen.

Electrical power was provided done by installing dedicated
power supplies in two of the building’s electrical rooms and
running conduit to the camera cluster locations where power
outlets were installed. Since we had full control of the power
by using or our own power supplies, the cumbersome power
adapters for the cameras were removed and the required power
is supplied directly.

C. Wireless Bridges

1) Bridge requirements and selection: Since many IP cam-
eras (the Axis 214 and 215 included) do not have built-in
wireless connectivity, a wireless bridge is required to provide
this functionality. As such, the wireless bridges serve a single
purpose: connect the cameras to the routers. Since the camera
locations are often situated in clusters, it is desirable if the
bridges can support multiple clients (i.e., have more than
1 ethernet port). This quickly narrows down the selection.
A conventional IEEE 802.11g bridge made by Buffalo was
selected due to its support of 4 ethernet clients; IEEE 802.11n
bridges were only available in 1-port versions at the time of
selection. This paper does not delve into the pros and cons of
individual wireless protocols, though literature on this specific
topic has been recently made available [10]. Performance
testing on the Buffalo bridges revealed no outstanding issues,
but prolonged testing may show otherwise.

2) Bridge installation and configuration: The wireless
bridges were installed throughout the building in the ceilings
and localized in clusters where possible to better facilitate
maintenance and troubleshooting concerns. In total, 19 wire-
less bridges are used to provide connectivity for the 37
cameras. Though the bridges have 4 inputs, we only use 2;
we do not take full advantage of the bridges’ connectivity ca-
pabilities for a reason. We originally planned to optimistically
use 3 cameras per bridge, but found 2 cameras (streaming
simultaneously with maximum video settings) was the limit
each bridge could support without experiencing heavy frame
loss. The bridges are configured to communicate with the
routers using WPA-PSK encryption.

D. Wireless Routers

At a maximum of 2.65 MB/s per camera (or 5.3 MB/s from
each bridge), the network may be generating over 98 MB/s of
data at peak performance. Gigabit routers are used to handle
the amount of expected traffic and IEEE 802.11n capabilities
are chosen to facilitate future upgrades. We use Linksys
WRT350N routers for the first iteration of the network. Routers
are split into two clusters receiving from two indoor locations.
In total, 5 routers handle traffic from 19 bridges. The routers
are configured to assign local addresses to the cameras and port
forwarding is used to address the cameras from the servers.

E. Servers

1) Server requirements: The most important component
of the servers is the processor. We decided to go with a
multi-core system in order to enable parallel data processing
per computer. We have multiple cameras connecting to a
single computer, so parallel processing would be very im-
portant. Also, with our server architecture we have 3 levels
of processing. If later on this amount of processing power is
insufficient, each computer should have a second vacant CPU
socket for another processor to allow doubling the processing
power of the server farm if necessary without increasing
the physical footprint of the system. For uniformity and to
facilitate maintenance, all processing servers have the same

TABLE I
Camera behavior can vary radically across vendors and models. Under congested network conditions for example, cameras may permanently drop frames or

attempt to resend missed frames at the expense of live data. The Panasonic camera in this case output “smoother” video (fewer frame drops between two
successive frames) under heavy network congestion (until its onboard cache is exhausted) at the cost of delays in upwards of 6 seconds.

Panasonic WVNS202 Axis 215 PTZ
Configuration 640×480 pixels, 0% compression 704×480 pixels, 0% compression
Cameras per bridge 2 3 2 3
Frame delay (seconds) < 1.0 > 6.0 < 0.5 < 1.0

hardware. The requirements of the applications which will run
on the servers may be initially unknown, so it is desirable to
have a reasonable amount of memory available (2GB) but also
be expandable to higher memory density should the need arise.

An idea to use conventional desktop computers for data
processing was quickly discarded due to the difficulty in phys-
ically scaling desktop computers or custom tower computers
to a large number of cameras. Using even MicroATX cases
would require a large amount of space to store the computers
and would make moving the components/units particularly
laborious and awkward. We instead opt for 1 height unit
(1U) rack servers which can be housed in a single 42U rack
enclosure with wheels for mobility.

2) Server construction and installation: In order to reduce
contention over resources on the same machine from different
camera processes, each processing server was specified with
the following main hardware: an Intel Core 2 Quad Q6600
Kentsfield (2.4 GHz) CPU, 2GB DDR2 800 (PC 6400) mem-
ory, and a Western Digital SE16 250GB SATA hard disk.
Though the Q6600 is not a true quad-core processor (2 dual-
cores instead of 4 true cores), the support for additional threads
is useful. Also, while we install 2GB for our initial setup,
we also use motherboards which are expandable to 24GB
of RAM. Gigabit ethernet cards are also selected to prevent
any individual networking bottlenecks. Hard disks were given
lower consideration, as most the processing nodes do mostly
CPU processing and would not be storing data locally; the hard
disks need only be sufficiently fast enough to run the operating
system and RAM disks are setup in order to provide fast
temporary storage for intermediate data. As such, conventional
80GB SATA hard drives are used. Application servers such
as database or recording servers, on the other hand may
emphasize larger and faster hard disks.

Thirty two identical servers were built and installed into
a server rack. The building housing the servers fortunately
has a suitable server room with adequate air conditioning
and power connectivity. Kill A Watt devices were used
to measure power consumption of the servers. The servers
mentioned, for instance, peak at 198W/1.65A when starting
up, use 132W/1.14A when idle, and consume 175W/1.54A
under full load on all cores and hard drives. This data was
then used to specify the uninterruptible power supplies (UPS)
for the servers, which consist of four 2U APC Smart-UPS
2200VA/120V batteries. Testing showed the batteries capable
of supporting 8 servers each at full load for 5 minutes and 45
seconds under an outage.

F. Software System

1) Software requirements: In order to implement the tiered
processing scheme of the servers, the software needs to be
both clients and servers to facilitate the sending and receiving
of video traffic and camera controls. Mid-level servers, for
instance, may need to broadcast a stream of processed data
to the high-level server for viewing by the user, while at the
same time being able to download cropped object images from
low-level servers.

2) Software prototyping: The goal of the first software it-
eration was to control a networked camera using a customized
program without the use of the supplied camera web interface
or vendor-specific camera-management software included with
most network cameras. One of the advantages of utilizing
network cameras is that the camera control interface can
be implemented through sending simple HTTP commands.
To demonstrate this, a 10-line Python script was written for
sending manual control commands to a camera. Once it was
shown that it was easy to control the cameras, work started
on a C++ application for the actual image processing.

3) Sample program - head tracking: The basic algorithm
framework used for head tracking was based on a gradient
and color-based tracker [11] with additional tweaks. The first
implementation of this was done in C++ and MATLAB.
Testing showed this program to be too slow for real-time
processing, so a second iteration was written in pure C++ using
OpenCV [12]. The tracker began with tracking synthetic object
data consisting of randomly rotated rectangles of various sizes
against a white backdrop. Once this stage was satisfactory, the
next task was to grab live data from the camera.

Instead of relying on vendor-supplied software development
kits (SDKs) which would have to be re-integrated into the
processing software for potentially every type of camera, a
generic camera controller was written. The SDK for the Axis
cameras, for instance, relied on MFC-based [13] subroutines
which would force development on Windows. In light of the
amount of customization needed to incorporate a new SDK
to do essentially the same things for different camera models,
a generic cross-platform control framework was written from
scratch. This control framework uses Boost.Asio [14] (a cross-
platform socket wrapper) to directly send HTTP/1.1 [15]
camera commands to a camera and uses the libavcodec library
[16] to decode the streaming camera data. Using this approach,
the software gains the benefit of being able to decode a large
number of potential video streams and not just what a camera
vendor has included with their SDK.

Networking communication between the three levels of

servers is also implemented with Boost.Asio. For instance,
processed results performed by the mid-level servers is com-
pressed and broadcast as an M-JPEG stream, which is then
parsed and displayed by the interface server.

IV. EXPERIMENTS FOR PERFORMANCE
CHARACTERIZATION AND OPTIMIZATION OF THE VIDEO

NETWORK

A. Measurement software

Software that comes with most IP cameras ranges from
small camera control programs to full surveillance station
applications. However, even the most expensive or sophisti-
cated of these vendor applications can be unsuitable since
they are usually targeted toward security applications and
recording, playback, and camera control are often their sole
function. Evaluating performance using these applications is
subjective and raises the need for our own statistic-recording
implementation.

A custom program was written to fulfill this function. Given
an IP address and port number, the application proceeds to:

1) Establish a connection with the camera
2) Attempt to download the M-JPEG video stream
3) Parse the stream into individual JPEG frames
4) Record real-time statistics about the stream
The program records a number of statistics and measure-

ments including bandwidth, shortest lag between two frames,
and the average, minimum, and maximum amount of band-
width required for each frame. The implementation is in C++
and uses the generic control framework written earlier.

B. Optimizing Camera Configuration

Depending on the task or application, there are numer-
ous “optimal” ways to configure a network. For instance,
maximizing video resolution and quality may be paramount
for biometrics, particularly in face recognition where a large
number of pixels on the face is beneficial to identifying
features. Surveillance and alarm systems, on the other hand,
may find reliability more important. For instance, it may be
more important that every moment is recorded with minimal
skipping (not only for evidence in the event of an incident, but
also because security applications often employ vision-based
motion detection). Object tracking in turn, may benefit most by
sacrificing resolution in exchange for a high sustained frame
rate.

Configuring the network may consist of changing camera
parameters (e.g., resolution, compression) as well as physical
network parameters (e.g., number of cameras per bridge, num-
ber of bridges per router, number of routers per square foot).
The later is helpful in introducing a metric for minimizing
labor and monetary cost. We define 5 metrics for measuring
camera network performance, the first two of which are used
as configuration parameters.

1) Resolution (in pixels) - This measures the size of each
video frame in pixels (the higher, the better). This
parameter consists of 4 levels on the Axis cameras
(704×480, 704×240, 352×240, and 176×120).

2) Video compression - This parameter represents the
amount of lossy video compression applied to the video
by the camera. For M-JPEG streams on the Axis cam-
eras, this represents JPEG compression and ranges from
0 to 100 (the lower, the better). In our experiments, we
test 5 of these levels (0, 20, 30, 60, and 100).

3) Average frame rate (in frames per second) - This
measures the number of complete frames received per
second, averaged over the duration of a measurement
trial (the higher, the better). The frame rate may range
from 0 to a maximum frame rate of 30 on the Axis
cameras.

4) Standard deviation of frame rate - This measures the
consistency of the video. For instance, there may be two
video streams both 20 frames per second each, but the
first may output a constant 20 frames per second while
the second video may be sporadic and go from 30 to
0 to 10, back to 30 and so forth (but still average to
20 in the end). This metric is useful in evaluating the
stability of the video (the lower the deviation, the better)
and is measured by recording the delay between every
two frames (in seconds with millisecond resolution) and
calculating the standard deviation.

5) Longest lag time between two complete frames (in
milliseconds) - This metric records the longest amount
of time taken between any two consecutive frames
(the lower, the better). This is insightful for evaluating
a video stream’s reliability (that is, it measures the
longest amount of time a camera is “blind”). In addition
to a depressed frame rate, this may be attributed to
dropped/partial frames by the camera or data corrup-
tion/dropped packets undergone during transit.

C. Multi-objective Optimization Using Pareto Efficiency

We use the concept of Pareto efficiency to define which
configuration of parameters is “better” than another. While
this does not always tell a user which configuration should
be used for a particular application, it serves to reduce the
large number of possible configurations by showing which of
those are usually “inferior”; a user only has to consider a
configuration from the (potentially) much smaller Pareto set
rather than every possible combination.

1) Inferiority and Non-Inferiority: Let M1 be a vector of
measurements of certain metrics for a camera and let M2 be
another trial of measurements on the same camera, but under
a different parameter configuration. M1 is said to be inferior
to M2 if and only if:

• every measurement in M2 is equal to or outperforms the
corresponding measurement in M1

• one or more measurements in M2 outperform the corre-
sponding measurements in M1

“Outperforms” is metric-specific and means “greater than” or
“less than” depending on how the metric is defined (e.g., a
higher frame rate outperforms a lower frame rate and a lower
lag outperforms a longer lag). M2 is said to be superior to

Fig. 3. Measurement comparison matrices for 6 cameras. While cameras
may exhibit variable performance even when using the same configurations,
some configurations may be inherently better than others and exhibit similar
performance across the network. To discover these configurations, 100 trials
are performed on each camera under a variety of parameter configurations
(i.e., resolution and compression) and each recorded measurement is compared
for Pareto efficiency against the other 99 trials. This results in a symmetric
matrix where vertical and horizontal axes indicate the measurements Mi and
Mj , respectively (i.e., the top-leftmost square in each matrix indicates the
relationship of M1 against M100). Red indicates that a particular Mi is
inferior to a particular Mj , green indicates superiority, and a solid horizontal
yellow line denotes rows which are completely Pareto-efficient (i.e., either
superior or non-inferior against all other 99 trials).

or dominates M1 if M1 is inferior to M2. Finally, M1 and
M2 are both said to be non-inferior if neither is superior nor
inferior to one another.

In order for a measurement Mi to be Pareto-efficient
(amongst a set), it must be non-inferior to every other measure-
ment in that set. That is, it possesses at least one advantage
over every other measurement when compared one-on-one
(e.g., M1 has higher frame rate against M2, lower lag against
M3, ..., higher resolution than Mn). The Pareto set is the set of
all Pareto-efficient measurements and ideally, allows a user to
discard a large percentage of inferior parameter configurations
from consideration when setting the cameras.

2) Data Collection: Data collection consists of varying
the resolution and compression parameters and recording the
measurements from 37 cameras. In total, we iterate through
4 resolutions (704×480, 704×240, 352×240, and 176×120)
and 5 levels of compression (0, 20, 30, 60, and 100) each. Five
measurement trials are captured for each of the 37 cameras per
configuration (100 trials total per camera). Each trial consists

of streaming from the camera for 600 frames or up to 2
minutes (whichever comes first).

Camera footage is tested at 5 various points in the day across
all cameras. This exposes the data to a variety of video footage
ranging from bright open areas with upwards of 20 moving
people in the scene, to dark and grainy footage of cameras
monitoring lonely halls.

After data collection is completed, each camera is optimized
individually to minimize camera, bridge, or router bias. This is
done in O(n2) via exhaustive search (where n is the number of
trials to compare), comparing each measurement to every other
measurement on the same camera. With 20 configurations and
5 trials per configuration, each camera produces a symmetric
100×100 matrix. The resolution/compression pairs which re-
sult in the Pareto-efficient measurements for each camera are
later aggregated against the entire network.

D. Evaluation Results

After over 100 hours of data collection at varying times of
day across two weeks, the Pareto sets for all 37 cameras are
calculated (see Figure 3 for sample matrices for 6 cameras).
Considering only configurations in the Pareto sets eliminates
(on average) approximately half of the tested configurations
as inferior and redundant.

Fig. 4. Probability of configuration membership in a camera’s Pareto set.

Further, after aggregating the resolution/compression pairs
of the Pareto sets for the entire camera network, it is sur-
prisingly found that every tested configuration is included in
the Pareto set for at least one camera. This means there is
no global consensus on any one configuration being inferior.
Calculating the percentages, however, reveals that the cameras
tend to prefer certain configurations over others (see Figure
4). This is in line with the previous observation that roughly
half of the tested configurations are not preferred (less than
a majority agreement between the cameras). It is not surpris-
ing to see higher percentages on configurations with either
the maximum resolution or minimal compression since they
already optimize at least one metric by definition. However,
configurations such as 176×120/60% and 704×240/20% re-
veal local optimum which is potentially very useful for some
practical applications of the video network. Using a more fine-
tuned set of compression levels, we would likely be able to
find more such points, aiding in the creation of a useful set of
presets for specialized applications.

In order to evaluate the relative performance of the con-
figurations, the measurements for each camera are normalized

a. 100% of cameras: 704×480 pixels, 0% compression b. 97% of cameras: 704×240 pixels, 0% compression

c. 94% of cameras: 704×480 pixels, 20% compression d. 91% of cameras: 352×240 pixels, 0% compression

e. 74% of cameras: 176×120 pixels, 0% compression f. 66% of cameras: 176×120 pixels, 60% compression

g. 63% of cameras: 704×480 pixels, 30% compression h. 54% of cameras: 704×240 pixels, 20% compression

Fig. 5. The top 8 dominating camera configurations as chosen by 37 cameras. Graphs are ordered by the percentage of cameras in which the particular
configuration was Pareto-efficient and all metrics are normalized to 1.0 across all cameras. Clockwise from the top: resolution ranges from 176×120 to
704×480 (higher is better), JPEG compression settings range from 0 to 100 (lower is better, so inverse is shown), and frame rates range from 0 to 30 FPS
(higher is better). For measuring the “smoothness” of outputted video, the standard deviation of the frame rate (recorded at 1-second intervals) and maximum
lag time between any two sequential frames is recorded (lower is better, so inverse is shown). Finally, average frame size (in bytes) and percentage bandwidth
utilization is shown to demonstrate network throughput trade-offs.

across all measurements on the same camera and then averaged
on a per-configuration basis across all cameras using the same
configuration. Figure 5 shows the relative performance of the
top 8 configurations for the entire network.

Intuitively, increasing either the resolution or decreasing the
compression (resulting in higher bandwidth) has the effect of a
reducing the frame rate, producing a more discontinuous video
stream, and increasing the maximum lag time.

V. CONCLUSIONS

We have designed an software-reconfigurable architecture
for a wireless network of a large number of video cameras
and implemented a working system by building the servers,
installing the cameras, writing the software, and configuring
the network to support it. Further, we gained insight into
configuring the network’s cameras by defining a set of met-
rics and discovering Pareto-efficient camera configurations by
performing multi-objective optimization on a large volume of
real data recorded by the system.

The idea persists that if one has a camera network with 30
FPS cameras, one will be able to obtain the said 30 frames
per second regardless of network configuration or parameters.
Though this may be true in a controlled test environment,
the performance expectation should not be so optimistic for
real-world implementations. Even using the most preferred
Pareto-efficient configurations on a non-congested network, it
is shown that frame rates will most certainly suffer and that
tradeoffs must be made.

In line with this confirmation is the need to emphasize that
partial frames are important. Rather than having algorithms
which assume that the data consists entirely of complete video
frames (and are only capable of processing such frames), real-
time computer vision algorithms should take advantage of as
much information as is available to them; a stream of partial
frames which may only be missing the last few rows of data
can still be tremendously useful for a number of applications.

VI. FUTURE DEVELOPMENT

As is, the testbed system effectively assumes a network
with 1 camera per bridge (since no two cameras from the
same bridge are simultaneously tested). As mentioned earlier,
it would be advantageous to be able to add cost metrics by
altering the number of cameras per bridge and number of
bridges per router. These parameters would play an important
role by giving insight into the capabilities of the networking
equipment itself which lends well in the event of network
expansion (e.g., one would be able to determine how much the
frame rate would suffer on a given resolution and compression
if an additional camera was added to every bridge).

Speed improvements will be made by making the applica-
tion multi-threaded. Currently, all image processing is done
linearly in a single thread; implementing a multi-threaded
algorithm would take advantage of the multi-core servers
running the application, resulting in significantly lower latency
in processing a single image.

In addition, a touch-screen interface application will be
written to control the system. The low to high-level processing
applications can be entirely command-line-based, but a web-
based user interface will be used to interact with various
levels of applications. Such an interface will be able to take
advantage of a computer touch screen to select cameras,
send targeted commands to specific cameras, and if desired,
automatically control a set of cameras.

VII. ACKNOWLEDGMENTS

This work was supported in part by NSF grants 0622176,
0551741 and ONR grants N00014-07-1-0931 and Aware
Building.

REFERENCES

[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury, “A survey on wireless
multimedia sensor networks,” Comput. Netw., vol. 51, no. 4, pp. 921–
960, 2007.

[2] W.-T. Chen, P.-Y. Chen, W.-S. Lee, and C.-F. Huang, “Design and
implementation of a real time video surveillance system with wireless
sensor networks,” in Vehicular Technology Conference, 2008. VTC
Spring 2008. IEEE, May 2008, pp. 218–222.

[3] H. Park, J. Burke, and M. B. Srivastava, “Design and implementation
of a wireless sensor network for intelligent light control,” in IPSN
’07: Proceedings of the 6th international conference on Information
processing in sensor networks. New York, NY, USA: ACM, 2007, pp.
370–379.

[4] P. Chen, P. Ahammad, C. Boyer, S.-I. Huang, L. Lin, E. Lobaton,
M. Meingast, S. Oh, S. Wang, P. Yan, A. Yang, C. Yeo, L.-C. Chang,
J. Tygar, and S. Sastry, “Citric: A low-bandwidth wireless camera
network platform,” in Distributed Smart Cameras, 2008. ICDSC 2008.
Second ACM/IEEE International Conference on, Sept. 2008, pp. 1–10.

[5] C. Park and P. H. Chou, “eCAM: ultra compact, high data-rate wireless
sensor node with a miniature camera,” in SenSys ’06: Proceedings of
the 4th international conference on Embedded networked sensor systems.
New York, NY, USA: ACM, 2006, pp. 359–360.

[6] T. Teixeira, D. Lymberopoulos, E. Culurciello, Y. Aloimonos, and
A. Savvides, “A lightweight camera sensor network operating on sym-
bolic information,” in First Workshop on Distributed Smart Cameras
2006, held in conjunction with ACM SenSys 2006, November 2006.

[7] R. Kleihorst, A. Abbo, B. Schueler, and A. Danilin, “Camera mote with
a high-performance parallel processor for real-time frame-based video
processing,” in Advanced Video and Signal Based Surveillance, 2007.
AVSS 2007. IEEE Conference on, Sept. 2007, pp. 69–74.

[8] M. Quinn, R. Mudumbai, T. Kuo, Z. Ni, C. D. Leo,
and B. S. Manjunath, “Visnet: A distributed vision testbed,”
in ACM/IEEE International Conference on Distributed Smart
Cameras, 2008, Sep 2008, pp. 364–371. [Online]. Available:
http://vision.ece.ucsb.edu/publications/quinn icdsc 2008.pdf

[9] Network Working Group, “RFC 2435: RTP payload for-
mat for JPEG-compressed video,” 1998. [Online]. Available:
http://www.ietf.org/rfc/rfc2435.txt

[10] N. Li, B. Yan, and G. Chen, “Measurement study on wireless camera
networks,” Distributed Smart Cameras, 2008. ICDSC 2008. Second
ACM/IEEE International Conference on, pp. 1–10, Sept. 2008.

[11] S. Birchfield, “Elliptical head tracking using intensity gradients and color
histograms,” CVPR 1998, pp. 232–237, 1998.

[12] G. Bradski, “Open Computer Vision Library (OpenCV),” 1999-2009.
[Online]. Available: http://opencv.willowgarage.com/

[13] I. Microsoft, “Microsoft foundation classes MFC,”
1992-2008. [Online]. Available: http://msdn2.microsoft.com/en-
us/library/d06h2x6e(VS.80).aspx

[14] C. M. Kohlhoff, “Boost.Asio: a cross-platform c++ library for
network and low-level I/O programming,” 2008. [Online]. Available:
http://www.boost.org/doc/libs/1 37 0/doc/html/boost asio.html

[15] Network Working Group, “RFC 2616: Hypertext trans-
fer protocol – HTTP/1.1,” 1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2616.txt

[16] FFmpeg Team, “libavcodec: audio/video codec library,” 2009. [Online].
Available: http://ffmpeg.mplayerhq.hu/

