
Tracking Multiple Objects in Non-Stationary Video

Hoang Nguyen, Bir Bhanu
Center for Research in Intelligent Systems

University of California, Riverside
Riverside, California 92521 USA

nthoang@cs.ucr.edu, bhanu@cris.ucr.edu

ABSTRACT
One of the key problems in computer vision and pattern
recognition is tracking. Multiple objects, occlusion, and
tracking moving objects using a moving camera are some
of the challenges that one may face in developing an ef-
fective approach for tracking. While there are numerous
algorithms and approaches to the tracking problem with
their own shortcomings, a less-studied approach considers
swarm intelligence. Swarm intelligence algorithms are often
suited for optimization problems, but require advancements
for tracking objects in video. This paper presents an im-
proved algorithm based on Bacterial Foraging Optimization
in order to track multiple objects in real-time video exposed
to full and partial occlusion, using video from both fixed and
moving cameras. A comparison with various algorithms is
provided.

Track: Real World Application
Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene
Analysis—Tracking ; I.5.4 [Pattern Recognition]: Appli-
cations—Computer vision

General Terms
Algorithms

Keywords
multi-object tracking, swarm intelligence, bacterial foraging
optimization, non-stationary video, occlusion

1. INTRODUCTION
Tracking in non-stationary video is a challenging problem

and approaches to addressing it include image stabilization
and motion segmentation [6, 9]. Non-stationary video may
be the result of active camera movements (such as panning,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’09, July 8–12, 2009, Montréal Québec, Canada.
Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

tilting, or movement by a camera operator) or from cameras
mounted on moving platforms (such as from aerial, ground,
or sea-faring vehicles). This paper uses a different approach
and presents an algorithm based on Bacterial Foraging Opti-
mization (BFO) [12] which is used to track multiple objects
in a single camera, treating camera motion as a part of the
object motion.

2. RELATED WORK AND
CONTRIBUTIONS

Popular approaches toward tracking in the computer vi-
sion literature include algorithms such as Mean Shift [5],
CamShift [3], Kalman filters [7], and Particle filters [8]. Mean
Shift and CamShift perform tracking based on distributions
(such as tracking based on a color histogram or texture fea-
tures) and centering the current search window at the mean
of the previous window. Though simple to implement, it is
not robust to factors such as fast movement or occlusion.
Kalman filters are proved to be optimal in the sense of min-
imum square error, but only when the noise is Gaussian; the
dynamical model used in Kalman filters is assumed to be lin-
ear and does not work well when the noise is multi-modal.
Particle filters evolve from Kalman filters and focus on deal-
ing with non-linear dynamical models and multi-modal den-
sities by sampling the prior probability and weighting those
samples based on the observation. Thus, it can recover from
occlusion to some extent provided that there are enough par-
ticles on the image. In practice, however, the larger the num-
ber of particles, the higher the computational cost, thereby
making real-time processing challenging to implement.

Other swarm intelligence algorithms have also been con-
sidered for tracking, however. For instance, Particle Swarm
Optimization (PSO) [10] has been considered for object track-
ing, applicable to both single and multiple targets [11]. These
approaches often involve running the algorithm to conver-
gence for every single frame.

Unlike traditional optimization problems with stationary
optima, tracking objects through video requires the algo-
rithm to find the object not once, but in potentially every
frame. With PSO, there are various approaches to dealing
with moving objects, such as periodically giving a swarm
amnesia [4]. Decaying the score of the best location by some
percentage pdecay after every frame can also be used to force
the swarm to continually search for a better location. Such
methods are used to prevent the swarm from completely con-
verging to a single point, allowing the swarm agents to be
appropriately spaced in order to quickly reacquire a target
in the event that it moves in the next frame.

1561

The contributions of this paper are:

• the development of an improved Bacterial Foraging al-
gorithm with improved performance for multiple ob-
ject tracking in video

• performance comparison of various swarm intelligence
algorithms for tracking multiple objects in video

• comparison of the tracking performance of the new al-
gorithm against a standard computer vision algorithm
such as CamShift [3]

3. TECHNICAL APPROACH

3.1 Tracking Multiple Objects in Video
Multi-object tracking is a challenging problem for a num-

ber of reasons. For instance, a tracker should be able to:

• handle partial and full occlusion

• scale to a potentially large number of objects

• operate in a real-time environment

Occlusion will likely occur as a result of object and scene
interaction. In addition, the occlusion introduced by having
multiple moving objects can occur arbitrarily; one cannot
rely on pre-established entrance and exit points. Processing
in real-time is also a highly desirable capability, as off-line
analysis removes the ability of responding (such as panning
or tilting to maintain the object in the camera’s field of
view). There are other approaches to the problem, but Bac-
terial Foraging Optimization (BFO) has yet to be considered
for multi-object tracking in video.

3.2 Bacterial Foraging Optimization for
Object Tracking

Bacterial Foraging Optimization possesses several traits
which make it suitable to the problem. For instance, while
tracking, objects can disappear at one location in a frame
and appear in another location for arbitrary lengths of time.
Similarly, BFO relocates members of its swarm to random
points in the search space to address the need for adapting
to a changing environment. In order to understand the pro-
posed changes to the algorithm, however, it is necessary to
discuss how BFO works.

Bacterial Foraging Optimization is a stochastic evolution-
ary search algorithm modeled after the behavior of E.coli
bacteria [12]. A swarm consists of i bacteria particles or
agents which “swim” and “tumble” through an environment
looking for concentrations of food.

Swimming translates to each agent moving through the
search space in steps of size C and a run consists of a series
of (up to) Ns swims. At the end of each swim, an agent
surveys the concentration of food at the current position,
which is akin to evaluating the fitness J i

current of a position.
At the end of each run, an agent tumbles, or uses its flagella
to randomly rotate itself in a new direction. During a run,
agents stop swimming when they notice that food concen-
tration begins to decrease (J i

current < J i
previous), otherwise

swimming in the same direction up to Ns times. In this way,
the bacteria particles have programmed themselves to climb
gradients.

for up to k Reproductions do
Jbest ← 0;
foreach Agent i do

J i
health ← 0;

for up to j Chemotactic steps do
foreach Agent i do

Calculate J i
current (higher is better);

J i
health ← J i

health + J i
current;

Tumble in random direction;
for up to Ns swims do

J i
previous ← J i

current;
Move i forward in step size C;
Calculate new J i

current;
J i

health ← J i
health + J i

current;
if J i

current > Jbest then
Jbest ← J i

current;
Jbest location ← current location;

if J i
current < J i

previous then
break;

Sort agents by Jhealth in descending order;
Remove bottom Sr agents with worst health;
foreach Agent j in top Sr do

Create clone of j at same location;

foreach Agent i do
Relocate i with probability ped to a random location
in the search space;

Algorithm 1: Classical Bacterial Foraging Optimiza-
tion (executed once per frame).

Swimming, however, consumes energy, and agents who
are unable to find food eventually starve to death. This re-
flects in a reproduction step which models an agent’s health
J i

health as a sum of how much food it has consumed in the
current run and killing off the Sr worst bacteria due to mal-
nutrition (relative to the swarm). Conversely, the Sr agents
with the best health go on to reproduce. In practice, this
reproduction step essentially relocates the Sr worst agents
to the location of the Sr best agents and keeps the size of
the swarm constant.

Finally, all agents are subjected to an elimination-dispersal
step where each agent is suddenly relocated with probability
ped to a random location in the search space. This is done to
simulate a dynamic environment which can displace agents
(such as being introduced to a liquid). This important step
ensures that the swarm does not fully converge and that the
search space remains covered. Algorithm 1 describes the
traditional Bacterial Foraging Optimization algorithm.

When tracking t multiple objects, the algorithm is exe-
cuted t times per frame (once for each target, each with a
respective fitness function). The agent(s) with the best fit-
ness scores at the end of an execution can be considered as
the swarm’s best guess of a target’s location.

3.3 Details of Improved BFO Algorithm
While traditionally suited to searching for static or slow-

moving optima, BFO can also be adapted to tracking fast-
moving objects in video. We contribute 3 major modifica-
tions:

1. Lookahead. Note that it is only after agents have swam

1562

if fitness at previous Jbest location ≤ Tt then
return;

for up to k Reproductions do
Jbest ← 0;
foreach Agent i do

J i
health ← 0;

for up to j Chemotactic steps do
foreach Agent i do

if iimmunity 6= true then
Calculate J i

current (higher is better);
J i

health ← J i
health + J i

current;
Tumble in random direction;
for up to Ns swims do

Look ahead one step forward of size
C;
Calculate J i

potential;

if J i
potential ≥ J i

current then
Move i to new position;
J i

previous ← J i
current;

J i
current ← J i

potential;

J i
health ← J i

health + J i
current;

if J i
current > Jbest then
Jbest ← J i

current;
Jbest location ← current
location;

else
break;

Sort agents by Jhealth in descending order;
Remove bottom Sr agents with worst health;
foreach Agent i in top Sr do

iimmunity ← true;
Create clone of i at same location;

foreach Agent i do
if iimmunity 6= true then

Relocate i with probability ped to a random
location in the search space;

iimmunity ← false;

Algorithm 2: Improved Bacterial Foraging Algorithm
for tracking (executed once per frame).

one step of size C that they evaluate their current position.
While it may be more realistic, it also leaves agents in
a known suboptimal position (the previous position was
better). This can be modified so that agents are given
the ability of looking ahead and calculating the Jpotential

of that position, and seeing whether or not they should
move. This has the effect of agents preferring to stay
within boundaries of higher fitness (which is useful when
objects have a clear boundary or steep gradients; this is
largely impacted by the step size C). Doing so allows the
algorithm to move in bigger steps without worrying about
overstepping or stepping out of a good fitness area.

2. Elitism. Note that all agents move at every reproduc-
tion step, including agents who were already deemed to
have the best health on previous reproductions within the
same frame. Since frames do not change across sequen-
tial reproduction steps, stopping these k best agents (one
from each reproduction) from further movement in the

Figure 1: Example behavior of agents in the Bacte-
rial Foraging Optimization algorithm at the end of
a reproduction step. Green arrows depict agents
swimming across the feature space and red dots
show their destination. Agents systematically climb
gradients by moving from darker regions (lower fit-
ness) to brighter regions (higher fitness).

current frame has been found to improve the algorithm’s
accuracy. In addition, the swarm’s best guess is selected
from this group of agents as opposed to the most recent
best agent. Finally, granting these best agents with im-
munity to the elimination-dispersal step allows the swarm
to keep its best agents on the target and having everyone
else spread out.

3. Early Termination. The swarm is inherently insatiable
and thus always on the move; agents who are already on
what would be considered to be the best location will
continue to move in succeeding frames. This modification
halts the swarm if the previous best location maintains
a fitness score which exceeds threshold Tt (which can be
determined dynamically with a 2-class Bayesian classifier
on the previous best scores for the object).

Algorithm 2 incorporates the enhancements to the algo-
rithm for video tracking. Figure 1 is an example of the
swarm behavior in the feature space of a video frame.

4. EXPERIMENTAL RESULTS

4.1 Data
Three 30-second videos were recorded using an Axis PTZ-

215 camera at 30 FPS (900 JPEG frames) and 704x480 res-
olution. Figures 2-4 shows samples of all three videos. The
first video attempts to track 3 objects in a stationary camera
(a red pillow, a green pillow, and a person wearing a dark
blue jacket). The second video consists of 4 moving objects
in another stationary setting (a red pillow, a green pillow, a
yellow bag, and a person wearing a blue shirt). Finally, the
third video consists of the same 4 objects with the camera
in constant motion. All three videos include partial and full
occlusion of all targets.

The fitness function used in this paper is a 20-bin color
histogram [1] consisting of eight Blue − Green and eight
Green − Red bins (chrominance) and four Red + Green +
Blue bins (luminance), sampled in a 9×9 circle centered on
the evaluated point. That is, the RGB values of the pixels
in the neighborhood around an evaluated point are decom-
posed into 20 bins (16 chrominance and 4 luminance bins)
and fitness matching consists of enumerating the bins and
measuring the percentage overlap between the evaluated his-
togram and the model histogram. In order to take advantage

1563

Figure 2: Three targets in a stationary camera (red pillow, green pillow, and blue jacket and pillow)

Figure 3: Four targets in a stationary camera (red pillow, green pillow, person wearing a blue shirt, and
yellow bag)

Figure 4: Four targets in a moving camera (red pillow, green pillow, person wearing a blue shirt, and yellow
bag)

1564

Figure 5: Ground truth location of a moving red
object according to color classifier.

of all available frames, we manually initialize the model his-
togram on the center of an object at the start of a video,
though it can also be done automatically using object detec-
tion (e.g., initializing the model on the centroid of detected
moving objects).

4.2 Parameters
Due to the introduction of Elitism, it is beneficial to use a

high elimination-dispersal probability Ped = 50%. This has
the effect of freezing the best agents in place and spread-
ing other agents out, thereby increasing the coverage of the
search space. For the classic BFO algorithm however, a
low ped = 2% is chosen to allow the best agents to main-
tain their locations (without immunity to the elimination-
dispersal step, a swarm is easily dispersed from a target).
Similarly, a larger step size C = 10px is selected for the
proposed algorithm to allow agents to climb gradients more
quickly, whereas it is set to a lower C = 2px in classical BFO
since there is a higher risk of stepping out of a good area
of fitness. Also, the number of chemotaxis steps j = 1 was
experimentally determined after discovering higher tracking
accuracy could consistently be achieved with the same com-
putational cost by instead increasing the number of repro-
duction loops k.

For the experiments, the number of agents is set to 50
per target. Constant across the classic and proposed BFO
tests, each reproduction step relocates Sr = 1 agent, the
number of swims Ns = 25, and the number of reproduction
steps k = 10. The parameters were experimentally chosen
to enable the classic BFO configuration to achieve slightly
above real-time performance of 30 FPS.

4.3 Implementation
The tested algorithms are implemented in C++ and are

performed on a 2.4GHz Intel Core2 CPU with no additional
multi-threading optimizations. Also tracking using a color
histogram, the implementation of the CamShift algorithm is
provided via the OpenCV library [2].

4.4 Evaluation Metrics

4.4.1 Tracking accuracy
Measured as the percentage of frames in which the swarm

correctly locates the object. This is calculated as:

accuracy =
of frames object correctly located

total # of frames object is visible
(1)

Ground truth object locations are first established off-line.
For all frames, the fitness function is exhaustively executed
at every pixel and a Bayesian classifier is used on the fitness

Figure 6: Performance comparison on tracking 3
targets in a stationary camera, averaged over 5 tests.
Parameters: PSO (2,048 agents/target, 1% decay),
Classic BFO (50 agents/target, k = 10, j = 1, Ns = 25,
ped = 1%, C = 2px), Proposed BFO (50 agents/target,
k = 10, j = 1, Ns = 25, ped = 50%, C = 10px)

scores to segment the images. Figure 5 shows the resulting
binary image produced for a single object.

4.4.2 Frames per second (FPS)
Measures frames processed per second. Note that experi-

ments are executed on offline data in order to achieve frame
rates unrestricted by limitations of the camera hardware.

4.5 Results

4.5.1 Comparison with PSO and standard BFO
Figures 6-8 show the tracking performance of the algo-

rithms on the 3 respective datasets. The top and bottom
whiskerbars represent the maximum and minimum and the
green bar displays the mean.

We see that the proposed BFO algorithm maintains a
higher tracking accuracy against classical BFO as well as
PSO. Speed improvements can also be seen, with the pro-
posed changes being capable of producing 65-92% speed im-
provements over classical BFO and 35-44% speed improve-
ments over PSO. Figure 9 shows the incremental perfor-
mance gain of each proposed improvement on an example
configuration. Lookahead capabilities introduce a signifi-
cant gain for accuracy as agents remain on their target eas-
ier (also resulting in a speed gain since fewer agents remain
searching). Elitism similarly yields speed and accuracy gains
(fewer agents continue searching and a larger pool of can-
didate positions to choose from, respectively). Early ter-
mination produces only modest accuracy gains (note that
it maintains the large deviation in tracking accuracy) while
speed improvements are slightly more substantial.

1565

Figure 7: Performance comparison on tracking 4
targets in a stationary camera, averaged over 5 tests.
Parameters: PSO (2,048 agents/target, 1% decay),
Classic BFO (50 agents/target, k = 10, j = 1, Ns = 25,
ped = 1%, C = 2px), Proposed BFO (50 agents/target,
k = 10, j = 1, Ns = 25, ped = 50%, C = 10px)

Figure 8: Performance comparison on tracking 4
targets in a moving camera, averaged over 5 tests.
Parameters: PSO (2,048 agents/target, 1% decay),
Classic BFO (50 agents/target, k = 10, j = 1, Ns = 25,
ped = 1%, C = 2px), Proposed BFO (50 agents/target,
k = 10, j = 1, Ns = 25, ped = 50%, C = 10px)

Figure 9: Incremental contribution of each improve-
ment on a BFO configuration using Video 3. Pa-
rameters: 50 agents/target, k = 10, j = 1, Ns = 25,
ped = 15%, C = 10px

Figure 10 shows a comparison between the different tracks
produced by the algorithms. In comparison, the proposed
BFO algorithm produced tracks which are only marginally
less noisy than classic BFO, but comparable to PSO.

4.5.2 Scaling with Multiple Objects
We have performed experiments on tracking 3 and 4 ob-

jects in both a stationary and moving camera. As the num-
ber of objects increases however, it is obvious that with lim-
ited resources (time and computational power), one must ul-
timately choose between tradeoffs in speed and accuracy. In-
deed, with n frames in a video, both the classic BFO and pro-
posed BFO algorithms have a time complexity of O(itkjNs)
(where i = number of agents, t = number of targets, k =
number of reproductions, j = number of chemotaxis steps,
and Ns = maximum number of continuous swims in a run).

From a theoretical perspective, however, there is nothing
inherent to swarm intelligence which limits its performance
in tracking, but the limitation lies instead in the ability to
distinguish between the different objects (e.g., the classifier,
feature set, or fitness functions being evaluated). An ex-
treme case involves tracking in a video in which every pixel
in the image is an object to track. As the number of objects
increases, it is easy to see that attempts to address scaling
must produce a classifier which can scale in its ability to
distinguish as well as in an algorithm’s time complexity.

4.5.3 Comparison of Proposed BFO with CamShift
Figures 6-8 include performance comparisons to the Cam-

Shift algorithm. In order to improve its robustness to occlu-
sion and loss of track, we also allow CamShift a full search
window for each frame.

Note that since it is not a stochastic algorithm, repeated

1566

Ground truth CamShift (full window) PSO (with decay) BFO (Classic) BFO (Proposed)

Figure 10: Comparison of target tracks for 900 frames. Each color represents its respective target. Note that
while the proposed BFO achieves improved performance, the tracks are not smooth by default. This may be
addressed by including a metric in the fitness function which encourages smooth tracks. The 4 columns from
left to right: ground truth track, CamShift (full window), PSO w/ decay (2,048 agents/target, 1 step/frame,
1% decay), Classic BFO (50 agents/target, k = 10, j = 1, Ns = 25, ped = 1%, C = 2px), Proposed BFO (50
agents/target, k = 10, j = 1, Ns = 25, ped = 50%, C = 10px). The 3 rows from top to bottom: videos 1, 2, and 3.

tests of the CamShift tracker yield the same tracking accu-
racy results for the same targets. The spread in the mean,
min, and max of the CamShift tests reflects the variance in
performance between individual objects in the same video.

Performance-wise, the proposed BFO algorithm located
targets more accurately than CamShift, particularly when
CamShift uses only a local search window. This is because
the algorithm expresses difficulty in reacquiring targets fol-
lowing brief periods of occlusion or once it has lost a target
due to quick movement. Full window searching, however, en-
ables it to work around occlusion and produces considerably
better results. However, PSO, classic BFO, and the pro-
posed BFO were able to produce more-accurate track loca-
tions; though CamShift was capable of generating smoother
tracks (see Figure 10), it still has issues when presented with
fitness regions which are multi-modal.

5. CONCLUSIONS
The results show that the proposed improvements to the

BFO algorithm can be used to track objects through oc-
clusion and uncalibrated camera movement, as well as out-
perform Particle Swarm Optimization using fewer resources.
Future work extends this approach to track multiple objects
through multiple cameras.

6. ACKNOWLEDGMENTS
The authors would like to thank Yiming Li for her helpful

discussions and participation in data collection. This work
was supported by NSF grants 0622176 and 0551741.

7. REFERENCES
[1] S. Birchfield. Elliptical head tracking using intensity

gradients and color histograms. CVPR 1998, pages
232–237, 1998.

[2] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal
of Software Tools, 2000.

[3] G. R. Bradski. Computer vision face tracking for use
in a perceptual user interface. Intel Technology
Journal Q2 ’98, 1998.

[4] A. J. Carlisle. Applying the Particle Swarm Optimizer
to Non-stationary Environments. PhD thesis, Auburn
University, 2002.

[5] D. Comaniciu, V. Ramesh, and P. Meer. Real-time
tracking of non-rigid objects using mean shift. CVPR
2000, 2:142–149 vol.2, 2000.

[6] W. Ding, Z. Gong, S. Xie, and H. Zou. Real-time
vision-based object tracking from a moving platform
in the air. IEEE/RSJ Int. Conf. on Robots and
Systems, pages 681–685, 2006.

[7] D. A. Forsyth and J. Ponce. Computer Vision: A
Modern Approach. Prentice Hall, August 2002.

[8] M. Isard and A. Blake. CONDENSATION -
conditional density propagation for visual tracking.
IJCV, 29:5–28, 1998.

[9] J. Kang, I. Cohen, G. Medioni, and C. Yuan.
Detection and tracking of moving objects from a
moving platform in presence of strong parallax. ICCV
2005, 1:10–17 Vol. 1, 2005.

[10] J. Kennedy and R. Eberhart. Particle swarm
optimization. Neural Networks, IEEE Int. Conf.,
4:1942–1948 vol.4, 1995.

[11] Y. Owechko and S. Medasani. Cognitive swarms for
rapid detection of objects and associations in visual
imagery. Swarm Intelligence Symposium, IEEE, pages
420–423, 2005.

[12] K. M. Passino. Biomimicry of bacterial foraging for
distributed optimization and control. IEEE Control
Systems Magazine, Vol. 22, No. 3:52–67, 2002.

1567

