
 

Abstract 
 

     Symmetry is an important cue for machine perception 

that involves high-level knowledge of image components. 

Unlike most of the previous research that only computes 

symmetry in an image, this paper integrates symmetry with 

image segmentation to improve the segmentation 

performance. The symmetry integration is used to optimize 

both the segmentation and the symmetry of regions 

simultaneously. Interesting points are initially extracted 

from an image and they are further refined for detecting 

symmetry axis. A symmetry affinity matrix is used explicitly 

as a constraint in a region growing algorithm in order to 

refine the symmetry of segmented regions. Experimental 

results and comparisons from a wide domain of images 

indicate a promising improvement by symmetry integrated 

image segmentation compared to other image segmentation 

methods that do not exploit symmetry. 

 

1. Introduction 

     Since most natural objects exhibit different levels of 

symmetry, symmetry detection has become a major research 

topic in computer vision and pattern recognition. Research 

on image symmetry can be mainly divided into two 

schemes: local symmetry detection [1, 2], and global 

symmetry detection [3, 4]. The earlier work on local 

symmetry detection explored symmetry by local features 

such as edges, shapes, contours or boundary points. 

However, these methods can only detect local symmetry 

properties without considering the whole image. To solve 

this problem, recent global symmetry detection methods 

basically treat the entire image as a signal from which 

symmetry properties are discovered.  These approaches 

successfully detect symmetry information from complex 

image patterns in either a discrete or a continuous symmetry 

detection framework. Current global discrete symmetry 

detection approaches are reviewed in [11]. 

     More recently, the use of symmetry as an important 

feature has been a topic with significant attention in new 

applications. The research has been done to apply symmetry 

into the areas of pattern classification [5] and object 

recognition [6]. The symmetry feature along with other 

features has been used as one of the key multiple cues. 

     In this paper, we use symmetry to improve image 

segmentation, which establishes a broad new domain of 

image analysis. The objective of our work is to enforce 

symmetry constraints into a region-based image 

segmentation algorithm to improve its performance.  

 Since global symmetry detection has advantages of 

freedom from a priori model, and robustness to complex 

patterns and distortions, it is suitable for our region-based 

image segmentation scheme. Moreover, discrete symmetry 

detection is necessary in order to enforce symmetry into 

region-based image segmentation methods such as region 

growing, meanshift and watershed. Although these 

segmentation methods vary in how to obtain the regions, all 

of them have one thing in common – they all define a 

discrete threshold setting, which can be used to utilize the 

symmetry criterion that is also discrete. Meanwhile, since 

region-based image segmentation accepts multiple 

clustering criteria, previous work successfully integrated 

numerous criteria like color, texture and shape prior. For our 

work, symmetry is combined as a new efficient criterion.   

     The rest of this paper is organized as follows. In section 

2, we give an overview of related work and provide our 

contributions. In section 3, the technical approach of our 

work is proposed. Section 4 provides experimental results 

and discussions. Finally, conclusions are given in section 5. 

2. Related Works and Our Contributions 

     The approaches in [1, 2] mainly detect symmetry by 

local shapes. In these papers, the local feature is the source 

of limitations, because of its sensitivity to pattern 

complexity and distortion. The intuition of symmetry 

grouping is proposed in [5], which is robust to more 

complex shapes. However, they are only used in images 

with limited pattern classes.  Recently, some researchers in 

[3, 4, 7] have taken a global approach to solve the above 

problems, where they investigate symmetry cues based on 

an entire image. These kinds of approaches, also used in our 

method, are relatively more robust to complex and distorted 

data.  
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    The progress in symmetry detection enables us to exploit 

symmetry to other areas. However, only a few papers are 

found in application of symmetry to areas such as image 

segmentation. Two publications on symmetry enhanced 

image segmentation are found in [8, 9]. However, both of 

these papers have several limitations as given below: 

Limitation 1: They combine symmetry with only a single 

segmentation criterion, namely the edge criterion, such as 

active contour [8] and edge weights [9], that aims to find the 

contour of the symmetric region. They segment the image 

into only two kinds of regions: symmetric region inside the 

contour and non-symmetric background region outside the 

contour, that do not segment the image into regions with 

different properties such as color, texture and shape.  

Limitation 2: These methods use local features to segment 

symmetric regions. Since local features are sensitive to 

non-symmetric distortion and noise, they have difficulties 

with the segmentation of symmetric regions with ambiguous, 

complex and noisy patterns. And local features always fail 

to detect global dominant symmetry property of the whole 

image. 

     As compared to the above limitations, our approach 

demonstrates the following contributions: 

1. Whereas most other research work stops at detecting 

symmetry, we go further to use symmetry to improve image 

segmentation. Symmetry and segmentation are improved 

simultaneously with a satisfactory performance. 

2. Our method solves the problem of limitation 1, by using 

multiple criteria (rather than a single criterion) integrated 

with symmetry. As a result, regions with different properties 

like color, texture and symmetry are segmented 

simultaneously. 

3. Our method solves the problem of limitation 2, by using 

global symmetry detection, instead of local symmetry 

detection. Hence our approach is more robust to ambiguous 

and complex non-symmetric distortions. 

3. Technical Approach  

     The overall procedure is summarized in Fig 1: 

           
Fig 1. System diagram for symmetry integrated segmentation. 

 

     The key procedures are symmetry integration by 

symmetry affinity, and the multi-objective optimization. 

The first procedure realizes the symmetry constraint 

enforcement, while the second procedure refines the system 

through a closed-loop self-adjustable optimization 

procedure. 

3.1. Discrete Reflective Symmetry Detection 

    We use Global Symmetric Constellations of Features in 

[7] to detect reflective symmetry presenting in natural 

images. Reflective symmetric pairs are first selected from 

SIFT points [13]. Pairs of points which pass this selection 

are then made to vote for dominant symmetry axis in Hough 

Space.  A sample result is shown in Fig 2(b).  
    Once the symmetry axis is detected, it is utilized to 

compute a symmetry affinity matrix. Each point in affinity 

matrix corresponds to a pixel in an image, and its value is 

the pixel’s symmetry level as it relates to its symmetric 

counterparts. We employ Curvature of Gradient Vector 

Flow (CGVF) [10], as a measurement of symmetry affinity:  

 

                  (1) 

 

Let the GVF of image be: 
 

                                                       (2) 

 

In equation (1), /xu u x= ∂ ∂ , /yu u y= ∂ ∂ , /xv v x= ∂ ∂ , 

/yv v y= ∂ ∂ are the first derivatives of pixel along x and y 

directions.  Considering a pixel ( , )i ix y , we define its 

symmetry affinity as:
    

                    (3)    

 

where             is the symmetric counterpart of            by the 

symmetry axis.  If the two points have locally symmetric 

fields, then values of                     and                      should be 

closer. Three other symmetry conditions are stated in [10], 

which can be combined with (3) to build the affinity matrix.  

3.2. Symmetry-based Region Growing 

     The region growing segmentation has the advantages of 

simplicity, speed and the capability of parallel clustering, 

but has the limitations of over-segmentation and is sensitive 

to noise. Our method aims to solve these problems by 

integrating symmetry as a new constraint in region growing 

segmentation. The seeds for region growing are chosen by 

the SIFT operator as in section 3.1. The symmetry affinity 

matrix is used to compute the symmetry constraint. 

Aggregation Criterion: Image segmentation concerns 

the partition of pixels into regions with uniform properties 

measured by homogeneity criteria, like color, texture, etc.  
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Let ( , )x yδ denotes the homogeneity aggregation criterion 

for a region growing scheme. This criterion holds true when: 
             

                                                  (4)       
 

that means pixel i will be aggregated into a neighboring 

region j if the homogeneity criterion between them satisfies 

a threshold   . Naturally, common region homogeneity 

criteria used are color, texture and grayscale. In this paper, 

the aggregation criterion is modified so as to integrate the 

symmetry constraint. The modified criterion is defined as: 
 

                             (5) 

 

where we enforce symmetry constraint         along with 

region criterion              .  Symmetry constraint             will be 

introduced below. The region homogeneity criterion  

is the combination of color and texture, that will be provided 

in Section 3.3. From this work, a new criterion is realized 

with multiple cues.  

     Symmetry Constraints:               in equation (5) is related 

to our new symmetry constraint, as shown below: 
 

          

           (6) 

 

     and     are symmetry affinities of pixel i and neighboring 

region j, using equation (3). Equation (6) provides the 

following symmetry constraints: the first term controls the 

symmetry level, which means that if both patterns i and j 

indicate low symmetry affinities (highly symmetric), they 

are more likely to be aggregated by decreasing the criterion                   

          ; while the second term favors more similar symmetry 

affinities between the two patterns. Work in [9] uses 

symmetry criterion integrated into edge weight in image-cut 

segmentation, and its limitations are stated in section 2.  

 Region Merging Criterion: Initial segmentation by the 

aggregation criterion          is an over-segmentation result. 

Here the neighbored homogenous regions are merged by a 

measure of their HSV color similarity by equation (9).  

According to both aggregation and merging criteria stated 

above, we establish a 2D parameter search space used for 

segmentation optimization, as introduced in Section 4.1. 

3.3. Color and Texture Aggregation Criterion 

     Our segmentation procedure abides both color and 

texture in the region homogeneity criterion             , as given 

by equation (7).  In particular, the weights of color and 

texture criteria can be adjusted dynamically during the 

region growing, depending on whether the region shows 

more uniformity on color or more on texture.  
                                                                                                
                                                                                                   (7) 

 

Where                                   . We employ HSV color space as the basis 

of color feature, that can be expressed as a 3D vector: 
 

         (8) 

 

where 
ih , is  and iv  correspond to HSV components of 

pixel i. The color homogeneity criterion in equation (7) can 

be expressed as: 
 

                     (9) 
 

which is the Euclidean distance of color features between 

pixel i and its neighboring region j. 

    The 8-dimension texture feature           is derived from the 

mean and standard deviation of the filtered image by Gabor 

filters at 4 orientations by steps of 45 degrees. It is reduced 

to 4 dimensions by Principal Component Analysis (PCA). 

Following shows the texture homogeneity criterion: 
 

                      (10)     
 

Here both the color and texture features are normalized. 

3.4.  Performance Evaluations 

    Different from the previous work, our method improves 

segmentation and symmetry simultaneously by symmetry 

integration. Therefore, both segmentation and symmetry 

evaluations are required as shown in the following: 
 

     (11) 

 

 

                                                       (12) 

 

     For segmentation evaluation of equation (11), M*N is 

the size of image, and R is the number of segments. The term               

            is the inter-region contrast of region i: 
 

 

                  (13) 

 

                                is the pixel contrast in the region, which 

is the Euclidean distance of color features between pixel j 

and its region    .       is the number of pixels in region i. The 

term                     is a punishment for over-segmentation, and                  

               is a punishment for small segments, and iA  is the 

area of region i. For symmetry evaluation of equation (12), 
                  

              
is the difference of region properties between 

region i and its symmetric counterpart i’ by the symmetry 

axis. The region difference is denoted by the sum of their 

mean color and orientation difference. The smaller                 

means more symmetric the region i is to its symmetric 

counter part i’. Smaller value of evaluation indicates better 

performance. For convenience purpose, both evaluations 

are adjusted so that larger is the better in experiments.  
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3.5. Multi-objective Optimization 

     The purpose of the optimization (see Fig 1) is to get a 

segmentation result L(x) with both its segmentation and 

symmetry performances optimized, that can be formulated 

as a multi-objective optimization problem. We use 

Non-dominated Sorting Genetic Algorithm (NSGA-II), a 

multi-objective optimization approach used in [12] to 

conduct the search for optimum combination of parameters, 

by means of non-dominated sorting of a combined parent 

and offspring population, which prevent both the local 

optima and lack of robustness. The optimized results from 

different segmentation methods are shown in Fig. 3.  

3.6. Symmetry Integration Algorithm 

The system is summarized as the following algorithm: 

 

Global Symmetry Detection 

1. Symmetry pairs extracted from SIFT interesting points; 

2. Compute symmetry affinity by Curvature of GVF; 

Symmetry-integrated Region Growing Segmentation 

3. Seeds determination by interesting points; 

4. Compute multiple aggregation criteria for region  

growing: color criterion by HSV basis, texture criterion   

by Gabor filters, and symmetry criterion by symmetry  

affinity. Combine them as a single aggregation  

criterion, with its threshold AGC (see Section 4.1); 

5. Run region growing; 

6. Use HSV color basis to compute region merging  

criterion, with its threshold MGC (see Section 4.1); 

7. Run region merging and finish the segmentation; 

Segmentation Optimization 

8. Segmentation and symmetry performance evaluations; 

9. Multi-objective optimization by  NSGA-II, in parameter   

    space of AGC and MGC, is run by the following rule: 

 If  segmentation and symmetry performances from 8 are  

         acceptable (see Section 4.1), optimization is ended; 

 If  not acceptable, search different parameter setting of  

     AGC and MGC, and jump to 4. 

 

4. Experimental Results and Discussions 
  

 In this section, the performance of our method, named 

Symmetry-integrated Region Growing, is compared with 

four segmentation approaches: color & texture region 

growing, gray-scale region growing, meanshift and 

watershed. Our method provides superior segmentation 

performance meanwhile the symmetry is highly preserved. 

 

4.1. Datasets and Parameters 
     

    The proposed method is applied to images demonstrating 

a wide range of region properties, as illustrated in Fig 3. The 

parameter space for segmentation and symmetry 

optimization is composed of 2 thresholds, with respect to 

multiple aggregation criteria (AGC) threshold and region 

merging criterion (MGC) threshold, which build a 2D 

parameter space as in Fig 4(b). The multi-objective 

optimization stops if both the performances of segmentation 

and symmetry are acceptable as follows: 

a. Both segmentation and symmetry performances are better 

than pre-set thresholds (set by 0.62 and 0.70, respectively); 

b. The combination of the two performances reaches its 

global optimum value in NSGA-II. 

     The optimization stops if both conditions are met, 

otherwise it will continue by searching the different 

combination of parameters recursively.  

 

4.2. Symmetry-constrained Region Growing 
 

     The results of symmetry-based region growing are 

presented in Fig 2. Fig 2 (a) shows the original image for a 

symmetric butterfly body with complex non-symmetric 

background, and Fig 2(b)-(d) show the symmetry axis, the 

segmentation result, and the ground-truth segmentation 

respectively. Fig 2(e) shows the curve of relationship 

between symmetry and segmentation performances. Each 

point in the curve is obtained by running segmentation by a 

parameter setting within the parameter space, and getting 

evaluations of segmentation and symmetry, both of which 

can be improved simultaneously as indicated by the curve. 

Fig 2(f) shows the receiver operating characteristic (ROC) 

plot, which indicates the classification accuracy of the result 

in Fig 2(c) compared to the ground-truth segmentation in 

Fig 2(d). The plot is derived from statistical results by 

running segmentation in wide range of parameter space.  

 

4.3. Segmentation Improvement by Symmetry  
  

 We get a decent segmentation improvement using 

symmetry constraints when compared to other segmentation 

methods without exploiting symmetry. All the results in Fig 

3(a)-(d) are optimized results by NSGA-II.  We infer from 

Fig 3 that the most complete and complex symmetric objects 

are segmented by our proposed method as shown in results 

in (a), as compared to (b)-(d), which have segmentation 

defects in symmetric regions. Once regions indicate 

symmetric property, they are more likely to be aggregated 

by symmetry constraint. As an example, for the result (a) of 

image (4) in Fig 3, our approach can segment the whole 

symmetric face shape, regardless of its noise and holes, 

while other results fail to accomplish so.  The percentage 

data in Table 1 represents the segmentation improvement 

compared to the result of the method in the next row, with 

highest performance from symmetry-integrated method. Fig 

4(a) shows the curves between symmetry and segmentation 

performances for five segmentation methods. The squared 

points marked as ‘a’-‘e’ are the multi-objective optimization 

results by NSGA-II. A comparison among five curves
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(a) Original image 

 
(b) Symmetry axis & points 

 
(c) symmetry-based segmentation 

 
(d) Ground-truth 

 
(e) Performances: symmetry vs. segmentation 

 
(f)  ROC plot between (c) and ground-truth (d) 

Fig. 2.  Symmetry-constrained segmentation results and analysis.

Image (1) Butterfly   1 (2) Butterfly  2 (3)  Butterfly  3 (4) human (5) Car 

Region 

properties 

Uniform symmetric 

regions without 

background 

Textured symmetric 

regions without 

background 

Uniform & textured 

symmetric regions with  

background 

Uniform & textured 

symmetric regions with 

background 

Uniform symmetric 

regions with 

background 

Original 

     

Ground- 

Truth 

 

     

(a)Symmetry 

–based 

Color & 

Texture 

Region 

Growing 
     

(b) 

Color & 

Texture 

Region 

Growing 

     

(c) 

Meanshift 

     

(d) 

Gray-scale 

Region 

Growing 

     
Fig. 3   Sample segmentation results: sample images (1)-(5) with results (a)-(d) from 4 segmentation methods.
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indicates that the symmetry-integrated segmentation of 

curve ‘a’ achieves the best performances. Moreover, Fig 4(a) 

indicates that the performance improvement of curve ‘a’ 

compared to curve ‘b’ comes only from symmetry 

integration, that both curves ‘a’ and ‘b’ use the same 

color-texture region growing approach, but the method of 

curve ‘a’ integrates symmetry as a new constraint. Fig 4 (b)  

shows the clusters of both segmentation and symmetry 

performances on the 2D parameter space, where parameter 

1 means the region aggregation criterion (AGC) threshold, 

and parameters 2 indicates the region merging criterion 

(MGC) threshold. The results indicate that by applying 

symmetry constraints, both segmentation and symmetry are 

improved in most part of the parameter space.  
 

Table.1.  Symmetry/segmentation evaluation (segmentation performance improvement), compared to the method of next row. 

 (1) Butterfly   1 (2) Butterfly  2 (3)  Butterfly  3 (4) human (5) Car 

(a) Symmetry–based RG 0.852 / 0.874 (7.5%) 0.782 / 0.986 (6.6%) 0.616 / 0.954 (3.6%) 0.668/ 0.79(6.4%) 0.607 / 0.738 (4.8%) 

(b) Color & Texture RG 0.849 / 0.813 (2.1%) 0.779 / 0.925 (4.0%) 0.609 / 0.921(26.3%) 0.666 / 0.739 (16.1%) 0.613 / 0.705 (12.5%) 

(c) Meanshift 0.857 / 0.796  (7.7%) 0.784 / 0.889 (11.3%) 0.550 / 0.729(19.5%) 0.660 / 0.636 (7.9%) 0.589 / 0.620 (9.6%) 

(d) Regular  RG 0.831 / 0.739(10.8%) 0.781 / 0.799 (12.4%) 0.534 / 0.610(16.2%) 0.667 / 0.590 (3.2%) 0.574 / 0.566 (8.5%) 

(e) Watershed 0.834 / 0.667 0.761 / 0.711 0.523 / 0.525 0.633 / 0.574 0.584 / 0.522 

 

  

 
Fig 4.  (a) Symmetry and segmentation performance               (b) segmentation and symmetry performances of image ‘butterfly 3’                                         

         curves for image ‘butterfly 3’ .                                       in large parameter space. 
                          
5. Conclusions 
 

 In this paper, a new symmetry integrated region-based 

segmentation scheme is proposed for natural image 

segmentation. We perform experiments on a wide variety of 

images. The qualitative and quantitative experimental 

results indicate that with the symmetry constraints enforced 

by symmetry affinity, both the symmetry and segmentation 

are improved, with better performance compared to several 

other well known region-based segmentation methods. 
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