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Abstract

Super-resolution (SR) of facial images from video suf-
fers from facial expression changes. Most of the existing SR
algorithms for facial images make an unrealistic assump-
tion that the “perfect” registration has been done prior to
the SR process. However, the registration is a challenging
task for SR with expression changes. This paper proposes a
new method for enhancing the resolution of low-resolution
(LR) facial image by handling the facial image in a non-
rigid manner. It consists of global tracking, local align-
ment for precise registration and SR algorithms. A B-spline
based Resolution Aware Incremental Free Form Deforma-
tion (RAIFFD) model is used to recover a dense local non-
rigid flow field. In this scheme, low-resolution image model
is explicitly embedded in the optimization function formu-
lation to simulate the formation of low resolution image.
The results achieved by the proposed approach are signif-
icantly better as compared to the SR approaches applied
on the whole face image without considering local defor-
mations. The results are also compared with two state-of-
the-art SR algorithms to show the effectiveness of the ap-
proach in super-resolving facial images with local expres-
sion changes.

1. Introduction
Video-based applications such as surveillance, monitor-

ing, security and access control have received significant

attention in the past decade. In many of the above sce-

narios, the distance between the objects and the cameras

may be large, which makes the quality of video usually

low and face images small. To overcome this problem,

enhancing low-resolution (LR) images from the video se-

quence has been studied by many researchers in the past

decades[4][1][7][14][10].

Super-resolution reconstruction is one of the most dif-

ficult and ill-posed problems due to the demand of accu-

rate alignments between multiple images and multiple solu-

tions for a given set of images. In particular, human face is

Figure 1. An example of facial images with expression

changes. (a) High-resolution (92x73) images. (b) Low-resolution

(30x24)images.

much more complex compared to other objects which have

been used in the majority of the super-resolution literature.

Super-resolution from facial video may suffer from sub-

tle facial expression variation, non-rigid complex motion

model, occlusion, illumination and reflectance variations.

Figure 1 shows six low-resolution facial frames from one

video sequence with corresponding high-resolution frames.

It is clear that the face undergoes non-rigid motions because

of the expression changes.

In order to tackle the problems brought by the com-

plexity of facial images, in this paper, we propose a novel

global-to-local approach to locally align the images before

applying SR algorithms. The approach consists of three

steps: global tracking, local alignment and SR algorithm.

In the global tracking step, a global transformation is used

to track the face through the video sequence. Following the

global registration, a space warping technique − Free Form

Deformations (FFD) is used for modeling the local defor-

mation of faces. The globally aligned image is parameter-

ized using a set of B-spline functions and a set of control

points overlaid on its volumetric embedding space. Cor-

respondence is obtained through evolving a control lattice

overlaid on the source image. We explicitly embed the LR

image formation into the formulation of the Free Form De-

formation to simulate the process of LR imaging. We use
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Table 1. Sample work for face SR (L-learning-based method, R-reconstruction-based method)
Authors Approach Comments
Baker and
Kanade[1]

Find the closest matching pixels in the training data using Gaussian,
Laplacian and feature pyramids (L).

Manual affine registration by 3 hand marked points on the high-
resolution data.

Liu et al.[10] Combine a global parametric linear model for the whole face with a local
nonparametric model which learns local texture from training faces (L).

Manually align the data using 5 hand-selected points on the high-
resolution data.

Liu et al.[11] Fuse high-resolution patches to form a high-resolution image integrating
TensorPatch model and coupled residue compensation (L).

Assume a preamble step for alignment using locations of eyes and mouth
on the high-resolution data.

Capel and
Zisserman[2]

Divide face into six regions and recover SR face image from a high-
resolution eigenface space (L).

SR images have visible artifacts on the regions which have expression
changes.

Dedeoglu et
al.[3]

Find the best-matched patch in training set for the probe image by en-
coding spatial-temporal consistency of the LR images using a graphical
model (L).

Consider translation only global motion on the high-resolution data.

Wang and
Tang[14]

Render SR facial image from high-resolution training set using eigen-
transformation algorithm (L).

Manual registration using the locations of eyes on high-resolution data.

Jia and
Gong[8]

Super-resolve facial image given multiple partially occluded LR images
using a Bayesian framework (L).

Manual registration using 3 hand-selected points on the high-resolution
data.

Pan et al.[12] Super-resolve 3D human face by maximizing a posteriori probability
using progressive resolution chain (PRC) model (L).

Correspondence between 3D model and an image is achieved by mesh
parameterizations and there is no local deformation of the mesh.

Lin et al.[9] Reconstruct SR face image based on a layered predictor network by in-
tegrating the local predictors and learning-based fusion strategy (L).

Manual registration by using locations of eyes and mouth on high-
resolution data.

This paper Reconstruct SR facial image with expression changes by registering them
with global transformation and local deformation (R).

Automatic registration is done using global-to-local approach to handle
the expression changes.

three SR algorithms [7][15][4] in the last step and compare

performance results on many real video sequences.

1.1. Related Work

In the past decades, a number of SR techniques have

been proposed [4][1][3][11]. Based on whether a training

step is employed in SR restoration, they are categorized

as: reconstruction-based methods [4][7] and learning-based

methods [1][3][11][2]. Table 1 presents a summary of the

recent work on super-resolution of facial images and com-

pares it with the work in this paper. All the methods in

Table 1 are learning-based SR approaches and need a cer-

tain amount of training data of faces. They do not handle

local deformations. They assume that alignment has been

performed before applying SR methods. However, accurate

alignment is the most critical step for SR of facial videos.

Our proposed approach integrates the alignment and super-

resolution steps.

1.2. Contribution of this paper

• Super-resolve facial images by handling them in a non-
rigid way: Considering the facial expression changes on a

human face, we propose a hierarchical registration scheme

that combines a global parametric transformation with a lo-

cal free-form deformation. In addition to the global trans-

formation which tracks the face through the video sequence

using a global motion model, a B-spline based Free-form

Deformation is used to locally warp the input LR images to

register with the reference LR image.

• Resolution aware incremental FFD: The performance

of tracking and registration algorithms, which are not de-

signed for LR data, degrades as the quality of input images

become poor and the size of images become small. In order

to relieve this difficulty brought by LR data, we explicitly

embed low resolution imaging model in the formulation of

FFD to simulate the formation of LR images.

Global 
Tracking Input LR 

Images 

  SR Image 
SR 

Algorithm 

Reference 
LR image 

Local 
Alignment 

Figure 2. Block diagram of our approach.

• Part-based super-resolution of facial images: We de-

sign a matching statistic to measure the alignment and then

super-resolve the images.

2. Technical Approach
The overall approach is shown in Figure 2. Given a se-

quence of facial images, we first track the facial region us-

ing a global motion model [5]. After this global tracking

step, we find the optimal transformation T : (x, y) −→
(x0, y0) which maps any point of the facial region in the

dynamic image sequence I(x, y, t) at time t into its corre-

sponding point in the reference image I(x0, y0, t0). Ref-

erence image is the first image in the video sequence. We

extract the facial region from the video sequence after the

global tracking. In order to handle the warping errors and

outliers, we partition the facial regions into six regions as

left/right eyes, left/right eyebrows, mouth and the rest of the

face. Following this step, we deform the globally aligned

facial regions (rectified image) to locally register with the

regions in the reference image using our specially designed

FFD algorithm that accounts the nature of LR data. The last

step is to super-resolve the facial image on these registered

images to acquire the SR image. Therefore, we design a

combined transformation T consisting of a global transfor-

mation and a local deformation as follows

T(x, y, t) = Tglobal(x, y, t) + Tlocal(x, y, t) (1)

In Fig. 2, the input LR images are tracked to extract the fa-

cial region and globally aligned with the reference LR im-

age. Following this step, a Resolution Aware Incremental
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Figure 3. Tracking results for one sequence. The first row shows

the video frames. The second row shows the tracked facial regions.

Free-Form Deformation (RAIFFD) is used to locally de-

form the LR facial images to align with the reference facial

image. The details are given below.

2.1. Tracking of Facial Regions

A plane tracking algorithm based on minimizing the sum

of squared difference between stored image of the reference

facial region and the current image of it [5] is used for tack-

ing the facial region. The motion parameters are obtained

by minimizing the sum of squared difference between the

template and the rectified image. For efficiency we com-

pute the Jacobian matrix only once on the template image

as M0 instead of recomputing it for each input image [5].

We use a similarity transformation as the motion model

to track the facial regions through the video sequence. We

locate the facial region interactively on the first image. We

recover the motion parameters of translation, rotation and

scale for the input images and register them with the ref-

erence image by applying these parameters. Fig. 3 shows

some frames of tracking results for one video sequence. The

first row shows the original video frames and the second one

demonstrates the tracked facial regions.

2.2. Local Deformation

The global motion model only captures the global mo-

tion of the facial images. As shown in Fig. 1, the local

deformations vary significantly across the video sequence.

In order to handle the local deformations, we choose a B-

splines based FFD model [13] [6], which is a popular ap-

proach in graphics, animation and rendering. The basic idea

of FFD is to deform an object by space warping the con-

trol points which are overlaid on the object. Compared to

the pixel-wise optical flow techniques, FFD methods sup-

port smoothness constraints and exhibit robustness to noise.

Moreover, FFD produces one-to-one correspondences af-

ter deformation, which is important for carrying out the SR

process.

We consider an Incremental Free Form Deformation

(IFFD) [6] formulation to model the local deformation and

integrate it into our framework. In order to cope with the

large local motion such as open mouth in Figure 1, we adopt

a multi-level IFFD from coarse to fine control points lev-

els. Given an incoming frame which is globally aligned, a

control lattice P is overlaid on the image space. By evolv-

ing the control points in the lattice, the displacements of all

the control points are acquired. Subsequently, B-spline ba-

sis functions are used as interpolation functions to get the

dense deformation field for each pixel in the image space.

2.2.1 Free Form Deformation Formulation

Let us denote the domain of image space as

Ω = {x} = {(x, y)|1 ≤ x ≤ X, 1 ≤ y ≤ Y } and

a lattice of control points overlaid to the image space

P = {(px
m,n, py

m,n)}; m = 1, ..., M, n = 1, ..., N

Let us denote the initial configuration of the control lattice

as P 0, and the deforming one as P = P 0 + δP . The pa-

rameters of FFD are the deformations of the control points

of the lattice in both directions (x, y):

ΔP = {(δP x
m,n, δP y

m,n)}; (m,n) ∈ [1,M ] × [1, N ]

The deformed location of pixel given the deformation of the

control lattice from P 0 to P , is defined as the tensor product

of cubic B-splines

Tlocal(x;ΔP)

=
3∑

k=0

3∑
l=0

Bk(u)Bl(v)(P 0
i+k,j+l + δPi+k,j+l)

=
3∑

k=0

3∑
l=0

Bk(u)Bl(v)P 0
i+k,j+l

+
3∑

k=0

3∑
l=0

Bk(u)Bl(v)δPi+k,j+l (2)

where Pi+k,j+l(k, l) ∈ [0, 3] × [0, 3] are pixel (x, y)’s
sixteen adjacent control points, k = � x

X · (M −1)�+1, j =
� y

Y · (M − 1)� + 1 and Bk(u) represents the k-th basis

function of cubic B-splines

B0(u) = (1 − u)3/6, B1(u) = (3u3 − 6u2 + 4)/6
B2(u) = (−3u3 + 3u2 + 3u + 1)/6, B3(u) = u3/6

where u = x
X · M − � x

X · M�, v = y
Y · M − � y

Y · M�.

2.2.2 Cost Function

Given the local deformation formulations, we need to find

the deformation parameters of the control lattice ΔP. Then

we can warp the input frame I(x, y) to register with the ref-

erence frame I(x0, y0) using the cubic B-spline functions.

Similar to [6], we use Sum of Squared Differences (SSD) as

the data-driven term for our optimization energy function

Edata(ΔP) =
∫ ∫

Ω

(I(x, y) − g(T(x, y;ΔP)))2dxdy (3)
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Figure 4. The Resolution Aware Incremental Free Form Deforma-

tion. (a) The input LR image. (b) Bicubic interpolated image of

(a). (c) The reference LR image. (d) The interpolated image (b)

overlaid with control lattice. (e) The deformed LR image .

In order to account for outliers and noise, we consider an

additional smoothness term on the deformation field δP as

Esmoothness(ΔP) =
∫ ∫

Ω

(∥∥∥∥∂δT
∂x

∥∥∥∥
2

+
∥∥∥∥∂δT

∂y

∥∥∥∥
2
)

dxdy (4)

Combining Equation (3) with Equation (4), we can write

the engergy term as

E(ΔP) = Edata(ΔP) + λEsmoothness(ΔP) (5)

where λ is a constant which defines the tradeoff between

the displacements and the smoothness of the transforma-

tion. We choose λ as a value between 2 and 20. The calcu-

lus of variations and a gradient decent method can be used

to optimize the energy function. We can take the derivative

of E(ΔP) with respect to the deformation parameters ΔP
as

αE(ΔP)

αΔP
[x]
(m,n)

and
αE(ΔP)

αΔP
[y]
(m,n)

to find the deformation ΔP by

minimizing the energy function.

2.2.3 Resolution Aware Local Deformation

In order to account for the complexity brought by LR data,

we integrate LR image formation model into the FFD for-

mulation. Considering the LR imaging model of a digital

camera, LR images are blurred and subsampled (aliased)

from the high resolution data with additive noise. While

FFD works well with high resolution data, its accracy of de-

formation degrades quickly at low resolution. We integrate

LR imaging model into the FFD formulation. Fig. 4 shows

the process of our proposed Resolution Aware Incremental

Free Form Deformation (RAIFFD). In Fig. 4, (a) shows the

Figure 5. Examples of our Resolution Aware IFFD local registra-

tion. (a) Source frames which need to be deformed. (b)-(c) illus-

trate the deformation process from coarse-to-fine control lattice.

(d) represents the final deformed LR images warped to the refer-

ence frames. (e) represents the reference frames.

input LR image which is need to be deformed with refer-

ence to the LR image in (d). (b) is the interpolated image of

(a). (e) shows the control lattice overlaid on (b) to show the

deformation. (c) is the LR image deformed from (a). We

perform local deformations on (b) based on the following

considerations:

• Deform local motion on high resolution data. With-

out the loss of generality, we assume the camera is fixed

and the relative motion between the object and the camera

is due to the motion of the object. Local motion occurs on

the object while the acquired LR image is the process of

digital camera. To better model the local motion, instead

of deforming the control lattice on LR image we perform

FFD on the high resolution data. Then we can simulate the

process of LR imaging from the deformed high resolution

image to get the motion compensated LR image. Plugging

the LR imaging model into the data driven term in Equation

(3), we can rewrite Equation (3) as

Edata(ΔP)

=
∫ ∫

Ω

(ILR(x, y) − f(X, Y ;ΔP))2 dxdy

(6)

where

f(X,Y ;ΔP)
= g(T(X, Y ;ΔP)) ∗ h) ↓s

=
∫ ∫

(X′,Y ′)∈bin(X,Y )

ϕ(·)dX ′dY ′ (7)
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In Equation (7), ϕ(·) is defined as

ϕ(·) = g(T(X ′, Y ′;ΔP))h(X − X ′, Y − Y ′)dX ′dY ′ (8)

where (X,Y ) is the pixel coordinates on high resolution

image, bin(X, Y ) is the sensing area of the discrete pixel

(X,Y ) and h is the blurring function (Point Spread Func-

tion). The continuous integral in Equation (7) is defined

over bin(X, Y ) to simulate formation of LR image. The

smoothness term in Equation (4) is rewritten as

Esmoothness(ΔP) =
∫ ∫

Ω

φ(·)dXdY (9)

where

φ(·) =
∥∥∥∥∂δT(X, Y ;ΔP)

∂X

∥∥∥∥
2

+
∥∥∥∥∂δT(X,Y ;ΔP)

∂Y

∥∥∥∥
2

The derivatives of Edata(ΔP) along ΔP
[x]
(m,n) can be cal-

culated as

∂Edata(ΔP)

∂ΔP
[x]
(m,n)

= −
∫ ∫

Ω

2r
∂r

∂ΔP
[x]
(m,n)

dxdy (10)

where

∂r

∂ΔP
[x]
(m,n)

=
∫∫

(X′,Y ′)∈bin(X,Y )
ϕ(·)∂T(X′,Y ′;ΔP)

∂ΔP
[x]
(m,n)

dX ′dY ′ (11)

The derivatives of Esmoothness(ΔP) along ΔP
[x]
(m,n) is cal-

culated as

∂Esmoothness(ΔP)

∂ΔP
[x]
(m,n)

= 2
∫∫ ∂δT(X,Y ;ΔP)

∂X ·
∂δT(X,Y ;ΔP)

∂X

∂ΔP
[x]
(m,n)

dXdY

+2
∫∫ ∂δT(X,Y ;ΔP)

∂Y ·
∂δT(X,Y ;ΔP)

∂Y

∂ΔP
[x]
(m,n)

dXdY (12)

where r in data term is defined as ILR(x, y)−f(X,Y ; ΔP).
The derivation for ΔP

[y]
(m,n) can be similarly obtained.

• Super-resolution methodology requires sub-pixel reg-
istration. SR reconstruction can be seen as “combining”

new information from LR images to obtain a SR image. If

the LR images have sub-pixel shifts from each other, it is

possible to reconstruct a SR image. Otherwise, if the LR

images are shifted by integer units, then each image con-

tains the same information, and thus there is no new infor-

mation that can be used to reconstruct a SR image. High

frequency areas in human face usually correspond to facial

features such as eyes, eyebrows and mouth. During facial

expression changes, these facial features deform the most

among the face. In LR facial images, the fact is that these

facial features have a few pixels, which are blurred from

high resolution image and noisy. If we deform the LR im-

age, the deformation can not capture the subtle movements.

Moreover, interpolation in LR image during the process of

deformation smooths out the high frequency features since

they only occupy a few of pixels. This leads to the loss of

new information which can be used to reconstruct SR im-

age.

2.3. Super-resolution Algorithm

We work with three algorithms [7][15][4]. The first

super-resolution algorithm is based on IBP [7]. We also per-

form experiments on using methods in [15] and [4]. In [15],

the authors proposed a robust approach which combines a

median estimator and the iterative framework to reconstruct

SR images. The authors demonstrate that their method is

robust to the outliers due to motion errors, inaccurate mo-

tion models, noise, moving objects and motion blurs [15].

The authors in [4] proposed a general hybrid SR approach

that combines the benefits of the stochastic approaches ML

(or MAP) and the POCS approach.

2.4. A Match Measure for Warping Errors

Even though a global transformation and a local defor-

mation method are used to handle the non-rigidity of the

facial image, there may exist warping errors due to the vi-

olation of basic assumptions such as Lambertian surface,

particularly for low-resolution images. In order to detect

anomalies in flow based warping, we partition the facial im-

ages into six regions based on facial features as left/right

eyebrows, left/right eyes, mouth and the other part of the

face. We design a match statistics to measure how well the

warped patches align with the target patches. If the match

score is below a certain threshold, the corresponding part

will be ignored during super-resolving the texture. We de-

fine our match measure as follows,

Ej =
M∑

x=1

N∑
y=1

(
(Yj

k(x, y) − μ1)([Xj
n(x, y)]Bn − μ2)

)
M∗N∗σ1∗σ2

(13)

where M and N are the image size, μ1 and μ2 are respec-

tive means of image region, σ1 and σ2 are respective image

variances within the region. j is from 1 to 6 representing the

j-th part of the face, Yj
k represents the j-th local region of

the k-th input LR frame and Xk
n denotes the intensity value

of the SR image at n-th iteration. The absolute value of Ej

is between 0 and 1. We choose 0.9 as the matching thresh-

old in this paper.
3. Experimental Results
• Data and Parameters: We record 10 video sequences

for 10 people with each of them lasting about 3 minutes.
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Figure 6. Super-resolution Results. (a)-(b) Low-

resolution images. (c)Reconstructed SR images using

global registration. (d)Reconstucted SR images using

global and our RAIFFD local deformation approach.

Figure 7. Super-resolution Results. (a)-(b) Low-

resolution images. (c)Reconstructed SR images using

global registration. (d)Reconstucted SR images using

global and our RAIFFD local deformation approach.

Figure 8. Marked regions for calculating peak signal-to-noise ra-

tio (PSNR). (a) Reconstructed SR image using global registration.

(b) Reconstructed SR image using global + local deformation ap-

proach. (c) Original High-resolution image.

During the recording, each person was asked to look at the

camera at the distance of about 20 feet from the camera and

make continuous expression changes. The average size of

the face is about 75 × 70 with maximum size at 115 × 82

and minimum size at 74 × 58. We then blur these videos

with a 5 × 5 Gaussian kernel and down-sample them into

image sequences with average size 35 × 27. We then use

our proposed approach to estimate the flow fields and super-

resolve these LR images to acquire SR images. We found

that 35 frames were enough to cover most of the expression

changes the people made during recording. We then use 35

frames for each person for super-resolving.

1 2 3 4 5 6 7 8 9 10
16
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20

22

24

26

28

30

The number of person

P
S

N
R

 o
f S

R
 Im

ag
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(d
b)

PSNR of global+local approach
PSNR of gobal approch

Figure 9. Comparison of PSNR values between global recon-

structed SR images and our global+local reconstructed SR images.

• Results of Resolution Aware FFD: The examples of the

local deformation process are shown in Figure 5. In this

figure, the input frames which need to be locally deformed

are shown in (a). (b)-(c) demonstrate the process of local

deformation from coarse-to-fine control lattice configura-

tions. The reference frames are shown in (e). This fig-
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Figure 10. Super-resolution results using SR algorithms

in [15] and [4] (1). (a) SR results of globally aligned

data using method in [4]. (b) SR results of glob-

ally+locally aligned data using method in [4]. (c) SR

results of globally aligned data using method in [15].

(d) SR results of globally+locally aligned data using

method in [15].

Figure 11. Super-resolution results using SR algorithms

in [15] and [4] (2). (a) SR results of globally aligned

data using method in [4]. (b) SR results of glob-

ally+locally aligned data using method in [4]. (c) SR

results of globally aligned data using method in [15].

(d) SR results of globally+locally aligned data using

method in [15].

Figure 12. Comparison of PSNR values between global recon-

structed SR images and our global+local reconstructed SR images

using the SR methods in [15] and [4].

ure clearly shows our proposed Resolution Aware FFD ap-

proach can successfully deforms the facial images with ex-

pression changes to register with the reference images.

• Super-resolution Results on global registration vs.
global + RAIFFD local deformation: We super-resolve

the input LR images to acquire SR images using the SR

algorithms discussed in section 2.3. We perform SR recon-

struction on two kind of aligned data: globally aligned LR

images using the registration method in section 2.1 and LR

images aligned using the proposed global and local align-

ment methods in section 2.1 and 2.2. We show the results

for the complete data in Fig. 6 and Fig. 7. In Fig. 6 and

Fig. 7, two of the input LR frames are shown in (a) and

(b). The reconstructed SR images on globally aligned LR

data are shown in (c). SR images reconstructed using our

global+local method are shown in (d). The SR results in (d)

are much better than the results in (c), especially in the high-

frequency areas such as mouth, eyes and eyebrows. This is

due to the reason that the global only alignment method can

not capture the local deformations on these local parts when

186190190
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face have expression changes. Our global+local approach

not only finds the global transformation for the global mo-

tion, but also captures the local deformations.

Quantification of performance: In order to measure the

performance of our algorithm, we compute peak signal-to-

noise ratio (PSNR) as the measurement between original

high-resolution and reconstructed SR images. Consider-

ing the fact that local motions mostly occur in the high-

frequency areas such as eyes and mouth (see Fig. 8, we cal-

culate the PSNR values only on the marked regions between

the reconstructed SR image ((a) and (b)) and the original

high-resolution image. SR image in (a) is reconstructed us-

ing global registration and SR image in (b) is the SR image

using our proposed global+local approach. We calculate the

PSNR values for our data (10 people) and show this plot in

Fig. 9. We find that PSNR of the areas for our global+local

approach is much better than that for global only approach.

The average PSNR value is 20.6261 for the global approach

and 26.1327 for our global+local approach.

• Proposed approach with two different SR algorithms:
Similar to the previous experiments, we implement two

methods [4][15]both on the globally aligned data and the

data aligned using our global+local model. The results are

shown in Fig. 10 and 11. We find both SR images in (b) and

(d) are better than in (a) and (c), which are the results on the

globally aligned data. We also compute the PSNR values

using these two methods and show them in Figure 12. This

verifies again that global only alignment is not good enough

to register facial images with expression changes for SR

purpose. After comparing the results between (b) and (d)

or (a) and (c), we find the quality of SR images using [15]

outperforms the method in [4]. This does not surprise us

because the proposed method in [15] uses median estimator

to replace the sum in the iterative minimization in method

[4], which reduces the influence of the large projection er-

rors due to inaccurate motion estimation. We also find SR

algorithm in [15] achieves better results than [7] from the

PSNR values in Fig. 9 and Fig. 12 while [7] has similar

results compared to method in [4].

4. Conclusions
Reconstruction of SR facial images from multiple LR

images suffers from the special characteristics of human
face. Among these difficulties, non-rigidity of human face
is a critical issue since accurate registration is an impor-
tant step for SR. In this paper, we proposed a Resolution
Aware Incremental Free Form Deformation (RAIFFD) ap-
proach which embedded the low resolution imaging model
explicitly in the formulation to handle the non-rigidity and
low-resolution issues. Our experimental results showed that
the proposed SR framework can effectively handle the com-
plicated local deformation of human face and produced
better SR image than the global approach. Since most
of the SR approaches presented in Table 1 are learning-

based methods which do not handle local deformations in
real data, we did not compare them with our approach.
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