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ABSTRACT

Super-resolution (SR) of facial images from video suffers

from facial expression changes. Most of the existing SR al-

gorithms for facial images make an unrealistic assumption

that the “perfect” registration has been done prior to the SR

process. However, the registration is a challenging task for

SR with expression changes. This paper proposes a new

method for enhancing the resolution of low-resolution (LR)

facial image by handling the facial image in a non-rigid man-

ner. It consists of global tracking, local alignment for precise

registration and SR algorithms. A B-spline based Resolution

Aware Incremental Free Form Deformation (RAIFFD) model

is used to recover a dense local non-rigid flow field. In this

scheme, low-resolution image model is explicitly embedded

in the optimization function formulation to simulate the for-

mation of low resolution image. The results achieved by the

proposed approach are significantly better as compared to

the SR approaches applied on the whole face image without

considering local deformations.

Index Terms— Super-resolution, Free-form deformation

1. INTRODUCTION

Super-resolution reconstruction is one of the difficult and ill-

posed problems due to the demand of accurate alignments be-

tween multiple images and multiple solutions for a given set

of images. In particular, human face is much more complex

compared to other objects which have been used in the major-

ity of the super-resolution literature. Super-resolution from

facial video may suffer from subtle facial expression varia-

tion, occlusion, illumination and reflectance variations. Fig-

ure 1 shows six low-resolution facial frames from one video

sequence with the corresponding high-resolution frames. It is

clear that the face undergoes non-rigid motions.

In order to tackle the problems brought by the complexity

of facial images, in this paper, we propose a novel global-

to-local approach to locally align the images before apply-

ing SR algorithms. The approach consists of three steps:

global tracking, local alignment and SR algorithm. In the

global tracking step, a global transformation is used to track

the face through the video sequence. Following the global

registration, a space warping technique − Free Form Defor-

Fig. 1. An example of facial images with expression changes.

(a) Low-resolution (30x24) images. (b) High-resolution

(92x73) images.

mations (FFD) is used for modeling the local deformation of

faces. The globally aligned image is parameterized using a set

of B-spline functions and a set of control points overlaid on

its volumetric embedding space. Correspondence is obtained

through evolving a control lattice overlaid on the source im-

age. We explicitly embed the LR image formation into the

FFD formulation to simulate the process of LR imaging. We

use three SR algorithms [1][2][3] in the last step and compare

performance results on many real video sequences.

1.1. Related Work and Contributions

In the past decades, a number of SR techniques have been

proposed [3][4][5][6]. Based on whether a training step

is employed in SR restoration, they are categorized as:

reconstruction-based methods [1][3] and learning-based

methods [4][5][6][7]. The major class of super-resolution al-

gorithms is reconstruction-based methods. Markov Random

Field (MRF) model is usually assumed for high resolution

images in a learning-based method [5][7][8]. Most of the

SR approaches focusing on face images are learning-based

methods. The learning-based SR approaches need a certain

amount of training data of faces. They do not handle local de-

formations. They assume that alignment has been performed

before applying SR methods. However, accurate alignment is

the most critical step for SR techniques.

Our proposed approach integrates the alignment and

super-resolution steps. It combines a global parametric trans-

formation with local deformation to cope with this problem.

The key contributions of this paper are: (a) A hierarchi-

cal registration scheme that combines a global parametric

transformation with a local free-form deformation (FFD).
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Fig. 2. Block diagram of our approach.

The global transformation tracks the face through the video

sequence using a global motion model. A B-spline based

Free-form Deformation is used to locally warp the input LR

images to register with the reference LR image. (b) We

explicitly embed low resolution imaging model in the formu-

lation of FFD to simulate the formation of LR images. (c)

Results are shown on a large number of videos.

2. TECHNICAL APPROACH

The overall approach is shown in Figure 2. Given a sequence

of facial images, we first track the facial region using a global

motion model [9]. After this global tracking step, we find

the optimal transformation T : (x, y) −→ (x0, y0) which

maps any point of the facial region in the image sequence

I(x, y, t) at time t into its corresponding point in the reference

image I(x0, y0, t0). Reference image is the first image in the

video sequence. We extract the facial region from the video

sequence after the global tracking. Following this step, we

deform the globally aligned facial regions (rectified image) to

locally register with the regions in the reference image using

our specially designed FFD algorithm that accounts the nature

of LR data. The last step is to super-resolve the facial image

on these registered images to acquire the SR image. There-

fore, we design a combined transformation T consisting of a

global transformation and a local deformation as follows

T(x, y, t) = Tglobal(x, y, t) + Tlocal(x, y, t) (1)

2.1. Local Deformation

We consider an Incremental Free Form Deformation (IFFD)

[10] formulation to model the local deformation and integrate

it into our framework. In order to cope with the large local

motion such as open mouth in Figure 1, we adopt a multi-

level IFFD from coarse to fine control points levels. Given an

incoming frame which is globally aligned, a control lattice P
is overlaid on the image space. By evolving the control points

in the lattice, the displacements of all the control points are

acquired. Subsequently, B-spline basis functions are used as

interpolation functions to get the dense deformation field.

Cost Function: Given the local deformation formulations,

we need to find the deformation parameters of the control lat-

tice ΔP. Then we can warp the input frame I(x, y) to register

with the reference frame I(x0, y0) using the cubic B-spline

functions. Similar to [10], we use Sum of Squared Differ-

ences (SSD) as the data-driven term for the optimization of

energy function,

Edata(ΔP) =
∫ ∫

Ω

(I(x, y) − g(T(x, y; ΔP)))2dxdy (2)

In order to account for outliers and noise, we consider an ad-

ditional smoothness term on the deformation field δP as

Esmoothness(ΔP) =
∫ ∫

Ω

(∥∥∥∥∂δT
∂x

∥∥∥∥
2

+
∥∥∥∥∂δT

∂y

∥∥∥∥
2
)

dxdy (3)

Combining (2) with (3), we can write the engergy term as

E(ΔP) = Edata(ΔP) + λEsmoothness(ΔP) (4)

where λ is a constant which defines the tradeoff between the

displacements and the smoothness of the transformation. The

calculus of variations and a gradient descent method can be

used to optimize the energy function. We can take the deriva-

tive of E(ΔP) with respect to the deformation parameters

ΔP as
αE(ΔP)

αΔP
[x]
(m,n)

and
αE(ΔP)

αΔP
[y]
(m,n)

to find the deformation ΔP

by minimizing the energy function.

Resolution Aware Local Deformation: In order to account

for the complexity brought by LR data, we integrate LR im-

age formation model into the FFD formulation. Considering

the LR imaging model of a digital camera, LR images are

blurred and sub-sampled (aliased) from the high resolution

data with additive noise. While FFD works well with high

resolution data, its accracy of deformation degrades quickly

at low resolution. We integrate LR imaging model into the

FFD formulation. We perform local deformations based on

the following considerations:

Deform local motion on high resolution data: Without the

loss of generality, we assume the camera is fixed and the rel-

ative motion between the object and the camera is due to the

motion of the object. Local motion occurs on the object while

the acquired LR image is the process of digital camera. To

better model the local motion, instead of deforming the con-

trol lattice on LR image we perform FFD on the high resolu-

tion data. Then we simulate the process of LR imaging from

the deformed high resolution image to get the motion com-

pensated LR image. Plugging the LR imaging model into the

data driven term in Equation (2), we can rewrite (2) as

Edata(ΔP)

=
∫ ∫

Ω

(ILR(x, y) − f(X,Y ; ΔP))2 dxdy

(5)

where

f(X, Y ; ΔP)
= g(T(X, Y ; ΔP)) ∗ h) ↓s

=
∫ ∫

(X′,Y ′)∈bin(X,Y )

ϕ(·)dX ′dY ′ (6)
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In (6), ϕ(·) is defined as

ϕ(·) = g(T(X ′, Y ′; ΔP))h(X − X ′, Y − Y ′)dX ′dY ′ (7)

where (X,Y ) is the pixel coordinates on high resolution im-

age, bin(X, Y ) is the sensing area of the discrete pixel (X, Y )
and h is the blurring function (Point Spread Function). The

continuous integral in (6) is defined over bin(X, Y ) to sim-

ulate formation of LR image. The smoothness term in (3) is

rewritten as

Esmoothness(ΔP) =
∫ ∫

Ω

φ(·)dXdY (8)

where

φ(·) =
∥∥∥∥∂δT(X,Y ; ΔP)

∂X

∥∥∥∥
2

+
∥∥∥∥∂δT(X, Y ; ΔP)

∂Y

∥∥∥∥
2

The derivatives of Edata(ΔP) along ΔP
[x]
(m,n) can be calcu-

lated as

∂Edata(ΔP)

∂ΔP
[x]
(m,n)

= −
∫ ∫

Ω

2r
∂r

∂ΔP
[x]
(m,n)

dxdy (9)

where

∂r

∂ΔP
[x]
(m,n)

=
∫∫

(X′,Y ′)∈bin(X,Y )
ϕ(·)∂T(X′,Y ′;ΔP)

∂ΔP
[x]
(m,n)

dX ′dY ′ (10)

The derivatives of Esmoothness(ΔP) along ΔP
[x]
(m,n) is cal-

culated as

∂Esmoothness(ΔP)

∂ΔP
[x]
(m,n)

= 2
∫∫ ∂δT(X,Y ;ΔP)

∂X ·
∂δT(X,Y ;ΔP)

∂X

∂ΔP
[x]
(m,n)

dXdY

+2
∫∫ ∂δT(X,Y ;ΔP)

∂Y ·
∂δT(X,Y ;ΔP)

∂Y

∂ΔP
[x]
(m,n)

dXdY (11)

where r in data term is defined as ILR(x, y)− f(X,Y ; ΔP).
The derivation for ΔP

[y]
(m,n) are similarly obtained.

Super-resolution methodology requires sub-pixel registra-
tion: SR reconstruction can be seen as “combining” new

information from LR images to obtain a SR image. If the LR

images have sub-pixel shifts from each other, it is possible

to reconstruct a SR image. Otherwise, if the LR images are

shifted by integer units, then each image contains the same

information, and thus there is no new information that can

be used to reconstruct a SR image. High frequency areas on

a human face usually correspond to facial features such as

eyes, eyebrows and mouth. During facial expression changes,

these facial features deform the most among the face. In LR

facial images, the fact is that these facial features have a few

Fig. 3. Super-resolution Results using SR algorithms in

[1].(a)-(b) Low-resolution images. (c)Reconstructed SR im-

ages using global registration. (d)Reconstucted SR images

using global and our RAIFFD local deformation approach.

pixels, which are blurred from high resolution images and

noisy. If we deform the LR image, the deformation can not

capture the subtle movements. Moreover, interpolation in

LR image during the process of deformation smooths out the

high frequency features since they only occupy a few pixels.

This leads to the loss of new information which can be used

to reconstruct SR image.

We use three SR algorithms [1][2][3].

3. EXPERIMENTAL RESULTS

Data and Parameters: We record 10 video sequences of 10

people with each lasting about 3 minutes. During the record-

ing, each person was asked to look at the camera at a distance

of about 20 feet from the camera and make continuous ex-

pression changes. The average size of the face is about 75 ×
70 with maximum size at 115 × 82 and minimum size at 74

× 58. We blur these videos with a 5 × 5 Gaussian kernel and

down-sample them into image sequences with average size

35 × 27. We then use our proposed approach to estimate the

flow fields and super-resolve these LR images to acquire SR

images. We found that 35 frames were enough to cover most

of the expression changes the people made during recording.

We then use 35 frames for each person for super-resolution.

Super-resolution Results on global registration vs. global
+ RAIFFD local deformation: We super-resolve the input

LR images to acquire SR images using the SR algorithms

[1]. The results for the complete data are shown in Fig. 3.

The SR results in (d) are much better than the results in (c),

especially in the high-frequency areas such as mouth, eyes

and eyebrows. This is due to the reason that the global only
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alignment method can not capture the local deformations on

these local parts when faces have expression changes. Our

global+local approach not only finds the global transforma-

tion for the global motion, but also captures the local defor-

mations.

In order to measure the performance of our algorithm, we

compute peak signal-to-noise ratio (PSNR) as the measure-

ment between original high-resolution and reconstructed SR

images. Considering the fact that local motions mostly oc-

cur in the high-frequency areas such as eyes and mouth (see

Fig. 4, we calculate the PSNR values only on the marked re-

gions between the reconstructed SR image ((a) and (b)) and

the original high-resolution image. The results are shown in

Fig. 5. We find that PSNR of the areas for our global+local

approach is much better than that for global only approach.

The average PSNR value is 20.6261 for the global approach

and 26.1327 for our global+local approach.

Similar to the above experiments using [1], we implement

two methods [2][3] both on the globally aligned data and the

data aligned using our global+local model. We find that the

quality of SR images using [2] outperforms the method in

[3]. This does not surprise us because the proposed method in

[2] uses median estimator to replace the sum in the iterative

minimization in [3]. This reduces the influence of the large

projection errors due to inaccurate motion estimation.

Fig. 4. Marked regions for calculating peak signal-to-noise

ratio (PSNR). (a) Reconstructed SR image using global reg-

istration. (b) Reconstructed SR image using global + local

deformation approach. (c) Original High-resolution image.
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Fig. 5. Comparison of PSNR values between global recon-

structed SR and global+local reconstructed SR images.

4. CONCLUSIONS
Reconstruction of SR facial images from multiple LR images

suffers from the special characteristics of human face. Among

these difficulties, non-rigidity of human face is a critical issue

since accurate registration is an important step for SR. The

experimental results show that the proposed SR framework

can effectively handle the local deformations of human face

and produce better SR image than the global approach.
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