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Abstract. This paper presents a linear genetic programming approach,
that solves simultaneously the region selection and feature extraction
tasks, that are applicable to common image recognition problems. The
method searches for optimal regions of interest, using texture informa-
tion as its feature space and classification accuracy as the fitness func-
tion. Texture is analyzed based on the gray level cooccurrence matrix
and classification is carried out with a SVM committee. Results show
effective performance compared with previous results using a standard
image database.

1 Introduction

Recognition is a classical problem in computer vision whose task is that of deter-
mining whether or not the image data contains some specific object, feature, or
activity. This task can normally be solved robustly by a human, but is still not
satisfactory solved by a computer for the general case: arbitrary objects in ar-
bitrary situations. Genetic and evolutionary algorithms have been used to solve
recognition problems in recent years. Tackett [1] presented one of the first works
that applied genetic and evolutionary algorithms to solve recognition problems.
The author used genetic programming (GP) to assign detected image features
to classify vehicles such as tanks on US ARMY NVEOD terrain board imagery.
In this work the genetic programming approach outperformed a neural network,
as well as binary tree classifier on the same data, producing lower false posi-
tives. Teller and Veloso [2,3] apply also genetic programming to perform face
recognition tasks based on the PADO language using a local indexed memory.
The method was tested on a classification of 5 classes and achieved 60% of accu-
racy for images without noise. Howard et al. [4,5] propose a multi-stage genetic
programming approach to evolve fast and accurate detectors in short evolution
times. In a first stage the GP takes a random selection of non-object pixels and
all the object pixels from the ground truth as test points. The fittest detector
from the evolution is applied in order to produce a set of false positives (FP).
A second stage of GP uses the discovered FP and all of the object pixels from
the truth as test points to evolve a second detector. Then, the fittest detectors
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from both stages are combined and in order to detect objects having large vari-
ability this two-stage GP process is further extended into a number of stages.
This multi-stage method stops when enough sub-detectors exist to detect all
objects. Zhang et al. [6] use GP for domain independent object detection prob-
lems in which the locations of small objects of multiple classes in large images
must be found. They consider three terminal sets based on domain independent
pixel statistics and consider also two different function sets. The fitness func-
tion is based on the detection rate and the false alarm rate. The approach was
tested on three object detection problems where the objects are approximately
the same size and the background is not too cluttered. Lin and Bhanu [7] pro-
pose a co-evolutionary genetic programming (CGP) approach to learn composite
features for object recognition. The motivation of using genetic programming is
to overcome the limitations of human experts who consider only a small num-
ber of conventional combinations of primitive features. In this way, their CGP
method can try a very large number of unconventional combinations which may
yield exceptionally good results. Experiments with SAR images show that CGP
could learn good composite features in order to distinguish from several classes.
Krawiec and Bhanu [8] propose to use linear genetic programming to represent
feature extraction agents within a framework of cooperative coevolution in order
to learn feature-based recognition tasks. Experiments on demanding real-world
tasks of object recognition in synthetic aperture radar imagery, shows the com-
petitiveness of the proposed approach with human-designed recognition systems.
Roberts and Claridge [9] present a system whereby a feature construction stage
is simultaneously coevolved along side the GP object detectors. In this way, the
proposed system is able to learn both stages of the visual process simultaneously.
Initial results in artificial and natural images show how it can quickly adapt to
form general solutions to difficult scale and rotation invariant problems.

This work proposes a general multiclass object recognition system to be tested
in a challenging image database commonly used in computer vision research [10].
Categorization is the name in computer vision for the automatic recognition of
object classes from images. This task is normally posed as a learning problem in
which several classes are partitioned into sets for training and testing. The goal
is to show that high classification accuracy is feasible for three object classes
on photographs of real objects viewed under general lighting conditions, poses
and viewpoints. The set of test images used for validation comprise photographs
obtained from a standard image database, as well as images from the web in
order to show the generality of the proposed approach. The proposed method
performs well on texture-rich objects and structure-rich ones, because is based on
the cooccurrence matrix. We decide to represent the feature extraction procedure
with individuals following the linear genetic programming technique, a hybrid of
genetic algorithms and genetic programming, which has the advantage of being
able to control the elements in the tree structure. In this way, each element of
the tree structure is evolved only with the respective elements of other elements
in the population. This characteristic gives the particularity of being positional
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allowing the emergence of substructures and avoiding the destructive effect of
crossover, which is considered as a mere mutation in regular GP [11,12,8].

2 Texture Analysis and the Gray Level Cooccurrence
Matrix

Image texture analysis has been a major research area in the field of computer
vision since the 1970’s. Historically, the most commonly used methods for de-
scribing texture information are the statistical based approaches. First order
statistical methods use the probability distribution of image intensities approx-
imated by the image histogram. With such statistics, it is possible to extract
descriptors that characterize image information. First order statistics descriptors
include: entropy, kurtosis and energy, to name but a few. Second order statistical
methods represent the joint probability density of the intensity values (gray lev-
els) between two pixels separated by a given vector V . This information is coded
using the Gray Level Cooccurrence Matrix (GLCM) M (i, j) [13,14]. Statistical
information derived from the GLCM has shown reliable performance in tasks
such as image classification [15] and content based image retrieval [16,17].

Formally, the GLCM Mi,j(π) defines a joint probability density function
f(i, j|V , π) where i and j are the gray levels of two pixels separated by a vec-
tor V , and π = {V , R} is the parameter set for Mi,j(π). The GLCM identifies
how often pixels that define a vector V (d, θ), and differ by a certain amount of
intensity value Δ = i − j appear in a region R of a given image I. Where V
defines the distance d and orientation θ between the two pixels. The direction
of V , can or cannot be taken into account when computing the GLCM.

The GLCM presents a problem when the number of different gray levels in
region R increase, turning difficult to handle or use directly due to the dimen-
sions of the GLCM. Fortunately, the information encoded in the GLCM can
be expressed by a varied set of statistically relevant numerical descriptors. This
reduces the dimensionality of the information that is extracted from the image
using the GLCM. Extracting each descriptor from an image effectively maps
the intensity values of each pixel to a new dimension. In this work, the set Ψ
of descriptors [14] extracted from M (i, j) is formed by the following: Entropy,
Contrast, Homogeneity, Local homogeneity, Directivity, Uniformity, Moments,
Inverse moments, Maximum probability, and Correlation.

3 Evolutionary Learning of Texture Features

The general methodology that is proposed here considers the identification of
Regions of Interests (ROIs) and the selection of the set of features of interest
(texture descriptors). Thus, visual learning is approached with an evolutionary
algorithm that searches for optimal solutions to the multiclass object recogni-
tion problem. Two tasks are solved simultaneously. The first task consists in
identifying a set of suitable regions where feature extraction is to be performed.
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The second task consists in selecting the parameters that define the GLCM,
as well as the set of descriptors that should be computed. The output of these
two tasks is taken as input by a SVM committee that gives the experimental
accuracy on a multiclass problem for the selected features and ROIs.

Linear Genetic Programming for Visual Learning. The learning approach
accomplishes a combined search and optimization procedure in a single step. The
LGP searches for the best set Ω of ROIs for all images and optimizes the feature
extraction procedure by tuning the GLCM parameter set πi ∀ωi ∈ Ω through
the selection of the best subset {β1...βm} of mean descriptor values from the set
of all possible descriptors Ψ , to form a feature vector γi = (β1...βm) for each
ωi ∈ Ω. Using this representation, we are tightly coupling the ROI selection
step with the feature extraction process. In this way, the LGP is learning the
best overall structure for the recognition system in a single closed loop learning
scheme. Our approach eliminates the need of a human designer, which normally
combines the ROI selection and feature extraction steps. Now this step is left up
to the learning mechanism. Each possible solution is coded into a single binary
string. Its graphical representation is depicted in figure 1. The entire chromo-
some consists of a tree structure of r binary and real coded strings, and each set
of variables is evolved within their corresponding group. The chromosome can
be better understood by logically dividing it in two main sections. The first one
encodes variables for searching the ROIs on the image, and the second is con-
cerned with setting the GLCM parameters and choosing appropriate descriptors
for each ROI.

ROI Selection. The first part of the chromosome encodes ROI selection. The
LGP has a hierarchical structure that includes both control and parametric vari-
ables. The section of structural or control genes ci determine the state (on/off)
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Fig. 1. LGP uses a tree structure similar to the Multicellular Genetic Algorithm [12]
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of the corresponding ROI definition blocks ωi. Each structural gene activates
or deactivates one ROI in the image. Each ωi establishes the position, size and
dimensions of the corresponding ROI. Each ROI is defined with four degrees
of freedom around a rectangular region: height, width, and two coordinates in-
dicating the central pixel. The choice of rectangular regions is not related in
any way with our visual learning algorithm. It is possible to use other types of
regions; e.g., elliptical regions, and keep the same overall structure of the LGP.
The complete structure of this part of the chromosome is coded as follows:

1. r structural variables {c1....cr}, represented by a single bit each. Each one
controls the activation of one ROI definition block. These variables control
which ROI will be used in the feature extraction process.

2. r ROI definition blocks ω1....ωr. Each block ωi, contains four parametric
variables ωi = {xωi , yωi , hωi , wωi}, where the variables define the ROIs center
(xωi , yωi), height (hωi) and width (wωi). In essence each ωi establishes the
position and dimension for a particular ROI.

Feature Extraction. The second part of the solution representation encodes
the feature extraction variables for the visual learning algorithm. The first group
is defined by the parameter set πi of the GLCM computed at each image ROI
ωi ∈ Ω. The second group is defined as a string of eleven decision variables that
activate or deactivate the use of a particular descriptor βj ∈ Ψ for each ROI.
Since each of these parametric variables are associated to a particular ROI, they
are also dependent on the state of the structural variables ci. They only enter into
effect when their corresponding ROI is active (set to 1). The complete structure
of this part of the chromosome is as follows:

1. A parameter set πωi is coded ∀ωi ∈ Ω, using three parametric variables.
Each πωi = {Rωi , dωi , θωi} describes the size of the region R, distance d and
direction θ parameters of the GLCM computed at each ωi. Note that R is a
GLCM parameter, not to be confused with the ROI definition block ωi.

2. Eleven decision variables coded using a single bit to activate or deactivate
a descriptor βj,ωi ∈ Ψ at a given ROI. These decision variables determine
the size of the feature vector γi, extracted at each ROI in order to search
for the best combination of GLCM descriptors. In this representation, each
βj,ωi represents the mean value of the jth descriptor computed at ROI ωi.

Classification and Fitness Evaluation. Since the recognition problem aims
to classify every extracted region ωi, we implement a SVM committee that uses
a voting scheme for classification. The SVM committee Φ, is formed by the set
of all trained SVMs {φi}, one for each ωi. The compound feature set Γ = {γωi}
is fed to the SVM committee Φ, where each γωi is the input to a corresponding
φi. The SVM Committee uses voting to determine the class of the corresponding
image. In this way, the fitness function is computed with the Accuracy, which
is the average accuracy of all SVMs in Φ for a given individual. In other words,
Accuracy = 1

|Φ|
∑

x Accφx , summed ∀φx ∈ Φ, where Accφx is the accuracy of the
φj SVM.
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SVM Training Parameters. SVM implementation was done using libSVM
[18], a C++ open source library. For every φ ∈ Φ, the parameter setting is the
same for all the population. The SVM parameters are:

– Kernel Type: A Radial Basis Function (RBF) kernel was used, given by:

k(x, xi) = exp(−‖x − xi‖2

2σ2 ) (1)

The RBF shows a greater performance rate for classifying non linear prob-
lems than other types of kernels.

– Training Set: The training set used was extracted from 90 different images.
– Cross Validation: In order to compute the accuracy of each SVM, we perform

k-fold cross validation, with k=6. In general, the accuracy computed with
crossvalidation will out perform any other type of validation approach [19].
In k-fold cross validation the data is divided into k subsets of (approximately)
equal size. The SVM was trained k times, each time leaving out one of the
subsets from training, but using only the omitted subset to compute the
classifiers accuracy. This process is repeated until all subsets have been used
for both testing and training and the computed average accuracy was used
as the performance measure for the SVM.

4 Experiments with the CALTECH Image Database

The image database [10] contains 240 images from which 120 images contain
several objects and the other 120 correspond to the same images that have
been segmented manually. These images contain objects with different lighting
conditions, in different positions, and with several viewpoints. Each image is
recorded in RGB format with a size of 320 × 213 pixels. The objects belong
to 7 classes: building, trees, cows, airplanes, faces, cars, and bicycles. Because
the number of images was insufficient we add more images from the web. We
select three classes to test the proposed system: building, faces, and cars. We
have two categories for each class: one set of 30 images for training (from [10],
see Figures 2(a), 3(a) y 4(a)) and one set of 50 images for testing (from the
web, see Figures 2(b), 3(b) y 4(b)). All images were cropped to gray level with
a size of 128 × 128 pixels. The parameters of the LGP were 85% crossover, 15%
mutation, 80 generations, and 80 individuals. Next, two noteworthy individual
solutions are presented:

Individual 92.22%. This individual performs very well with a high average
accuracy for training that achieves 92.22%, while the testing is quite good with
73%. This difference is due to the new characteristics of the images downloaded
from the web. The LGP selects only one big region located in the lower part
of the image because most of the cars are in this part of the images. The best
individual obtained in this case is depicted in Figure 5(a), and a photograph with
the corresponding ROI is shown in Figure 5(b). Table 4 presents the confusion
matrix for this individual applied on the ”testing databases”.



Multiclass Object Recognition Based on Texture Linear GP 297

(a) Set of training images (b) Set of testing images

Fig. 2. Images for the class ”building”

Table 1. Confusion matrix obtained for the testing set: 73%

Building Faces Cars

Building 68% 20% 12%
Faces 18% 78% 4%
Cars 14% 14% 72%

(a) Set of training images (b) Set of testing images

Fig. 3. Images for the class ”faces”

Table 2. Confusion matrix obtained for the testing set: 80%

Building Faces Cars

Building 85% 11% 4%
Faces 6% 80% 14%
Cars 12% 12% 76%
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(a) Set of training images (b) Set of testing images

Fig. 4. Images for the class ”cars”

Table 3. Comparison of the Recognition Accuracy

NN NN
k = 2000 k = 216 Gaussian LGP

Feature Selection Hand Hand Hand Automatic
Accuracy 76.3% 78.5% 77.4% 80.0%

Individual 88.88%. Another solution corresponding to an individual with an
average accuracy for training of 88.88% was selected to show the level of classi-
fication. Its average during testing was as high as 80% because the set of testing
images is composed only by the more similar images with respect to the training
stage. Similar to the previous case the best individual selects the lower part of the
images due to its characteristics. This individual is depicted in Figure 5(c), and a
photograph with the corresponding ROI is shown in Figure 5(d). Table 4 presents
the confusion matrix for this individual applied on the ”testing databases”.

Comparison with Other Approaches. The advantage of using a standard
database is that it is possible to compare with previous results. For example, in
[20] the authors proposed a method that classifies a region according to the pro-
portion of several visual words. The visual words and the proportion of each object
are learned from a set of training images segmented by hand. Two methods were
used to evaluate the classification: nearest neighbor and Gaussian model. On the
average [20] achieved 93% of classification accuracy using the segmented images;
while on average the same method achieves 76% choosing the regions by hand.
This last result is comparable to our result. Several aspects could be mentioned:

– The approach proposed in this paper does not use segmented images.
– The ROI was automatically selected by the LGP.
– The images used in the testing stage does not belong to the original database

[10], these images with a bigger difference were obtained from the web.
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Second part:

Best solution

1

x,y h,w V, d, 0 descriptors

1 23 115 123 91 1 1 2

1 1 1 1 1 1 1 1 0 1 0

23, 115 123, 91 1, 1, 2

First part:

region
entropy, contrast, homogeneity, local homogeneity, correlation, uniformity, 
directivity, first order difference moment, inverse moment

(a) Best individual with an Accuracy of 92.22% (b) ROI
found by the
LGP system

Second part:

Best solution

1

x,y h,w V, d, 0 descriptors

56, 40 62, 123 1, 3, 0

1 56 40 62 123 1 1 3

0 1 1 1 1 0 1 0 0 1 0

directivity, inverse moment

First part:

region
contrast, homogeneity, local homogeneity, correlation,

(c) Best individual with an Accuracy of 88.88% (d) ROI
found by the
LGP system

Fig. 5. This images show the best individuals that were found by the LGP approach

We could say that the system presents a positive comparison with respect
to the work published in [20]. Table 3 shows the comparison of our approach
against those proposed by [20].

5 Conclusions

This paper has presented a general approach based on linear genetic programming
to solve multiclass object recognition problems. The proposed strategy searches
simultaneously the optimal regions and features that better classify three different
object classes. The results presented here show effective performance compared
with state-of-the-art results published in computer vision literature.
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16. Howarth, P., Rüger, S. M.: Evaluation of texture features for content-based image
retrieval. Third International Conference on Image and Video Retrieval, LNCS
3115 (2004) 326–334

17. Ohanian, P. P., and Dubes, R. C.: Performance evaluation for four classes of tex-
tural features. Pattern Recognition, 25(8) (1992) 819–833

18. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector ma-
chines, 2001.

19. Goutte, C.: Note on free lunches and cross-validation. Neural Computation, 9(6)
(1997) 1245–1249

20. Winn, J., Criminisi, A., Minka, T.: Object categorization by learned universal vi-
sual dictionary. 10th IEEE International Conference on Computer Vision. 2 (2005)
1800–1807

http://www.vision.caltech.edu/html-files/archive.html
http://www.vision.caltech.edu/html-files/archive.html

	Introduction
	Texture Analysis and the Gray Level Cooccurrence Matrix
	Evolutionary Learning of Texture Features
	Experiments with the CALTECH Image Database
	Conclusions

