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ABSTRACT

Recognizing people at a distance is challenging from various considerations, including sensing, robust processing
algorithms, changing environmental conditions and fusing multiple modalities. This paper considers face, side face, gait
and ear and their possible fusion for human recognition. It presents an overview of some of the techniques that we have
developed for (a) super-resolution-based face recognition in video, (b) gait-based recognition in video, (c) fusion of
super-resolved side face and gait in video, (d) ear recognition in color/range images, and (e) fusion performance
prediction and validation. It presents various real-world examples to illustrate the ideas and points out the relative merits
of the approaches that are discussed ‘

Keywords: Ear Recognition, Face Recognition, Gait Recognition, Multi-modal Fusion, Performance Prediction, Super-
Resolution ‘

1. INTRODUCTION

It has been found to be difficult to recognize a person from arbitrary views in changing environmental conditions
when a non-cooperative subject is walking at a distance. Some of the challenges include low resolution of the video from
single/multiple cameras, changing pose of the subject and uncontrolled illumination conditions. In this paper we address
the following problems associated with recognizing people at a distance.

1. Super-resolution and recognition of facial images in video (section 2).
Gait-based recognition of humans in video (section 3)
Integrated side face and gait recognition in video (section 4)

Ear recognition in registered range and color images of the side face (section 5)
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Performance prediction for sensor fusion (section 6)

2. FACE RECOGNITION IN VIDEO ACQUIRED AT A DISTANCE

There is a growing interest in face recognition and identification for surveillance systems, information security, and
access control applications. In many of the above scenarios, the distance between the objects and the cameras is quite
large, which makes the quality of video usually low and face images quite small. Low resolution is one of the challenges
in video-based face recognition. Enhancing low resolution (LR) images from the video sequence has been studied by
many researchers in the past. Traditional approaches in this area first perform tracking in each frame and then use a
super-resolution (SR) method for obtaining increased resolution of the imagery. This process does not pass on the
benefits of the SR result to the tracking module and inhibits the entire system from reaching its-maximum performance
potential. However, in real applications, small size images not only make the recognition task more difficult, but also
affect the accuracy of face tracking.

We have developed an incremental super-resolution (ISR) technique where SR and tracking are linked together in a
closed-loop system. We assume that a 3D generic model is available. The super-resolved texture that is fed back
improves the accuracy of pose and illumination estimation, which, in turn, improves the SR result in subsequent frames.
We show the comparison between the traditional open loop and our closed-loop framework in Figure 1. Unlike a
traditional approach in (a) which treats registration and SR steps separately, our approach in (b) feeds the super-resolved
3D facial texture back to the tracking algorithm, thus increasing the overall quality of tracking and super-resolving the
texture over time. In order to compare the difference between the open-loop and our closed-loop approaches, we
normalize the illumination to be the same and the pose of SR texture to the frontal pose. The marked points (Figure 1) in
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' the tracking results show the back projection of some mesh vertices using the estimated 3D motion. Since only the first
| frame is mapped for the 3D texture in the open-loop approach, tracking is slightly off, which in turn gives rise to a poor

SR result compared to the closed-loop approach. In our closed-loop super-resolution (SR) approach the fed-back super-
n resolved texture improves the accuracy of tracking for incoming LR frames. The more accurate tracking, in turn,
1“[ ' improves the output of the SR algorithm to acquire better SR texture. Our approach generates SR video by updating the
| super-resolved texture with the incoming frames.
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‘ Fig. 1. Open loop vs. closed loop systems for video-based super-resolution from video.

\ Figure 2 presents the experimental results of comparison between open loop and closed loop systems. Our experimental
! results demonstrate that our closed-loop approach can significantly improve the accuracy of motion estimation and the
| i quality of SR results compared with traditional open-loop approaches. In various experiments [1] we find that in spite of
| large changes of pose and lighting, the final super-resolved texture can reach a PSNR in the range of 26-29 dB, the

! tracking can achieve sub-pixel accuracy with a mean of 0.5 pixel and face recognition can improve over 10-20%. We can
treat the entire face as a single unit or treat it in terms of its parts (eyes, lips, eyebrows, and rest of the face) [2]. Since we
use 3D face model, our approach can integrate the information over multiple frames from a video sequence as parts of
the face become visible from being invisible at the beginning.

e Fig. 2. A comparison of open loop and closed systems for performing super-resolution. First row shows the low resolution
| input images. Notice the change in pose and illumination. The second row shows the results of open loop super-
resolution. The third row shows the results of closed-loop super-resolution. Fourth and fifth row show the illumination
and pose normalized super-resolution images obtained by open and closed loop approaches, respectively.
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3. GAIT-BASED HUMAN RECOGNITION AT A DISTANCE IN VIDEO

We have developed a representation, called Gait Energy Images (GEI) [3-5] to recognize individuals by their gait as
observed in video. GEI is a spatio-temporal compact representation of gait in video. In this representation the entire gait
sequence is divided into cycles according to gait frequency and phase information. GEI captures the major shapes of
silhouettes and their changes over the gait cycle. Silhouettes in each frame can be obtained using a physically based
approach for moving object detection [6]. GEI accounts for human walking at different speeds. It has several advantages
over the gait representation of binary silhouette sequence. It is not sensitive to incidental silhouette errors in the
individual frames. Moreover, with such a 2D template, we do not need to consider the time moment of each frame, and ,
therefore, the incurred errors can be avoided. -

Given the preprocessed binary gait silhouette sequence in the complete cycle(s), the grey-level gait energy image
(GEJ) is obtained by averaging the normalized and aligned silhouette images in the gait cycle(s). Figure 3 shows the
sample silhouette images in a gait cycle from a person and the right most image is the corresponding GEI. The resolution
of each GEI is 300x200.

Various dimensionality reduction techniques such as the Principal Component Analysis (PCA) and subspace
methods can be used to develop a compact set of features from GEI for gait-based individual human recognition. For
example, we have used PCA and multi-discriminant analysis (MDA) and their various combinations for feature level
fusion. A complete set of results on HumanID database, together with their comparison with the state-of-the art
algorithms, is given in [3]. In the next section we combine gait with the side face for human recognition.

Fig. 3. Examples of normalized and aligned siihouette images in a gait cycle; The right most"i'mage is the gait energy ie (GED).

4. SIDE FACE AND GAIT RECOGNITION IN VIDEO

A fusion system, which combines face and gait cues from a video sequence, is a promising approach to accomplish
the task of human recognition at a distance. The general solution to analyze face and gait video data from arbitrary views
is to estimate 3-D models. However, the problem of building reliable 3-D models for non-rigid face, with flexible neck
and the articulated human body from low resolution video data remains a hard one. In recent years, integrated face and
gait recognition approaches without resorting to 3-D models have achieved some success.

The fusion of face and gait is promising in real world applications because of their individual characteristics.
Compared with gait, face images are readily interpretable by humans, which allows people to confirm whether a
biometrics system is functioning correctly, but the appearance of a face depends on many factors: incident illumination,
head pose, facial expressions, moustache/beard, eyeglasses, cosmetics, hair style, weight gain/loss, aging, and so forth.
Although gait images can be easily acquired from a distance, the gait recognition is affected by clothes, shoes, carrying
status and specific physical condition of an individual. The fusion system is relatively more robust compared with the
system that uses only one biometrics. For example, face recognition is more sensitive to low lighting conditions, whereas
gait is more reliable under these conditions. Similarly, when the walker is carrying a heavy baggage or he/she is injured,
the captured face information may contribute more than gait.

We distinguish a side face from a face problem. A face refers to the outline of the shape of a face as seen from the
side. A side face includes not only the outline of the side view of a face, but also the entire side view of eye, nose and
mouth, possessing both shape and intensity information. Therefore, a side face has more discriminating power for
recognition than a face profile [7]. For side face, an Enhanced Side Face Image (ESFI), a higher resolution image
compared with the image directly obtained from a single video frame, is constructed as the face template [8]. For gait,
the Gait Energy Image (GEI), which is used to characterize human walking properties, is generated as the gait template.

We have developed several approaches that integrate information from side face and gait at the feature level and
match score level to recognize non-cooperating individuals at a distance. Compared with the abundance of research work
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1 related to fusion at the match score level, fusion at the feature level is a relatively understudied problem because of the
difficulties in practice. Multiple modalities may have incompatible feature sets and the relationship between different
I“] feature spaces may not be known. Moreover, the concatenated feature vector may lead to the problem of curse of
dimensionality and it may contain noisy or redundant data, thus leading to a decrease in the performance of the classifier.
| *  However, pattern recognition and computer vision systems that integrate information at an early stage of processing are
! ‘ believed to be more effective than those systems that perform integration at a later stage. Therefore, while it is relatively
lﬂif difficult to achieve in practice, fusion at the feature level has drawn more attention in recent years. Among the existing’
research work, feature concatenation is the most popular feature level fusion methodology. Some of the schemes perform
feature concatenation after dimensionality reduction while others perform feature concatenation before feature selection.
In our new feature level fusion scheme [7-10] we propose to fuse information from side face and gait for human
recognition at a distance in a single camera scenario. Multiple Discriminant Analysis (MDA) is carried out after the
| concatenation of face and gait features using PCA based analysis. This allows the generation of better discriminating
| ‘x features and leads to the improved performance. Face features are extracted from Enhanced Side Face Image (ESFI),
| K which integrates face information over multiple frames in video. Similarly, gait features are extracted from Gait Energy
L ‘ Images (GEI). The concatenation of face and gait features generates better discriminating features for improved
: ] recognition performance.
| The problem of curse of dimensionality is reduced since the feature vectors are of lower dimension than those in [8].
| The problem of the curse of dimensionality is reduced in two ways: (a) PCA is used to transform high dimensional face
| . and gait templates to low dimensional feature space; (b) synthetic features are generated based on all possible
& combinations of face and gait features from the same video sequence.
}‘ | The proposed scheme [10] is tested using two comparative data sets to show the effect of changing clothes and face
I8 " changing over time. Moreover, the proposed feature level fusion (PCA followed by concatenation of features and then
MDA) is compared with the match score [evel fusion and another feature level fusion [9] scheme (PCA, MDA and then
the concatenation of features). The experimental results demonstrate that the synthetic features, encoding both side face
and gait information, carry more discriminating power than the individual biometrics features. The experimental results
| show that the proposed feature level fusion scheme [10] is effective for individual recognition in video. It outperforms
| NS the previously published fusion schemes at the match score level (Sum and Max rules) and the feature level [8 9] for
| face- and gait-based human recognition at a distance in video.

" 5. EAR RECOGNITION IN REGISTERED COLOR/RANGE IMAGES |

Ear, a new class of biometrics, has certain advantages over face recognition at a distance. For example, the ear is
rich in features; it is a stable structure that does not change much with age and it does not change its shape with facial
expressions. Furthermore, ear is smaller as compared to face and it can be easily captured from a distance without a fully
K cooperative subject although it can sometimes be hidden with hair, muffler, scarf, and earrings. There are several
‘\ ‘ biometrics techniques using the 2D intensity images. The performance of these techniques is greatly affected by the pose
| variation and imaging conditions. However, an ear can be imaged in 3D using a range sensor which provides a registered
; color and range image pair. A range image is relatively insensitive to illuminations and it contains surface shape
information related to the anatomical structure, which makes it possible to develop a robust 3D ear biometrics.

We have developed a complete human recognition system using 3D ear biometrics [12]. The system has two key
components: 3D ear detection and 3D ear recognition. For ear detection, we propose a two-step approach using the
registered 2D color and range images by locating the ear helix and the antihelix parts. In the first step, a skin color
classifier is used to isolate the side face in an image by modeling the skin color and nonskin color distributions as a
mixture of Gaussians. The edges from the 2D color image are combined with the step edges from the range image to
“ locate regions-of-interest (ROIs) which may contain an ear. In the second step, to locate the ear accurately, the reference
|
|

3D ear shape model, which is represented by a set of discrete 3D vertices on the ear helix and the antihelix parts, is

adapted to individual ear images by following a new global-to-local registration procedure [13] instead of training an

active shape model built from a large set of ears to learn the shape variation. The optimization procedure drives the

W initial global registration toward the ear helix and the antihelix parts, which results in the one-to-one correspondence of
the ear helix and the antihelix between the reference ear shape model and the input image.

l The approach for ear detection is followed to build a database of ears that belong to different people. For ear

recognition, we have developed two representations: the ear helix/ antihelix representation obtained from the detection

il algorithm and a new local surface patch representation computed at feature points to estimate the initial rigid

| transformation between a gallery-probe pair [12]. For the ear helix/antihelix representation, the correspondence of ear
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helix and antihelix parts (available from the ear detection algorithm) between a gallery-probe ear pair is established and
it is used to compute the initial rigid transformation. For the local surface patch (LSP) representation, a local surface
descriptor is characterized by a centroid, a local surface type, and a 2D histogram. The local surface descriptors are
computed for the feature points, which are defined as either the local minimum or the local maximum of shape indexes.
By comparing the local surface patches for a gallery and a probe image, the potential corresponding local surface patches
are established and then filtered by geometric constraints. Based on the filtered correspondences, the initial rigid
transformation is estimated. Once this transformation is obtained using either of the two representations, it is then
applied to randomly selected control points of the hypothesized gallery ear in the database. A modified Iterative Closest
Point (ICP) algorithm is run to improve the transformation, which brings a gallery ear and a probe ear into the best
alignment, for every gallery probe pair. The root mean square (RMS) registration error is used as the matching error
criterion. The subject in the gallery with the minimum RMS error is declared as the recognized person in the probe.

Fig. 4. Ear detection results.

Table 1. Recognition results on UCR and UND datasets using helix/anti-helix and LSP representation..

Helix/anti-helix representation : LSP representation
, Rank-1 | Rank-2 | Rank-3 | Rank-4 | Rank-5 || Rank-l | Rank-2 | Rank-3 | Rank-4 | Rank-5
UCR_ES:(155,155) | 96.771% | 98.06% | 9871% | 98.71% | 98.71% || 9484% 96,77% | 96.77% | 96.17% | 96.71%
UCR ES;(310,592) | 94.43% | 96.96% | 97.80% | 98.31% | 98.31% |l 94.43% | 96.96% | 97.30% | 97.64% | 97.80%
UND(302,302) | 96.03% | 96.69% | 97.35% | 97.68% | 98.01% | 96.36% | 98.01% | 98.34% | 98.34% | 98.34%

‘Dataset

The experiments are performed on the data set collected by us (UCR data set) and the University of Notre Dame
public data set (UND data set). In the UCR data set, there is no time lapse between the gallery and probe for the same
subject, while there is a time lapse of a few weeks (on the average) in the UND data set. UCR data set are captured by
Minolta Vivid 300 camera. The camera outputs a range image and its registered color image in less than one second. The
range image contains 200x 200 grid points and each grid point has a 3D coordinate (x; y; z) and a set of color (r; g; b)
values. During the acquisition, 155 subjects sit on a chair about 0.55-0.75m from the camera in an indoor office
environment. The first shot is taken when a subject’s left side face is approximately parallel to the image plane; two
shots are taken when the subject is asked to rotate his/her head to the left and to the right side within 35 degrees with
respect to his/her torso. During this process, there could be some face tilt as well, which is not measured. A total of six
images per subject are recorded. In total, 902 shots are used for the experiments since some shots are not properly
recorded. Every person has at least four shots. There are three different poses in the collected data: frontal, left, and right.
The UND data set are acquired with a Minolta Vivid 910 camera. The camera outputs a 480 x640 range image and its
registered color image of the same size. In Collection F, there are 302 subjects with 302 time-lapse gallery-probe pairs.
The detection results and shown in Fig. 4 and the recognition results are shown in Table 1. In order to evaluate the
proposed surface matching schemes, we perform experiments under two scenarios: 1) One frontal ear of a subject is in
the gallery set and another frontal ear of the same subject is in the probe set and 2) two frontal ears of a subject are in the
gallery set and the rest of the ear images of the same subject are in the probe set. These two scenarios are denoted as ES1
and ES2, respectively. ES1 is used for testing the performance of the system to recognize ears with the same pose; ES2 is
used for testing the performance of the system to recognize ears with pose variations.

6. FUSION PEERFORMANCE PREDICTION/VALIDATION

In order to increase the recognition system performance, sensor fusion techniques are widely used today. By fusing
different sensors, we may achieve increased accuracy, reduced false alarms and increased range of scenarios for which a
system will function correctly. Given the characteristics of the single sensors, how can we find the optimal sensor
combination which gives the best recognition performance? The traditional approach is to try all possible combinations
of sensors by performing exhaustive experiments to determine the optimal combinations. We have developed a
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| theoretical approach [14] to predict the sensor fusion performance that allows us to select the optimal sensor
combination. In this approach, first, we use the characteristics of each sensor to compute the match score and non-match
score distributions which are modeled as a mixture of Gaussians. Second, we decompose the area under the ROC curve
(AUROC) of the fusion system to a set of AUROCSs which are obtained from the combination of the components from the
match score and non-match score distributions. Third, we use an explicit transformation that maps a ROC curve to a
straight line in 2-D space whose axes are related to the FAR and the Hit rate. Finally, using this representation, we derive
a set of metrics to evaluate the sensor fusion performance and find the optimal sensor combination. By using this
approach, we can determine the optimal sensor combination by computing the metrics instead of performing the
exhaustive experiments. We have also developed another prediction model which is based on the likelihood ratio to
predict the sensor fusion performance. We derive the Fisher measurement for the sensor fusion system to predict the
system performance. In this approach, we model the match score and non-match score as the single Gaussian
distributions. We verify our prediction approach on the multi-modal XM2VTS database, NIST-4 fingerprint database,
ear database and video databases. We use Fowlkes and Mallows index to evaluate the degree of the agreement between
the fusion performance evaluation and prediction. The experimental results show that our prediction approach can
predict the sensor fusion performance effectively.

7. CONCLUSIONS

Video-based human recognition at a distance remains a challenging problem for individual and multi-modal
biometrics systems based on face, gait, side face, and ear. In this paper we have briefly described our work in this area.
These biometrics can be used in both the low and high security scenarios and are of interest in networked applications.
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