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Abstract. Human gait properties can be affected by various environmental con-
texts such as walking surface and carrying objects. In this paper, we propose
a novel approach for individual recognition by combining different gait classi-
fiers with the knowledge of environmental contexts to improve the recognition
performance. Different classifiers are designed to handle different environmental
contexts, and context specific features are explored for context characterization.
In the recognition procedure, we can determine the probability of environmental
contexts in any probe sequence according to its context features, and apply the
probabilistic classifier combination strategies for the recognition. Experimental
results demonstrate the effectiveness of the proposed approach.

1 Introduction

Current image-based individual human recognition methods, such as fingerprints, face
or iris biometric modalities, generally require a cooperative subject, views from certain
aspects and physical contact or close proximity. These methods can not reliably rec-
ognize non-cooperating individuals at a distance in the real world under changing en-
vironmental conditions. Gait, which concerns recognizing individuals by the way they
walk, is a relatively new biometric without these disadvantages. However, gait also has
some limitations, it can be affected by clothing, shoes, or other environmental contexts.
Moreover, special physical conditions such as injury can also change a person’s walking
style. The large gait variation of the same person under different conditions (intention-
ally or unintentionally) reduces the discriminating power of gait as a biometric and it
may not be as unique as fingerprint or iris, but the inherent gait characteristic of an in-
dividual still makes it irreplaceable and useful in many visual surveillance applications.

In traditional biometric paradigms, individuals of interest are represented by their
biometric examples in the gallery data. In general, the gallery examples are obtained un-
der the similar environmental condition (context) and the number of examples for each
individual is limited to one. This setup is good for strong biometrics such as iris and fin-
gerprint, where the inherent discriminating features are abundance. Even if the context
changes, there are still enough features to distinguish one individual from others.

This setup may not be appropriate for gait recognition. Human gait properties can
be affected by various environmental contexts such as walking surface, carrying objects
and environmental temperature. The change of an environmental context may intro-
duce a large appearance change in the detected human silhouette, which may lead to
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Fig. 1. Context-based classifier combination

a failure in recognition. The large gait variation of the same individual under different
contexts requires more gallery examples of all individuals from all possible different
environmental contexts. However, this requirement is unreal due to the complexity of
real-world situations. Due to the difficulty of gait data acquisition, gait gallery examples
are generally obtained under one or several environmental conditions and the number
of examples for each individual is also very limited. Moreover, The environmental con-
texts are too rich in the real world to be entirely included in a gallery dataset.

Different gait recognition approaches (classifiers) character gait properties from dif-
ferent aspects. It is difficult to find a single classifier to effectively recognize individuals
under all environmental contexts without gallery examples from these contexts. One
classifier may be insensitive to the change of one context, while another classifier may
be insensitive to the change of another context. If we can detect the environmental con-
texts of a given probe gait example, it is possible to combine these classifier to improve
the recognition performance. .

In this paper, we propose a context-based human recognition approach by proba-
bilistically combining different gait classifiers under different environmental contexts.
The basic idea is illustrated in Figure 1. First, context properties are learned from con-
text training examples to construct context detectors. The contexts of a given probe gait
examples are then obtained by these context detectors. Assuming that all gait gallery
examples are obtained under the similar environmental contexts, the context changes
between the probe example and gallery examples are obtained. With the gait classi-
fiers designed for individual recognition under different environmental context changes,
these classifiers are probabilistically combined to recognize the probe individual based
on the detected context changes.

2 Related Work

In recent years, various approaches have been proposed for human recognition by gait.
These approaches can be divided into two major categories: model-based approaches
and model-free approaches.

Model-based gait recognition approaches focus on recovering a structural model of
human motion. Niyogi and Adelson [1] find the bounding contours of the walker, and
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fit a simplified stick model on them. A characteristic gait pattern in spatiotemporal vol-
ume is generated from the model parameters for recognition. Yoo et al. [2] estimate hip
and knee angles from body contour by linear regression analysis. Then trigonometric-
polynomial interpolant functions are fitted to the angle sequences, and the parameters
so-obtained are used for recognition. Bhanu and Han [3] propose a kinematic-based
approach to recognize individuals by gait. The 3D human walking parameters are esti-
mated by performing a least squares fit of the 3D kinematic model to the 2D silhouette
extracted from a monocular image sequence. Human gait signatures are generated by
selecting features from the estimated parameters.

Model-free approaches make no attempt to recover a structural model of human mo-
tion. Little and Boyd [4] describe the shape of the human motion with a set of features
derived from moments of a dense flow distribution. Shutler et al. [5] include velocity
into the traditional moments to obtain the so-called velocity moments (VMs). BenAb-
delkader et al. [6] use height, stride and cadence for to identify human. Sundaresan
et al. [7] proposed a hidden Markov models (HMMs) based framework for individual
recognition from their gait. Huang et al. [§] propose a template matching approach by
combining transformation based on canonical analysis, with eigenspace transformation
for feature selection. Similarly, Wang et al. [9] generate boundary distance vector from
the original human silhouette contour as the template, which is used for gait recognition
via eigenspace transformation. Phillips et al. [10] propose a direct template matching
approach to measure the similarity between the gallery and probe sequences by com-
puting the correlation of corresponding time-normalized frame pairs. Similarly, Collins
et al. [11] first extract key frames from a sequence, and the similarity between two se-
quences is computed from the normalized correlation on key frames only. Tolliver and
Collins [12] cluster human silhouettes of each training sequence into & prototypical
shapes. Silhouettes in a testing sequence are also classified into &k prototypical shapes
that are used to compare with those in training sequences.

3 Technical Approach

In this section, we describe the proposed context-based classifier combination for indi-
vidual recognition by gait. The context investigated in this paper is the walking surface
type, but the approach could be extended to other contexts. The system diagram is
shown in Figure 2.

3.1 Gait Representation

‘We assume that silhouettes have been extracted from original human walking sequences.
A silhouette preprocessing procedure [10] is then applied on the extracted silhouette se-
quences. It includes size normalization (proportionally resizing each silhouette image so
that all silhouettes have the same height) and horizontal alignment (centering the upper
half silhouette part with respect to its horizontal centroid). In a preprocessed silhouette
sequence, the time series signal of lower half silhouette size from each frame indicates
the gait frequency and phase information. We estimate the gait frequency and phase by
maximum entropy spectrum estimation [4] from the obtained time series signal.
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Fig. 2. Diagram of context-based classifier combination for individual recognition by gait. The
context investigated in this diagram is the walking surface type

Given the preprocessed binary gait silhouette images By(z,y) at time ¢ in a se-
quence, the grey-level gait energy image (GEI) is defined as follows [13]

1 N
Glz,y) = 5 > Bil(z,) 1)
t=1

where N is the number of frames in the complete cycle(s) of a silhouette sequence,
t is the frame number in the sequence (moment of time), x and y are values in the
2D image coordinate. It reflects major shapes of silhouettes and their changes over the
gait cycle. We refer to it as gait energy image because: (a) each silhouette image is the
space-normalized energy image of human walking at this moment; (b) GEI is the time-
normalized accumulative energy image of human walking in the complete cycle(s); (c)
a pixel with higher intensity value in GEI means that human walking occurs more fre-
quently at this position (i.e., with higher energy). In comparison with binary silhouette
sequence, GEI representation saves both storage space and computation time for recog-
nition and is less sensitive to silhouette noise in individual frames. We use GEI as the
gait representation for individual recognition in this paper.

3.2 Walking Surface Type Detection

Various environmental contexts have effect on silhouette appearance: clothing, shoes,
walking surface, camera view, carrying object, time, etc. Among these contexts, slight
camera view changes may be neglected. Irregular changes in clothing, shoe, carrying
object and time generally cannot be detected. When the same person walks on differ-
ent surface types, the detected silhouettes may have large difference in appearance. For
example, silhouettes on the grass surface may miss the bottom part of feet, while silhou-
ettes on the concrete surface may contain additional shadows. In these cases, silhouette
size normalization errors occur, and silhouettes so-obtained may have different scales
with respect to silhouettes on other surfaces. Figure 3 shows the GEI examples of three
people walking on grass or concrete surfaces in USF HumanID database.

Considering the lower body part difference in silhouettes of people walking on grass
and concrete surface, we use the silhouette energy in the lower body part as the indicator
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Fig. 3. GEI examples of three people (rows) waling on different surface types. First four examples
in each row are on the grass surface, and the others are on the concrete surface

of the walking surface type. Let the bottom row be the first row and leftmost column be
the first column in the image coordinate, the surface type indicator is defined as

Yrrer s oo Gi, 5)
S Row Zj-v:{” G(,5)

where G is a GEI example with the size of Nrow X Ncor, and Nrop is the number
of rows from the bottom. Assuming s has a Gaussian distribution for both grass GEI
examples and concrete GEI examples, the class-conditional probability functions are
estimated from the context training examples as follows

1 (8 = Hgrass)® }
s|grass) = ex -
p( Ig ) \% 27TUgrass P { 2ag'rass

2
(3 - Nconcrete)
f—————— exp < — _5__2—_
2T concrete O concrete

Where figrass and Ograss are the sample mean and sample standard deviation of s for
training examples on the grass surface, and Liconcrete aNd Oconcrete are the sample mean
and sample standard deviation of s for training examples on the concrete surface. These
distributions are different for different Nyop values. The optimal Nyop for discrimi-
nating these two surface types is estimated by maximizing the Bhattacharyya distance
with respect to Nrop:

s(G,Ntop) =

2

p(s|concrete) =

(©))

(Ngrass — Nconcrete)2 1 U% + U%
B = =1 . 4
4(c? + 02) 3" 2010, @

The Bhattacharyya distance is used as a class seperability measure here. The Bhat-
tacharyya distance of the two distribution with respect to different Nzop values is
shown in Figure 4(a). The estimated distribution for optimal Nyop = 6 is shown in
Figure 4(b).
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Fig. 4. (a) The Bhattacharyya distance of the two distribution with respect to different Nrop
values. (b) The estimated distributions of p(s|grass) and p(s|concrete) for Nrop = 6

According to the Bayes rule, we have the following probabilities for probabilistic
classifier combination

P(grass|s) = p(slgm‘:():;(gmss)
P(concrete|s) = P(3|COHcrez:()s})’(concrete). .

3.3 C(lassifier Design

In this paper, we use the real gait classifier for recognizing probe examples having no
surface type change with respect to gallery examples, and synthetic gait classifier for
recognizing probe examples having the surface type change [13].

The real GEI templates for an individual are directly computed from each cycle of
the silhouette sequence of this individual. They are used as the input of real classifier
for recognizing probe examples having no surface type change with respect to gallery
examples.

A statistical feature extraction method by combining PCA and MDA is used for
learning real gait features from training real templates. Let m,; be the mean of real
feature vectors belonging to the ith class (individual) in the gallery set. Given a probe
example P, {R;}, j = 1,...,n, are its real gait templates. The corresponding real
feature vector set is obtained as follows

{Rp}: t;=T:Rj, j=1,.,n

where T, is the learned transformation matrix for real feature extraction. The dissimi-
larity between the probe example and each gallery class is then measured by

. 1 .
D(Rp,wi)=52”rj—mri“’ i=1,..,c (6)
—
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where c is the number of classes in the gallery set. The real classifier is
Decide Pewy if D(Bp,ws)= mci?D(Rp,wi). )
=

Although real gait templates provide cues for individual recognition, all the tem-
plates from the same sequence are obtained under the “same” physical conditions. If
the condition changes, the learned features may not work well for recognition. Let Ry
be the GEI template computed all cycles of a given silhouette sequence. Assume that k
bottom rows of Ry are missed due to some kind of environmental conditions. Accord-
ing to the silhouette preprocessing procedure in Section 3.1, the remaining part needs
to be proportionally resized to fit to the original height. In the same way, we can gener-
ate a series of new synthetic GEI templates corresponding to different lower body part
distortion with the different values of k. The synthetic templates expanded from the
same Ry have the same global shape properties but different bottom parts and different
scales. Therefore, they provide cues for individual recognition that are less sensitive to
surface type changes.

A similar statistical feature extraction method by combining PCA and MDA is used
for learning synthetic gait features from synthetic templates. Let m,; be the mean of
synthetic feature vectors belonging to the ith class (individual) in the gallery set. Given
a probe example P, {S;}, j = 1,...,m, are its synthetic gait templates. The corre-
sponding synthetic feature vector set is obtained as follows

{gp} : §j = TTSJ', J = 1, ey M

where T is the learned transformation matrix for synthetic feature extraction. The dis-
similarity between the probe example and each gallery class is then measured by

. 1 N )
D(sp,wi)=-n22||sj—msi||, i=1,..,c )

j=1

where c is the number of classes in the gallery set. The synthetic classifier is

Decide Pecwy if D(8p,w) = m‘i? D(Sp,wi). ©)
i=

3.4 Probabilistic Classifier Combination

Given a probe example, the probabilities of different surface types are obtained in Equa-
tion (5). The dissimilarities of the probe example of each class in the gallery set are
obtained in Equation (6) and (8), respectively. Notice that the real classifier is designed
for recognizing probe examples having no surface type change with respect to gallery
examples, and the synthetic gait classifier is designed for recognizing probe examples
having the surface type change. If walking surface of gallery examples are grass, the
combined dissimilarly is measures as follows

D(P,w;) = P(grass|s)D(Rp,w;) + P(concrete|s)D(Sp,w;)
D(RPa U.)i)
E;=1 D(Rp,wj)

= P(grass|s) + P(concrete|s) 5 D(Sp, wi)
=

-, D(hatSp,w;)
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Table 1. Twelve experiments designed for human recognition in USF HumanID database

Experiment| Sizeof | Difference between
Label |Probe Set| Gallery and Probe Sets
A 122 View
B 54 Shoe
C 54 View and Shoe
D 121 Surface
E 60 Surface and Shoe
F 121 Surface and View
G 60 Surface, Shoe and View
H 120 Briefcase
I 60 Shoe and Briefcase
J 120 View and Briefcase
K 33  |Time, Shoe and Clothing
L 33 Surface and Time
for i = 1,...,c, where D is the normalized dissimilarity. Assuming P(grass) =
P(concrete), we have
D(P,w;) = P(s|g7'ass)cD(R+wz) + P(s]concrete)M (10)
Zj-_-l D(Rp,wj) Zj=1 D(Sp,w;)
for i = 1, ..., ¢. The combined classifier based on surface context is
Decide P ewy if D(P,wi)= I}E?D(P, wi). an

4 Experimental Results

Our experiments are carried out on the USF HumanID gait database [10]. This database
consists of people walking in elliptical paths in front of the camera. For each person,
there are up to 5 covariates: viewpoints (left/right), shoe types (A/B), surface types
(grass/concrete), carrying conditions (with/without a briefcase), and time and clothing.
Twelve experiments are designed for individual recognition as shown in Table 1. The
gallery set contains 122 sequences. Individuals are unique in the gallery and each probe
set, and there are no common sequence among the gallery set and all probe sets. The
walking surface type in the gallery set is grass.

Phillips et al. [10] propose a baseline approach to extract human silhouette and
recognize people in this database. For comparison, they provide extracted silhouette
data which can be found at the website http://marathon.csee.usf.edu/GaitBaseline/. Our
experiments begin with these extracted binary silhouette data (version 2.1) that are up-
dated on September 5, 2003. The performance of their baseline algorithm are shown in
Table 2. In this table, rank1 means that only the first subject in the retrieval rank list is
recognized as the same subject as the query subject, and rank5 means that the first five
subjects are all recognized as the same subject as the query subject. The performance
in the table is the recognition rate under these two definitions.
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Table 2. Comparison of recognition performance among different approaches on silhouette se-
quence version 2.1 (Legends: baseline - USF baseline algorithm [10]; real - real classifier; syn-
thetic - synthetic classifier; context - proposed context-based approach, this paper)

Rank1 Performance Rank5 Performance
baseline| real |synthetic|context||baseline| real |synthetic|context
73% (89%| 84% | 90% | 88% [93%| 93% | 93%
78% |87%| 93% | 91% || 93% |93%| 96% | 94%
48% |78%| 67% | 80% || 78% |89%| 93% | 89%
32% |36%| 53% | 56% | 66% [65%| 75% | 81%
22% |38%| 55% | 57% || S55% |60%| 71% | 76%
17% |20%| 30% | 27% || 42% |42%| 53% | 53%
17% [28%| 34% | 36% | 38% |45%| 53% | 50%
61% |62%| 47% | 60% || 85% |(87%| 79% | 90%
57% |59%| 57% | 62% || 78% |79%| 81% | 84%
36% |58%| 40% | 57% || 62% |81%| 65% | 84%
3% |3%| 21% 9% 3% |6%| 33% | 18%
3% |6%| 24% | 12% || 15% |9% | 42% | 27%

CIAR[=| =T QMmO 0w >

‘We carry out experiments of human recognition by the real classifier, the synthetic
classifier and the combined classifier based context according to rules in (7), (9), and
(10), respectively. Table 2 shows the recognition performance of USF baseline algo-
rithm and our proposed approaches. Note that the rankl and rank5 performance of
proposed classifiers is better than or equivalent to that of baseline algorithm on all ex-
periments.

The performance of the synthetic classifier is significantly better than that of the real
classifier on experiments D-G and L, where the surface type of probe examples is differ-
ent from that of gallery examples. In other experiments where the surface type of probe
examples is the same as that of gallery examples, the performance of the real classifiers
is better on A, C and G-J, but a little worse on B and K. These results demonstrate the
our designed real and synthetic classifiers is suitable for their desired contexts.

The combined classifier based on the surface context achieves better performance
than individual real feature classifier and synthetic classifier in most experiments. It
is shown that the combined classifier takes advantage of merits in individual classi-
fiers based on the detected context information. In this paper, we only detect and use
the specific context information about the walking surface type, and only design two
classifiers for it. If we can detect or obtain more context information such as carrying
objects, clothing and time, and design the corresponding classifiers, we expect further
improved combination results.

5 Conclusions

In this paper, we propose a context-based human recognition approach by probabilis-
tically combining different gait classifiers with different environmental contexts. First,
context properties are learned from context training examples to construct context de-
tectors. The contexts of a given probe gait examples are then obtained by these context
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detectors. With the gait classifiers designed for individual recognition under different
environmental context changes, these classifiers are probabilistically combined to rec-
ognize the probe individual based on the detected context changes. Experimental results
show that the combined classifier takes advantage of merits in individual classifiers
based on the detected context information.
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