Coevolutionary Feature Synthesized EM Algorithm for
Image Retrieval

Rui Li, Bir Bhanu and Anlei Dong
Center for Research in Intelligent Systems
University of California
Riverside, CA, 92521
1-951-827-3954

{rli, bhanu, adong}@vislab.ucr.edu

ABSTRACT

As a commonly used unsupervised learning algorithm in Content-
Based Image Retrieval (CBIR), Expectation-Maximization (EM)
algorithm has several limitations, especially in high dimensional
feature spaces where the data are limited and the computational cost
varies exponentially with the number of feature dimensions. Moreover,
the convergence is guaranteed only at a local maximum. In this paper,
we propose a unified framework of a novel learning approach, namely
Coevolutionary Feature Synthesized Expectation-Maximization (CFS-
EM), to achieve satisfactory learning in spite of these difficulties. The
CFS-EM is a hybrid of coevolutionary genetic programming (CGP)
and EM algorithm. The advantages of CFS-EM are: 1) it synthesizes
low-dimensional features based on CGP algorithm, which yields near
optimal nonlinear transformation and classification precision
comparable to kernel methods such as the support vector machine
(SVM); 2) the explicitness of feature transformation is especially
suitable for image retrieval because the images can be searched in the
synthesized low-dimensional space, while kernel-based methods have
to make classification computation in the original high-dimensional
space; 3) the unlabeled data can be boosted with the help of the class
distribution learning using CGP feature synthesis approach.
Experimental results show that CFS-EM outperforms pure EM and
CGP alone, and is comparable to SVM in the sense of classification. It
is computationally more efficient than SVM in query phase. Moreover,
it has a high likelihood that it will jump out of a local maximum to
provide near optimal results and a better estimation of parameters.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing — Algorithms, Indexing methods.

General Terms
Algorithms, Experimentation.

' Keywords

Coevolutionary Feature Synthesis, Genetic Programming,
Expectation Maximization algorithm, Semi-supervised Learning,
Content-Based Image Retrieval

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

MM’05, November 6-11, 2005, Singapore.

Copyright 2005 ACM 1-59593-044-2/05/0011...$5.00.

1. INTRODUCTION

High feature dimensionality is one of the major challenges in
content-based image retrieval. The supervised learning (i.e.,
training by using labeled samples) can often overcome the “curse
of dimensionality” in many pattern recognition applications, and
the two representative approaches of modern supervised learning
are support vector machine (SVM) algorithm [1] and boosting
algorithm [2]. However, it is unrealistic to obtain a large amount
of labeled data in CBIR due to the high cost of data collection and
the subjectivity of human’s image perception. For this reason,
unsupervised learning like EM is also widely used in CBIR. But
EM needs a large amount of data especially when feature
dimension is high, which is not always available. Thus, the
learning for image databases usually can only be carried on with
the hybrid labeled/unlabeled data, and this is called semi-
supervised learning [3][4][5].

The basic idea behind these semi-supervised learning approaches
is that a feature transformation and a classifier are learned from
labeled data. The unlabeled data are transformed using the learned
transformation. The labeled data and the transformed unlabeled
data boost each other to improve the class distribution learning.
As the labeled-data-based learning always plays a key role in this
process, we need to find an appropriate method to deal with the
high feature dimensionality of image databases.

Fisher discriminant analysis or multiple discriminant analysis
(MDA) [6] are well-known approaches to obtain discriminant
features by using a linear transformation. They are based on the
assumption of Gaussian distribution. The kernel trick [7] can be
combined with Fisher discriminant analysis so that a nonlinear
transformation is achieved [8].

In the CBIR field, a variety of interesting approaches have been
proposed to deal with high-dimensional features. Swets and Weng
[9] propose a self-organizing hierarchical optimal subspace
learning and inference framework (SHOSLIF) for image retrieval.
The main idea is to recursively implement linear discriminant
analysis on the data subsets obtained from the recursive
subdivision of the data, so that the limitations of the global linear
transformation are overcome. Such a hierarchical linear analysis is
a nonlinear approach in nature. Su et al. [10] exploit principal
component analysis (PCA) for dimensionality reduction by using
relevance feedback. Wu et al. [11] reduce the feature
dimensionality for image databases using the approach of
weighted multi-dimensional scaling (WMDS), whose main
characteristic is to preserve the local topology of the high
dimensional space. The non-negative matrix factorization (NMF)

approach [12] yields a part-based representation instead of a
holistic representation by using non-negativity constraints. It is
found to be useful for face recognition [13] and document
retrieval [14]. The boosting approach [15] is used for image
retrieval as its strong classifier consists of some weak classifiers
corresponding to visual image features [16][17]. He et al.
[18][19] propose the approach of locality preserving projections
(LPP) for face analysis and image retrieval. The advantage of LPP
is that it preserves local information by detecting nonlinear
manifold structure.

Dong and Bhanu [20] use a coevolutionary genetic programming
approach to reduce feature dimensionality. The main idea is to
generate a low dimensional synthesized feature vector from the
original high dimensional feature vector. Compared with the
above methods, CGP does not assume any class distribution in the
original visual feature space; and it yields explicit transformation
for dimensionality reduction so that the images can be searched in
the low-dimensional feature space. However, this supervised
method by itself is not sufficient to solve the problems associated
with CBIR as mentioned earlier.

In this paper, we propose to use a small amount of labeled data to
get a weak classifier using Coevolutionary Feature Synthesis
(CFS) based on CGP and use a large amount of unlabeled data
which characterizes the joint probability distribution across
different features to boost the weak classifiers by exploring
discriminating features in a self-supervised fashion. Thus, a trade-
off between supervised and unsupervised learning is carried out. It
is to be noted that as a hill-climbing algorithm, EM converges at a
local maximum, which may not be the global maximum. Although
not guaranteed, CGP can possibly help to jump out of the local
maximum within EM iterations and potentially allow to achieve
the global maximum.

The contributions of this paper include: 1) a new algorithm which
combines Coevolutionary Feature Synthesis (CFS) with the
Expectation-Maximization (EM) algorithm to boost unlabeled
data; 2) the exploitation of CGP algorithm to reduce the feature
dimensionality; 3) the experimental results on various data sets
and the comparison of different approaches. They show the
efficacy and efficiency of the proposed approach.

The rest of this paper is organized as follows. EM algorithm, CGP
approach and the CFS-EM algorithm are described in Section 2.
Extensive comparisons between CFS-EM, CGP, pure EM and
SVM are presented in Section 3. Section 4 concludes the paper.

2. TECHNICAL APPROACH
In this section, the principle of EM, CGP, CFS-EM and how CFS-
EM can be used in CBIR are described in detail.

2.1 Expectation-Maximization (EM)

We assume feature vectors in low dimension follow a C
component Gaussian Mixture Model (GMM). They can be
regarded as samples of a d-dimensional random variable X, where
X =[xy, ..., x4]" represent a particular sample.

Its probability density function is shown in equation (1). In this
definition, a;, _ ac are the mixture probabilities, so they must be
positive and sum up to 1. Each 6; is the set of parameters for the
ith Gaussian component, which includes mean p; and covariance

697

matrix %;. Thus 0 = { a;__ ac, 61, 6c) is the complete set of
parameters needed to specify the mixture [21].

C C
PO =3 a;f;(X6) =3 a; Fdu, 2
i=1 i=1 [A

a;>0,i=1,-,C,and gai =1
i=1 @

w3 e

1 1
f 0"“1"2;‘) = We@[—z

Given a set of N independent samples of X: x={x, ..., x™}, the
log-likelihood corresponding to the mixture is:

tog p(x16) = g 11 ph"le)= & g £ o) 2

The goal is to find § which maximizes log p(X18) (maximum
likelihood, ML) or log p(x10)+log p(8) (maximum a posteriori,
MAP).

Expectation-Maximization (EM) is such an algorithm [22]. It is
based on the interpretation of X as incomplete data. For Gaussian
mixtures, the missing part is a set of N labels 7 =[y", ... | y™]
associated with the N samples, indicating which component
produced each sample. y® =[y®,..., yc®] , where 3, =1 and

yj(") =0 for j# k, means that sample y(“) was produced by the kth

component. The complete log-likelihood is

C
log plxor |6') = nléliél y,(”) log[aip(x(")|9i)] €)

The EM algorithm produces a sequence of estimates { é(t), t=

0,1,2,...} by alternatively applying the following two steps until
some convergence criterion is met:

¢ E-step: Compute the conditional expectation of the complete

log-likelihood, given X and the current estimate é(t) The
result is the so-called Q-function:

Q(ﬁ,é(t)) EE[logp(X,D’ 16)I X,é(t)]: logp(x,ZB) 4)

In this equation, because of the linearity of logp(X,%'19) with
respect to 9, we only need to compute the conditional

expectation Z = E[Y]X, é(t)]. Explicitly, they are given by

equation (5), where z™ is a posteriori probability that y,™

=1, after observing x®.

, 7, ®)|g.
Zi(n) = E[y'(n) X, 9"(’)]= Pr[y,(") — IX("),é(t)]= Cau (t)p(x z(t)) (5)
3 &, 6)pk]5, ()
j=1
® Mb-step: Update the parameter estimates according to
é(t +1) = argmax Q(B, é(t)) 6)
6

in the case of ML estimation, or

é(t + 1) =arg ;nax{Q(H, é(t))+ log p(H)} 7

in the case of MAP estimation.

In our approach, ML estimation is used.

2.2 Coevolutionary Feature Synthesis
Coevolutionary feature synthesis is a coevolutionary gen.etic
programming (CGP) approach. It creates low dimensional synthesized
feature vectors from the original high dimensional feature vectors. The
reduction is implemented by applying a series of operators on the
original visual features. Such operators are called composite operators,
which are represented by binary trees with primitive operators as
internal nodes and original features as leaf nodes. These binary trees
map the original feature space to the low-dimensional synthesized
feature space, in which the images belonging to the same class fqnn a
Gaussian component no matter how these images are distributed in Fhe
original visual space. Theoretically this makes EM in low dimension
possible.

The search space of all possible composite operators is so large that it
is extremely difficult to find good composite operators from this vast
space unless a smart search strategy is used. We follow the CGP
algorithm proposed in [20], which attempts to hnp.rc{ve the
performance of object recognition. Figure 1 shows the training and
testing module of the system. During training, CGP runs on labelfsd
training images and evolves composite operators to obtain composite
features. Since a Bayesian classifier is derived from the feature vectors
obtained from training images, both the composite operator vector and
the classifier (blocks in shade) are learned by CGP. During testing,
composite feature vectors are first obtained by applying the composite
operators on primitive features of the testing image, and then a
Bayesian classifier is used for classification.

Trainin Feature Primitive
Extra(fr/ Features

— Coevolutionary
Primitive > Genetic
Operators Programming

)

Fitness
Evaluator

(a) Training module: learning composite operator vectors

and a Bayesian classifier
Testing images Feature Extractor Primitive Features

Classification
Result

(b) Testing module: applying learned composite operator
vector and the Bayesian classifier to a test image

Figure 1. System diagram for image classification using
coevolutionary genetic programming.

2.2.1 Composite Operators (Binary Tree)

The composite operators are represented by binary trees with
primitive image features as the leaf nodes and primitive operators
(ADD, SUB, etc.) as the internal nodes. Primitive operators will
be explained in the next subsection in detail. Each tree
corresponds to one composite operator, which operates on the
primitive features and gives a composite feature at the root node.
Figure 2 gives two sample composite operators, which are real
data from our experiments. Note that not all the original features
are necessarily used in feature synthesis.

o
B
O® G Guse>
OO
Figure 2. Sample composite operators: leaf nodes (round nodes
labeled as 1, 4, 5, etc.) are original visual features and inner
nodes (oval nodes labeled as ADD, SUB, etc.) are primitive

operators: a simple composite operator (left figure) and a
complex composite operator (right figure).

2.2.2 Primitive operator set

A primitive operator is a node in the composite operator that takes
one or two real numbers, performs.a simple operation on them
and outputs the result. Table 1 shows the 12 primitive operators
being used, where a and b are real numbers as input to an operator
and c is a constant real number stored in an operator.

Table 1. Twelve primitive operators.

Primitive Operator Description
ADD (a, b) Add a and b.
SUB (a, b) Subtract b from a.
MUL (a, b) Multiply a and b.
DIV (a, b) Divide a by b.
MAX2 (a, b) Get the larger of a and b.
Return \/Z if a 2 0; otherwise,
SQRT () return — \/Ta_ .
ADDC (a, c) Add constant value c to a.
SUBC (a, ¢) Subtract constant value ¢ from a.
MULC(a, ¢) Multiply a with constant value c.
DIVC (a, ¢) Divide a by constant value c.
MIN?2 (a, b) Get the smaller of a and b.
LOG (a) Return l:-)ftfz)n if_alig(zi :)t.herwise,

2.2.3 Fitness measure

The fitness of a composite operator vector is computed in the
following way: first apply each composite operator of the
composite operator vector on the original features of training
images to obtain composite feature vectors of training images and
then feed them to a Bayesian classifier. The classification
precision of the classifier is the fitness of the composite operator
vector.

2.2.4 Parameters and termination

The key parameters are the number of sub-population number S,
the population size M, the number of generations G, the crossover
and mutation rates, and the fitness threshold. GP stops whenever
it finishes the specified number of generations or the performance
of the Bayesian classifier is above the fitness threshold. After
termination, CGP selects the best composite operator of each sub-
population to form the learned composite operator vector to be
used in testing.

2.2.5 Selection, crossover and mutation

The CGP searches through the space of composite operator
vectors to generate new composite operator vectors. The search is
performed by selection, crossover and mutation operations. The
initial sub-populations are randomly generated. Although sub-
populations are cooperatively evolved (the fitness of a composite
operator in a sub-population is not solely determined by itself, but
affected by the composite operators from other sub-populations),
selection is performed only on composite operators within a sub-
population and crossover is not allowed between two composite
operators from different sub-populations.

Selection: The selection operation involves selecting composite
operators from the current sub-population. In this paper,
tournament selection is used and the tournament size is 5. The
higher the fitness value, the more likely the composite operator is
selected to survive.

Crossover: Two composite operators, called parents, are
selected on the basis of their fitness values. The higher the
fitness value, the more likely the composite operator is selected
for crossover. One internal node in each of these two parents is
randomly selected, and the two subtrees rooted at these two
nodes are exchanged between the parents to generate two new
composite operators, called offspring. It is easy to see that the
size of one offspring (i.e., the number of nodes in the binary
tree representing the offspring) may be greater than both parents
if crossover is implemented in such a simple way. To prevent
this code bloat, we specify the maximum size of a composite
operator (called max-operator-size). If the size of one offspring
exceeds the max-operator-size, the crossover is performed again.
If the size of an offspring still exceeds the max-operator-size
after the crossover is performed 10 times, GP selects two
subtrees of same size (i.e., the same number of nodes) from two
parents and swaps the subtrees between the parents. These two
subtrees can always be found, since a leaf node can be viewed
as a subtree of size 1.

Mutation: To avoid premature convergence, mutation is
introduced to randomly change the structure of some composite
operators to maintain the diversity of sub-populations. Candidates
for mutation are randomly selected and the mutated composite
operators replace the old ones in the sub-populations. There are
three mutations invoked with equal probability:

699

* Randomly select a node of the composite operator and
replace the subtree rooted at this node by another randomly
generated binary tree.

* Randomly select a node of the composite operator and
replace the primitive operator stored in the node with another
primitive operator randomly selected from the primitive
operators of the same number of input as the replaced one.

* Randomly select two subtrees of the composite operator and
swap them. Of course, neither of the two subtrees can be a
subtree of the other.

2.2.6 Generational Coevolutionary Genetic
Programming

Generational coevolutionary genetic programming is used to
evolve composite operators. The generational coevolutionary
genetic programming algorithm is shown in Algorithm 1.

Algorithm 1 Generational Coevolutionary genetic programming
(CGP)

Input: primitive feature vectors, class number, primitive operator num
Output: composite operator vector, Bayesian classifier in low dim.
Begin:
1. Randomly generate S sub-populations of size M and evaluate each
composite operator in each sub-population individually.
2.FOR gen=1to GDO

FORi=1to S DO

1) Keep the best composite operator in sub-population P;

2) Perform crossover on the composite operators in P; until the
crossover rate is satisfied and keep all the offspring from
Crossover.

3) Perform mutation on the composite operators in P; and the
offspring from crossover with the probability of mutation
rate.

4) Perform selection on P; to select some composite operators
and combine them with the composite operators from
crossover to get a new sub-population P; of the same size as
P;.

5) Evaluate each composite operator COj, j=1,..,MinP;.

6) Perform elitism replacement.

7) Form the current best composite operator vector consisting
of the best composite operators from corresponding sub-
populations and evaluate it. If its fitness is above the fitness
threshold, goto 2).

END FOR
END FOR
3. Select the best composite operator from each sub-population to
form the learned composite operator vector and output it.
End

The GP operations are applied in the order of crossover, mutation
and selection. The composite operators in the initial sub-
populations are randomly generated. A composite operator is
generated in two steps. In the first step, the number of internal
nodes of the tree representing the composite operator is randomly
determined as long as this number is smaller than half of max-
operator-size. Suppose the tree has p internal nodes. The tree is
generated from top to bottom by a tree generation algorithm. The
root node is generated first and the primitive operator stored in the
root node is randomly selected. The selected primitive operator
determines the number of children the root node has. If it has only
one child, the algorithm is recursively invoked to generate a tree
of p-1 internal nodes; if it has two children, the algorithm is
recursively invoked to generate two trees of (p-1)/2 and (p-1)/2

internal nodes, respectively. In the second step, after all the
internal nodes are generated, the leaf nodes containing original
features are attached to those internal nodes that are temporarily
the leaf nodes before the real leaf nodes are attached. The number
of leaf nodes attached to an internal node is determined by the
primitive operator stored in the internal node. In addition, an
elitism replacement method is adopted to keep the best composite
operator from generation to generation.

To-evaluate CO; for Step 5) in Algorithm 1, select the current best
composite operator in each of the other sub-populations, combine
CO; with those S-1 best composite operators to form a composite
operator vector where composite operator from the kth sub-
population occupy the kth position in the vector (k= 1,..., S). Run
the composite operator vector on the original features of the
training images to get composite feature vectors and use them to
build a Bayesian classifier. Feed the composite feature vectors
into the Bayesian classifier and let the recognition rate be the
fitness of the composite operator vector and the fitness of Co,.

2.3 Coevolutionary Feature Synthesized-EM
(CFS-EM)

In our research, we combine CGP with EM, to overcome the high
dimensional visual feature classification task by integrating
supervised and unsupervised learning paradigms and identifying
most discriminating features in a self-supervised fashion. The
CFS-EM algorithm is described in Algorithm 2.

Algorithm 2 Coevolutionary feature synthesized - EM (CFS-EM)

Input: labeled training dataset L from C classes in original feature
space
Unlabeled training dataset U in original feature space
Synthesized feature dimension d
CGP parameters (population size, crossover rate, mutation
rate, maximum composite operator size, etc.)

Output: Composite operator vector CO(s)
Bayesian classifier in low dimension 0

Begin:

Initialization:
CO(*) = CGP(L).
6 = ML(1).
1= CO(L), u = CO(U).
CFS-EM iteration:
Hill climbing:
1) Getlabels (2) for I + u (calculate Z based on equation 5).
2) Modify labels (2) for / based on ground truth.
3) Update 4 based on 2.
4) If 6 does not change much, goto 5), otherwise, goto 1).
Jump out of local maximum:

5) D=LU+ z.
6) CO() = CGP(D).
7) I=CO(L), u = CO(U).
8) Get labels for [+ u (calculate Zbased on equation 5).
9) Update 6 based on labels (2) and [+ u, goto 1).

end

In the initialization, the CGP is applied on C classes of labeled
training data (L) to get a composite operater vector and a
Bayesian classifier represented by the Gaussian distribution
parameters 6. Both labeled training data (L) and unlabeled
training data (U) are transformed into low dimension (/+u) using
this composite operator vector. In CFS-EM iteration, firstly ‘EM
hill climbing’ is applied on this low dimension dataset to find a

locally optimal Bayesian classifier. The stopping criterion for EM
is that the parameters () do not change for two consecutijve
iterations. At this time, both L and U are ‘labeled’ by the Bayesian
classifier. In the ‘Jump out of local maximum’ step, CGP can be
applied on the ‘labeled’ whole dataset to find a better composite
operator vector. Then the Bayesian classifier can be updateq. The
‘Hill climbing’ and ‘Jump out of local maximum’ steps iterate
until a certain number of iterations or a satisfactory classification
performance is reached.

Figure 3 shows a conceptual illustration for hill climbing/jumping
out of local maximum procedure. The mountain depicts the
classification performance. The higher the position is, the better
the performance is. First CGP find a classifier, then EM makes the
classifier better by climbing to a local peak. In the next iteration,
CGP finds a new classifier which helps it jump out of local peak
so that EM can perform hill climbing again. This procedure lasts
until global peak is reached or an acceptable performance is
achieved. (a) shows the ideal situation, where CGP jumps higher
than EM. In reality, it does not always jump higher. When it
jumps out of the local maximum, it may go down to the valley, as
illustrated in (b). But after enough iteration, the global peak can
be possibly reached.

iteration 3

t EM /> S\EM
5

(@) “)
Figure 3. Conceptual illustration for hill climbing/jumping out
of local maximum iterations by CGP/EM hybrid.

The advantages of CFS-EM are: 1) the unlabeled data can be
boosted with the help of the class distribution learning using CGP
feature synthesis approach; 2) it synthesizes low-dimensional
features based on coevolutionary genetic programming (CGP)
algorithm, which yields optimal nonlinear transformation and
achieves classification performance comparable to kernel methods
such as support vector machine (SVM); 3) the explicitness of
feature transformation is especially suitable for image retrieval
because the images can be searched in the synthesized low-
dimensional space, while kernel-based methods have to make
classification computation in the original high-dimensional space
using all the labeled training data.

2.4 CFS-EM for image retrieval

CFS-EM is a general classification algorithm. In this paper, we
apply it to CBIR application to demonstrate its efficacy. The
system diagram is shown in Figure 4.

In training, the inputs are labeled and unlabeled data. By applying
CFS-EM algorithm, best composite operator vector CO(+) and
Bayesian classifier in low dimension (two blocks in shade) are
obtained. In testing, a query image is transformed into a low
dimension synthesized feature vector by applying the composite
operator vector. Then this synthesized feature vector is classified
using the Bayesian classifier. The images that are the nearest
neighbors are returned as the retrieval result.

. 1
""""""""""" I i

1
) [
* [Labeled training ! i
| > Guery mage
! CFS-EM| | & dimension
! Unlabeled !
! | training data U ™

1

Classification of
query image
v
Return images in

that class as
retrieval result

Figure 4. System for applying CFS-EM to CBIR.

3. EXPERIMENTAL RESULTS

To evaluate the efficacy of CFS-EM approach for classification,
we implemented the CFS-EM algorithm on a synthetic database
and two image databases. We compared our classifier with pure
EM, CGP approach [20] and SVM. SVM is commonly known as
the best classifier. It has shown better performance for various
imaging applications. So comparison with SVM is a reasonable
choice.

The programs are written in C++. They are compiled using g++
2.95 and run on a Sun Microsystems sun4u with 2048MB
memory. The operating system is Solaris 2.8.

3.1 Datasets

For experimental purposes, our databases are all labeled. So we
divide the whole database into halves. One half is for training and
the other half is for testing. Within training data, part of the data
are defined as labeled (L) and the rest of the data are defined as
unlabeled (U), as illustrated in Figure 5.

The performance of the classifier is evaluated for three databases:
synthetic database Syn-3000, real image databases Corel-1200
and Corel-1500. Both Corel-1200 and Corel-1500 are selected
from Corel Stock Photo Library [23] that contains 200 CDs
corresponding to 200 classes and each CD has 100 images.

testing data

training data = L +U

Figure 5. Data assignment for training/testing.

3.1.1 Syn-3000
3 classes of 5 dimensional multivariate Gaussian distribution are
created manually. 1000 samples for each class are generated as the

feature vectors. The means and covariance matrices are shown
below:

w=l 00 0 0 Hy=[-1 0 0 0 o] 5= 000 0]

701

(1 3 .05 07 1]
3 1 08 02 0
£,=/05 08 05 2 1

05 2 05 1 2]
2 0503 1 02

1 1 0102 04
L2 02 08 04 5|

1 2 0 05 2
2 04 1 06 01
L;=[0 1 06 2 1

3.1.2 Corel-1200

We select 1200 images belonging to 12 classes, and the images in
each class have similar visual features, i.e., each class in the
feature space forms a cluster.

Figure 6 shows sample images for each class. These 12 classes are
corresponding to the CDs (series number) in the library including
Mayan & Aztec Ruins (33000), horses (113000), owis (75000),
sunrises & sunsets (1000), North American wildflowers (127000),
ski scenes (61000, 62000), coasts (5000), auto racing (21000),
firework photography (73000), divers & diving (156000), land
of the Pyramids (161000) and lions (105000).

Figure 6. Sample Image of the 12 classes in the database
obtained from Corel stock photo library.

Images are represented by texture features, color features and
structural features. Thel6 texture features aremeans and standard
deviations derived from 8 Gabor filters (2 scales and 4
orientations) [24]. We also extract means and standard deviations
from the three channels in HSV color space. For structural
features, we use the water-filling approach [25] to extract 18
features from each image. Thus, each image is represented by 40
visual features. The features are normalized to 0-100 before the
experiments.

3.1.3 Corel-1500

We add 300 images (from other three CDs in the Library) into
Corel-1200 to obtain Corel-1500. The three new CDs (series
number) are hawks and falcons (70000), rigers (108000) and
tulips (258000). Each of these three CDs is merged to one existing
CDs in Corel-1200 to form a class, so that Corel-1500 still has 12
classes. In these 12 classes, there are three classes each of which
consists of two clusters in visual feature space: the CD of hawks
and falcons and the CD of owls form the class of bird, the class of
tulips and the class of North American wildflowers form the class

T T A

B s e i e s

o

of flowers, and the class of tigers and the class of lions form the
concept of wild beasts.

Figure 7 shows the sample images of these three classes
containing multiple CDs. Obviously, Corel-1500 is challenging
for pure EM and linear transformation approach such as multiple
discriminant analysis (MDA). The Same 40 features as in Corel-
1200 are extracted for this database.

(2) CD hawks and falcons
Class Bird

(1) CD owis

(2) CD wildflowers
Class Flower

(1) CD tulips

(2) CD lions
Class Wild Beast

(1) CD tiger

Figure 7. Corel-1500: sample images from three classes
containing multiple CDs.

3.2 Classification Performance Comparisons
3.2.1 Syn-3000:

Classification precision is compared among pure EM, CGP, CFS
EM and SVM (linear kernel function, Raidial Basis Function
(RBF) kernel function and polynomial kernel functions) on Syn-
3000. Pure EM uses parameters estimated from labeled training
data (L) as the initial condition. CFS-EM is trained based on L
and U. As supervised learning scheme, CGP and SVM use L for
training. -

For CFS-EM, there are 10 iterations for each run and the
performance of the best iteration is picked as the performance of
that run. Then we run the algorithm for 10 times and average the
performances to describe the average behavior of the classifier.
For CGP, we run it 10 times and average the performance as well.

Both CGP and CFS-EM uses the same GP parameters: (a) sub-
population size: 50; (b) crossover rate: 0.6; (c) number of
generation: 50; (d) mutation rate: 0.05; (e) fitness threshold: 1.0;
(f) tournament size: 5; (g) composite operator num: 2. There has
been a lot of discussion about how to choose GP/GA parameter
during the past decades. The set of parameters used in this paper
is empiricdlly decided based on the database size, number of
classes, etc [26][27]. Here we reduce the feature dimensionality
from 5 to 2. Note that SVM runs on 5 dimensional data vs. 2
dimensions for CFS-EM.

Figure 8 shows the classification performance of each classifier
with regard to the percentage of labeled training data. For CFS-
EM and CGP, each point depicts the average performance of 10
runs. As a CGP/EM hybrid, CFS-EM is better than CGP and pure
EM alone. CFS-EM has almost the same performance as linear
SVM. But when kernel function changes, SVM gives much worse
performance (see RBF SVM and polynomial SVM). This

702

demonstrates how the performance of SVM depends on the kerne]
function. However, CFS-EM does not have this problem. Thig
figure also shows all the six classifier give higher classification
precision when percentage of labeled data increases. Especially
for CFS-EM, the performance improves ~12% when the labeled
data percentage increase from 5% to 10% and only increage
another 2-3% when labeled data increase to 95%. This means jf
the users do not care about the 2-3% difference in performance,
10% labeled data are enough, which could save a lot labeling
work!

Figure 9 shows the distribution of all samples in low dimension
(2D) after applying the composite operators from CFS-EM. It can
be seen that three classes are well separated.

1 T T

8.9+ E
< L E
5%
(3}
8 07 4
— 4
ook
Cael
.QD.E g f 4
=
®oap E
Soa e
pﬁ- 0.3+ =3¢ linear WM E
%) ~§- CFS-EM
Wag} @ cop E
O - RBF SVM

01k — polynommial S¥M | |

- pure EM
0 L L L e b P =
i 10 20 30 40 50 60 70 80 90 100

percentage of labeled data

Figure 8. Classification precision comparison for Syn-3000.

0.1 T T T T T T T
8o
& class 1 @o
< class 2
0.08 ¢ x class 3 I 1
x
D.0BF 4
0:04 + @ &} b
0:02+ o J
x
0 -
& [0}
fol
0062 s \ . 4) S 1
65 7 75 8 85 9 95 10 105 11

Figure 9. Distribution of three classes in 2D using CFS-EM

3.2.2 Corel-1200:

Classification performance is compared among CGP, CFS-EM
and SVM on Corel-1200 database. Pure EM is not used here
because each class has only around 50 images for training, which
are not enough for estimating a 40 dimensional Gaussian
distribution. Both CGP and CFS-EM uses the same GP
parameters: (a) sub-population size: 50; (b) crossover rate: 0.6; (c)
number of generation: 10; (d) mutation rate: 0.05; (e) fitness
threshold: 1.0; (f) tournament size: 5; (g) composite operator num:
6. We reduce the feature dimensionality from 40 to 6.

Figure 10 shows the classification precision comparison. It shows
that when percentage of labeled data increases, performances of
all the five methods increase. CFS-EM is higher than CGP. The
performance of CFS-EM is comparable to linear SVM. Similar to
Figure 8, RBF and polynomial SVM are much worse than CFS-
EM. Since GP is slow, we only run 10 generations (50 for Syn-
3000). If more GP generations are run, it is reasonable to believe
CFS-EM will perform better. But more important than a small
difference in the classification error, CFS-EM gives an explicit
transformation, while SVM does not. This makes retrieval more
efficient. This has been verified in this experiment. Linear SVM
test needs ~5 seconds but CFS-EM only needs less than 1 second.
Note that SVM runs on 40 dimensional feature vectors vs. 6
dimensions for CFS-EM. This advantage in computational cost
will be addressed later in subsection 3.4.

0.9 1
< E
o 0:8 :
o0 g
8 67
= 8 £
Q.D -—)’(-_ lineat-SYM
c - CFS-EM
o 0&¢ @ CGP
=1 - RBF SYM
3 0.4 | = polynomial SvM b
Ho3t 1
0
Bpat 1
Q

0.1

g 10 20 30 40 50 60 70 80 90 100

percentage of labeled data

Figure 10. Classification precision comparison for Corel-1200.

3.2.3 Corel-1500:

Classification performance is compared among CGP, CFS-EM
and SVM on Corel-1500 database. Same trend as Corel-1200 is
observed (shown in Figure 11), except the overall classification
precision is little lower. SVM runs on 40 dimensional feature
vectors vs. 6 dimensions for CFS-EM.

e ; ; S ;
=3¢ linear SYM
got CES-EM 4
& coP
S8l |- RBF SVM . ;
% —=_polynomial SYM
g 07F &
‘5_0.5 E
Sos :
2
827 T
So3 , 1
7] 4————4—”‘4/
L2 -]
O
01} E
0 T — SE— —
01 20 30 4 &0 &0 70 83 98 100

percentage of labeled data

Figure 11. Classification precision comparison for Corel-1500.

703

3.3 Hill climbing/CGP process

As stated in Section 2.3, in CFS-EM, CGP helps EM to jump out
of the local maximum. Figure 12 shows a real example on Syn-
3000 dataset (L: 40%, U: 60%). X-axis is the iteration number,
from 1 to 10. Y-axis is the classification precision on training data
(L+U). Blue bars show CGP performance and magenta bars show
EM performance. This figure demonstrates the performance
improvement: in 10 iterations the performance increases gradually
from 84% to 94%. In iteration 1, CGP gives an initial condition
based on labeled training data L (first blue bar), then when
bringing in unlabeled training data U, EM hill ‘climbs’ and
reaches a local peak (indicated by magenta bars). EM does not
actually ‘climb’ in the first iteration, since more unlabeled
training data than labeled training data (60% vs. 40%) are brought
in and they might have different distribution than L, so the overall
performance degrades. However, in the next iteration, CGP helps
it jump out of the local maximum and EM does hill climb. This
scheme does not guarantee a better performance than the previous
iteration as shown in the conceptual illustration in Figure 3 (b),
e.g., iteration 4 has almost the same behavior as iteration 3. But it
is getting better in the long-term. Classification precision
increases about 10% after 10 iterations.

In this iterative process, CGP serves in both a feature synthesis
role and in a perturbation role to make EM in high dimension
possible and allow it jump out of a local maxima to pursue the
global maximum.

Tr T T T T T T T —— —

3 coP ||
osat =

o o
£ 8
.

o
(s}
N

classification precision
o)
0

083t

D86+

0:84 +

082

08 3 4 5 B 7 8
iteration

Figure 12. Classification precision for each iteration
describing hill climbing/CGP process.
3.4 Computational cost: CFS_EM vs. Linear
SVM

In image retrieval, query time is of great concern since users will
not wait for minutes to get an answer. Compared with linear
SVM, the gain in computational cost during query phase of our
CFS-EM algorithm is large especially when original feature
dimension is high. The parameters that affect query time for CFS-
EM and linear SVM are:

C - class number

D - original feature dimension

d — composite feature dimension

T — amount of labeled training data

o — percentage of support vectors in labeled training data

K — maximum number of nodes for composite operator

For CFS-EM, the maximum computational cost of one query is
shown in equation (8). The first term is for composite operator
transformation. Given K as the maximum number of nodes in a
tree, the maximum computation is K when all the primitive
operators have only one operand and all the K nodes are used. d
composite operators gives the computational cost as O(K-d).
Calculation of the Gaussian probability for C classes requires
O(C-d*). To find the nearest class we need to find the largest
probability among C classes, which has the computational cost of
O(C). Thus, the total cost is:

o(k-d) +olc-a?)+ o(c)

transformation ~ Bayesian find the ‘ 8)
classification ~ closestclass

For linear SVM, the classification of X is defined in equation (9),
where x; , i = 1,..., aT are the support vectors, () is the inner

product and a;, i = 1,..., aT and b are the parameters learned from
SVM training. From this definition, the computational cost ‘is
O(D-aT). ‘

flx)= sign{i @ {x;,x) + b} ©)

Figure 13 shows the computational cost comparison between
CFS-EM and linear SVM with reference to the percentage of
labeled training data for Corel-1200. The dotted line is the
maximum cost of CFS-EM and the solid line is the cost of linear
SVM. It can be seen that linear SVM cost varies linearly with
percentage of labeled training data while the cost of CFS-]?,M
does not. Other kernel functions needs even more computation
than linear SVM. The figure shows that even when there are only
5% labeled training data used for linear SVM, it needs more
computation than CFS-EM in the query phase.

As mentioned in Section 3.2.2, in real experiment on Corel-1200,
the total query time of 600 images is ~5 seconds for linear SVM
while less than 1 second for CFS-EM, which verifies our
computation.

1200

1100 - R 7
i CFS-EM (max)
<= Lingar SYM

1000

&
(=

computational cost
g 8

3
(=}

8
=]

.
400-' B 7 8 9 10

percentage of labeled training data
Figure 13. Computational cost: CFS-EM vs. Linear SVM. (For

Corel-1200 DB, C =12,D = 40,d = 6, T = 600*(5%~10%), a =
0.5,K =10)

When the percentage of labeled data is fixed, computational cost
of linear SVM is linear in the dimension of original feature vector
while it is fixed for CFS-EM. From Figure 14 we can see when
the dimension of original feature vector is larger than 10, CFS-
EM is faster than linear SVM. In both Corel-1200 and Corel-
1500, the original feature dimension is 40. It is believed that in
most cases in practice, original dimension will be more than 10.

BO00
CFS-EM (max)

5000+ === Linear SVM B
2
S 400t
™
5
= 3000+ 4
w
et
=
o
gznun-
©

1000} E

o
% 0 2 3 4 & 6 0 8 o i

dimensionality of original feature vector

Figure 14. Computational cost: CFS-EM vs. Linear SVM.
(For Corel-1200 DB, C =12,D = 6 ~100,d = 6, T = 600%20%,
a=0.5,K=10)

3.5 Discussions .
From experiments on both synthetic data and real image data, we

" find that CFS-EM gives better classification performance than

CGP and EM alone. CFS-EM initializes from CGP result and hill
climbs for more than once, while pure EM starts randomly and
only hill climbs once. So CFS-EM is more likely to perform better
than CGP and pure EM alone. In the comparison between CFS-
EM and SVM, the performance of linear SVM is a couple of
percentage points higher than CFS-EM, but the performance of
RBF SVM and Polynomial SVM are much less. This reveals the
key problem of kernel based methods: performance largely
depends on the kernel function. However CFS-EM has no such
limit. The small difference in performance between CFS-EM and
linear SVM can possibly be reduced by running CGP for a larger
number of generations within CFS-EM. Additional experiments
show that CFS-EM also outperforms a combination of MDA and
EM: D-EM [5]. For the computational cost comparison, since
CFS-EM generates an explicit transformation from high
dimension to low dimension, CFS-EM is far more efficient than
SVM in the query phase. Moreover, CFS-EM can effectively
solve the local maximum problem by integrating CGP with EM.
Therefore, for real-time image retrieval, considering classification
precision, computational time, and the convergence behavior
CFS-EM outperforms SVM. ‘

CFS-EM has some limitations. Firstly, during training it needs
more learning time than SVM. When the database is not updated
often, the long offline training time is not a concern. Various
ideas based on incremental learning can be used to make the
update more efficient, Secondly, the class number C is obtair.xed
from the labeled training data and is used for the entire learning
procedure. The labeled training data must represent the whole

o—

training data otherwise the classification performance is degraded
[5]. There has been some work on how to estimate the number of
classes for unlabeled data [28]. We plan to overcome these
limitations of transductive learning in our future work.

4. CONCLUSIONS

Handling large dimensional feature vectors in CBIR has been
challenging, especially in the statistical modeling of the database
as a mixture of Gaussian. Unlike other methods, in our approach,
we use a transductive learning algorithm. The proposed CGP/EM
hybrid algorithm, called coevolutionary feature synthesized EM
(CFS-EM) algorithm approaches this problem in the EM
framework. In CFS-EM, the Gaussian class distribution in visual
feature space is unnecessary. This is because it tries to form a
Gaussian component for the images that belong to the same class
in the low-dimensional synthesized feature space no matter how
these images are distributed in the original visual feature space.
By integrating CGP with EM, it overcomes the local maximum
problem and it provides a better performance than by EM or CGP
alone. Better than kernel based classifier like SVM, CFS-EM does
not need to specify a kernel function, and it gives an explicit
transformation from high dimensional visual features to low
dimensional synthesized features, which makes retrieval in CBIR
more efficient. As a general classification method, CFS-EM is not
limited to CBIR. It can be extended to retrieve other media types
involved in engineering and computer science.

S. REFERENCES

(11 V. Vapnik. The Nature of Statistical Learning Theory.
Springer-Verlag, New York, 1995.

[2] R.Meir and G. Ritsch, “An introduction to boosting and
leveraging,” Advanced Lectures on Machine Learning,
LNCS, pp. 119-184. Springer, 2003.

[3] S. Tong and E. Chang, “Support vector machine active
learning for image retrieval,” ACM Multimedia, pp. 107-118,
2001.

[4] T. Hertz, N. Shental, A. Bar-Hillel and D. Weinshall,
“Enhancing image and video retrieval: learning via
equivalence constraint,” IEEE Conf. on CVPR, pp. 668-674,
2003.

[5] Q. Tian, J. Yu, Q. Xue and N. Sebe, "A new analysis of the
value of unlabeled data in semi-supervised learning for
image retrieval," ICME, 2004.

[6] R.Duda, P. Hart, and D. Stork, Pattern Classification, John
Wiley & Sons, second edition, 2001.

[7] B. SchAolkopf and A.J. Smola, Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and
Beyond, the MIT Press, 2001.

[8] G. Baudat and F. Anouar, "Generlized discriminant analysis

using a kernel approach,” Neural Computation, vol. 12, pp-
2385-2404, 2000.

[9] D. Swets and J. Weng, “Hierarchical discriminant analysis
for image retrieval," IEEE Trans. PAMI, vol. 21, no. 5, pp.
386-401, May 1999.

[10]Z. Su, S. Li, and H. 7. Zhang, “Extraction of feature
subspaces for content-based retrieval using relevance

705

feedback," Proc. ACM Int. Conf. Multimedia, pp. 98-106,
2001.

[11] P. Wu, B. S. Manjunath, and H. D. Shin, “Dimensionality
reduction for image search and retrieval," Proc. Int Conf.
Image Processing, 2000.

[12] D. D. Lee and H. S. Seung, “Learning the parts of objects by
non-negative matrix factorization,” Nature, vol. 401, Pp-
788-791, 1999.

[13] S. Z. Li, X.W. Hou, H.J. Zhang and Q.S. Cheng, “Learning
spatially localized, parts-based representation,” IEEE Conf.
on CVPR, pp. 207-212, 2001.

[14] W. Xu, X. Liu and Y. Gong, “Document clustering based on
non-negative matrix factorization,” ACM SIGIR, pp. 267-
273, 2004.

[15] R. Meir.and G. Ritsch, “An introduction to boosting and
leveraging,” Advanced Lectures on Machine Learning,
LNCS, pp. 119-184. Springer, 2003.

[16] K. Tieu and P. Viola, “Boosting Image Retrieval,”
International Journal of Computer Vision, vol. 56, no.1-2,
pp-17-36, January-February 2004.

[17] A. Torralba, K.P. Murphy and W.T. Freeman, “Sharing
features: efficient boosting procedures for multiclass,” JEEE
Conf. on CVPR pp. 762-769, 2004.

[18] X. He, S. Yan, Y. Hu, and H.J. Zhang, “Learning a locality
preserving subspace for visual recognition,” ICCYV, pp.385-
393, 2003.

[19] X. He, W.Y. Ma, and H.J. Zhang, “Learning an image
manifold for retrieval,” ACM Conference on Multimedia,
pp.17-23, Oct 10-16, 2004.

[20] A. Dong, B. Bhanu, Y. Lin, “Evolutionary feature synthesis
for image databases,” IEEE Workshop on Applications of
Computer Vision, pp.330-335, 2005.

[21] A. Dempster, N. Laird, and D. Rubin, "Maximum Likelihood
Estimation from Incomplete Data Via the EM algorithm," J.
Royal Statistical Soc. B, vol.39, pp.1-38, 1977.

[22] G. McLachlan and D. Peel, Finite Mixture Models. New
York John Wiley & Sons, 1997.

[23] http://www.corel.com, 2005

[24] B. S. Manjunath and W.Y. Ma, “Texture feature for
browsing and retrieval of image data,” IEEE Trans. PAMI,
vol. 18, no.8, pp. 837-842, August 1996.

[251 X.S. Zhou, Y. Rui, and T.S. Huang, Exploration of Visual
Data, Kluwer Academic Publishers, 2003.

[26] J.J. Grefenstette, "Optimization of control parameters for
genetic algorithms", IEEE Trans. Systems, Man, and
Cybernetics, Vol. 16-1, pp. 122-128, 1986

[27] AE. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter
control in evolutionary algorithms”, IEEE Transactions on
Evolutionary Computation, 3(2): 124-141, 1999,

[28] M.A. Figueriedo and A. Jain, Unsupervised Learning of
Finite Mixture Models. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002. 24(3): p. 381-396.

4 e]
N~ S

H

| \ 1777 ::::;..,
ACM Multimedia

2005

Proceedings of the I3th
ACM International Conference on Multimedia

November 6-Il, 2005 - Singapore

ey 2

