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Abstract
The mixture model for image databases remains as a
challenging task since the database may contain clut-
ter and outliers, and labelling information derived from
multiple users may be inconsistent. Thus, neither the
mixture model nor the labelling information is as ideal
as most of the researchers have previously assumed. In
this paper, we (a) address the problems of the noise dis-
turbances for both mixture model and users’ labelling
information, (b) propose to process retrieval experi-
ences in an intelligent manner using Bayesian analy-
sis, (c) present a robust mixture model fitting algorithm
to achieve visual concept learning, and (d) construct a
concept-based indexing structure for efficient search of
the database. The experimental results on a Corel im-
age set show the correctness of our retrieval experience
analysis, the effectiveness of the proposed concept learn-
ing approach, and the improvement of retrieval perfor-
mance based on the indexing structure.

1 Introduction
Gaussian mixture model (GMM) has been used to
model the image distribution in the feature space of
image databases [1] [2]. The task of concept learning is
to explore the characteristics of the features that can
represent a concept. Specifically, for Gaussian mix-
ture model assumption, concept learning is for mixture
model fitting, which includes estimating the number of
components and the component parameters. The con-
cept learning knowledge may provide good classifiers
and thus, improve retrieval performance.

However, the research of mixture model fitting for
image databases is still at the embryonic stage due to
the challenges such as the existence of outlier and clut-
ter images, high dimensionality of feature space, and
the concept drift caused by the dynamic mechanism of
databases. Thus, it is usually impossible to achieve
satisfactory mixture model fitting for image databases
in an unsupervised manner, and the correct model has
to be learned with the help of some additional labeling

knowledge, i.e., the learning should be achieved in a
semi-supervised manner.

Recently, there have appeared some image retrieval
systems which exploit meta knowledge derived from the
previous multiple users’ retrieval sessions to improve
retrieval performance [3] [4] [5]. Specifically, the rele-
vance feedback [6] mechanism of the system allows each
of the users to label the presented images as positive or
negative. In this scenario, a widely-used approach [4]
[5] to improve retrieval precision is to adopt a new sim-
ilarity (dissimilarity) measurement between images by
combining a visual-feature-based similarity (dissimilar-
ity) term and a user-labeling-based similarity (dissim-
ilarity) term. Although this technique has be proved
to be effective by the experiments in these papers, the
task of determining the values of weights to make bal-
ance between these two terms is impossible or at least
very difficult. Thus, this is only a heuristic technique.

Compared with the traditional manner of providing
labeling information directly, obtaining labeling infor-
mation from multiple users’ retrieval sessions is a more
natural and a practical way to help learning. However,
this scenario brings a new problem that different users
may provide inconsistent labeling information. We re-
gard the labeling opinion supported by the majority of
people as “correct” labeling, which should be used to
help the concept learning, and the other inconsistent
labeling (supported only by the minority of people) as
labeling noise, which the system should avoid to use
due to its misleading effect on concept learning. we
propose to process and exploit labeling information de-
rived from multiple users using Bayesian analysis.

We achieve concept learning via estimating mixture
model by using Expectation-Maximization (EM) algo-
rithm [7]. In our EM algorithm, outliers are detected
based on their distances to clusters, so that the clus-
tering is insensitive to them. Such robustness method
is important for out system since it may avoid further
misleading effect.

In this paper, we address the problems in image
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Figure 1: System diagram for robust concept learning
and indexing.

databases brought by (1) the outliers for mixture model
assumption and (2) users’ labeling noise, which have
seldom been considered by CBIR researchers previ-
ously. Figure 1 illustrates the diagram for our system
with concept learning and indexing. The contributions
of this papers are: (a) processing retrieval experiences
intelligently and correctly using Bayesian analysis, (b)
a robust discriminant EM framework to avoid the mis-
leading effect of outliers; (c) a concept-based indexing
structure using the result of concept learning to help
efficient search. We will presents the experimental re-
sults to demonstrate the effectiveness of the proposes
approaches with over 6000 Corel images.

2 Technical approach
2.1 Image distribution in databases
For an image database in real applications, we assume
that the image distribution is a c-component Gaussian
mixture C = {C1, . . . , Cc}, whose probability density
function (PDF) is

f(x; Ψc) =
c∑

i=1

πifi(x; µi, Σi) + π0f0(x) (1)

The first term on the right side of (1) represents the
standard GMM [7], which has been widely adopted
in the field of multimedia retrieval, where x is d-
dimensional feature, fi(x) are component densities and
πi (i = 1, 2, . . . , c) are component proportions. Each
component is corresponding to a visual concept. The
component densities are specified by means µi and co-
variances Σi. Ψc is the vector containing all the un-
known parameters i.e., Ψc =

⋃c
i=1{πi, µi, Σi}. How-

ever, the image distribution in a real image databases
is usually not so ideal: there are some noise images
which do not belong to any existing component since
the visual concepts these images belong to have too
few images to form their own components in the fea-
ture space. These images are called clutter images,
whose distribution is represented by the second term
on the right side of (1), where π0 is their proportion
and f0(x) is their PDF, which may be in any form
due to the unpredictability of clutter image distribu-
tion. The component proportions satisfy 0 ≤ πi ≤ 1
(i = 0, 1, 2, . . . , c) and

∑c
i=0 πi = 1.

Besides the clutter images, the rest of the database
images are called component images since each of them
belongs to one and only component. One may argue
that an image may belong to different visual concepts.
We admit this possibility, and assign the image to the
component that the majority of people support this
assignment. Some component images may be outliers,
which are far away from their corresponding compo-
nents. The outlier images and clutter images have the
same misleading effect on clustering, and make the cor-
rect mixture model fitting difficult. For convenience,
we call both of such two kinds of images as outliers.

2.2 Labeling information analysis
We define the labeling information derived from the
relevance feedback of a user as a retrieval experi-
ence E = {X+, X−}, where X+ = {x+

1 , x+
2 , . . . , x+

N+}
are labeled as belonging to (positive for) a certain
but unknown class while another portion of samples
X− = {x−

1 , x−
2 , . . . , x−

N−} are labeled as NOT belong-
ing to (negative for) that unknown class. Note that x+

i

(i = 1, 2, . . . , N+) and x−
j (j = 1, 2, . . . , N−) are image

visual feature vectors.
We have to be careful when using labeling informa-

tion from retrieval experiences. The pieces of labeling
information provided by different users may be incon-
sistent. We assume that each database image belongs
to one and only class (supported by the majority of
people). We regard this assignment as “correct” label-
ing information, and all the other contradicting labeling
information on this image as labeling noise.

Since the amount of retrieval experiences directly
provided by users may be huge, and the system can-
not store all of them during the database lifetime, an
efficient way to accumulate and analyze the multiple
retrieval experiences is necessary. In the case with
no labeling noise, if a pair of retrieval experiences E1
and E1 contain one or more common positive images,
we deduce that all the positive images in E1 and E1
belong to a common concept C, and all their nega-
tive images do not belong to C. For example, for
E1 = {3+, 4+, 5−} and E2 = {2+, 3+, 1−}, we can merge
them as {2+, 3+, 4+, 1−, 5−}. We call such a piece of la-
beling information as a concept experience, since merge
decision is based the assumption that different retrieval
experiences to be merged are for the same concept. An
extreme case is that a retrieval experience can also be
regarded as a concept experience if it can not be merged
to any other retrieval experiences.

With a collection of retrieval experiences obtained,
the system derives a concept retrieval collection Φ by
merging, which is as informative as and more suc-
cinct than the original retrieval experience collection.
Let Φ denote the concept experience collection, and
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φi (i = 1, 2, . . . , |Φ|) be the concept experiences in Φ.
Thus, the system does not have to memorize the re-
trieval experience collection during the lifetime of the
database; instead, the system keeps Φ and updates it
whenever a new retrieval experience Enew is obtained
by either merging Enew into a concept experience in
Φ, or directly inserting Enew into Φ as a new concept
experience.

A concept retrieval can be expressed in a prob-
abilistic form, in which each image is represented
by its index and the probability that this image
belongs to this concept. For example, the con-
cept experience {2+, 3+, 4+, 1−, 5−} is expressed as
{(2, 1), (3, 1), (4, 1), (1, 0), (5, 0)}. Such probabilistic
expression of concept experience is necessary in the
Bayesian analysis for the existence of labeling noise,
which we will present in the following.

If labeling noise exists, i.e., a user may mislabel
the images given to him/her, and the direct merging
method would be disastrous for labeling information
collection. For example, E1 = {· · · , 3+, 4−, 5−, · · ·}
and E2 = {· · · , 2+, 3+, 1−, · · · , } would be merged as
{· · · , 2+, 3+, 1−, 4−, 5− · · ·}. However, if Image 3 is
mislabelled in E2 (i.e., Image 3 actually does not be-
long to C2), and C1 �= C2, the labeling information ex-
pressed in the deducted concept experience would con-
tain many errors, which may mislead the subsequent
mixture model fitting for concept learning.

To strictly analyze the labeling information, we de-
fine the labeling noise rates as

α(I, E) = prob(I /∈ E|I ∈ C; E ⊂ C), and
β(I, E) = prob(I ∈ E|I /∈ C; E ⊂ C),

where “E ⊂ C” means that the user who has provided
retrieval experience E seeks the images of Concept C,
“I ∈ (/∈) C” represents that Image I is (not) belonging
to Concept C, and “I ∈ (/∈) E” denotes that Image I
is labelled as positive (negative) in retrieval experience
E . Basically, α(I, E) denotes the probability that a user
labels an image as negative when this user is seeking
a concept and this image belongs to this concept, and
β(I, E) denotes the probability that a user labels an
image as positive when this user is seeking a concept
and this image does NOT belong to this concept.

For a pair of experiences (either retrieval experience
or concept experience), to avoid incorrect merge, we
will compute the probability that they are for the same
concept, and the experience merge will happen only if
such probability is very high. First, when a retrieval
experience E is derived directly from a user whose is
seeking concept C, if the labeling noise rates α(I, E)
and β(I, E) are known, the probability that an positive
image I+ in E belongs to Concept C is
prob(I+ ∈ C|I+ ∈ E)

= prob(I+∈E|I+∈C)prob(I+∈C)
prob(I+∈E|I+∈C)prob(I+∈C)+prob(I+∈E|I+ /∈C)prob(I+ /∈C)

= 1−α(I+,E)
(1−α(I+,E))+β(I+,E)(clocal−1) ,

where clocal is the number of classes that the image
may possibly belong to. Note that clocal is not the to-
tal number of the concepts in the database, but the
number of concepts that may overlap around an im-
age, and its values is much smaller than the total num-
ber of concepts. The prior probability prob(I+ ∈ C)
that an image I+ belongs to a concept C is 1/clocal,
which is used in the deduction. The exact values of
α(I+, E), β(I+, E) and clocal are unknown, but we can
predetermine them as constants α, β and ĉlocal respec-
tively, such that the predetermined values are higher
than their real values. In this way, the labeling in-
formation precession is a little conservative but avoids
mistakes. Similarly, the probability that an negative
image I− in E belongs to Concept C is

prob(I− ∈ C|I− /∈ E) =
α(I−, E)

α(I−, E) + (1 − β(I−, E))(clocal − 1)
.

(2)
Now we study the probability that two experiences

are for the same concept, since this probability provides
the criterion whether these two experiences should be
merged or not. Formally, if two experiences φ1 and φ2
(φ1 is for Concepts C1 and φ2 is for Concepts C2) con-
tain the common images {I1, I2, . . . , Il} whose proba-
bilities belonging to C1 and C2 are prob(Ii ∈ C1) = pi1
and prob(Ii ∈ C2) = pi2 respectively (i = 1, 2, . . . , l),
how to calculate prob(C1 = C2|φ1, φ2)?

For an image Ii, there are four possibilities for its
relationships with C1 and C2: {Ii ∈ C1, Ii ∈ C2}, {Ii ∈
C1, Ii /∈ C2}, {Ii /∈ C1, Ii ∈ C2} and {Ii /∈ C1, Ii /∈ C2}.
However, such relationships between different images
are not independent. For example, {I1 ∈ C1, I1 ∈ C2}
prohibits the possibility of {I2 ∈ C1, I2 /∈ C2}, since the
first case implies C1 = C2 (remember our assumption
that each image belongs to one and only visual concept)
and the last one implies C1 �= C2, thus the two cases are
contradicting. Generally, there are two possible cases:
(1)

⋂
i{(Ii ∈ C1) ∩ (Ii ∈ C2)

⋃
(Ii /∈ C1) ∩ (Ii /∈ C2)},

(2)
⋂

i{(Ii ∈ C1) ∩ (Ii /∈ C2)
⋃

(Ii /∈ C1) ∩ (Ii ∈ C2)}.

In the first case, all the possibilities implies C1 = C2,
except the possibility that no image belongs to either
C1 or C2, whose probability is

∏
i pi1pi2. Although it

is still possible for C1 = C2 in this case, its probability
is slim and we can ignore it. Thus,

prob(φ1, φ2|C1 = C2)

=
∏

i

{pi1pi2 + (1 − pi1)(1 − pi2)} +
∏

i

pi1pi2. (3)
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Algorithm 1 Algorithm for initializing and updating
the concept experience collection Φ.

t = 0, Φ ← ∅.
repeat {the system gets a new retrieval experience Et (Et ⊂
Ct), t = t + 1}

1. For the images in Et, compute prob(I+ ∈ Ct|I+ ∈ Et)
and prob(I− ∈ Ct|I− ∈ Et), respectively.
2. If Φ = ∅, insert Et into Φ as a new concept experience,
and go back to Repeat;
3. φs ← arg maxφi∈Φ prob(Ci = Ct|φi, φt);
if prob(Cs = Ct|φs, φt) < Tmerge then

Insert Et into Φ directly as a new concept experience;
else

Merge Et into φs; flag ← 1;
while flag = 1 do

φs′ ← arg maxφi∈Φ,i�=s prob(Ci = Cs|φi, φs);
if prob(Cs′ = Cs|φs′ , φs) > Tmerge then

Merge φs into φs′ ; Remove φs from Φ;
Call φs′ as φs;

else
flag ← 0

end if
end while

end if
until the database finishes its lifetime

For the second case,

prob(φ1, φ2|C1 �= C2) =
∏

i

{pi1(1 − pi2) + (1 − pi1)pi2}.

(4)
Thus, the probability that C1 and C2 are the same

concept based on the observation of φ1 and φ2 is
prob(C1 = C2|φ1, φ2) =

prob(φ1,φ2|C1=C2)prob(C1=C2)
prob(φ1,φ2|C1=C2)prob(C1=C2)+prob(φ1,φ2|C1 �=C2)prob(C1 �=C2)

,

where prob(C1 = C2) = 1/cmax and prob(C1 �= C2) =
1 − 1/cmax (cmax is the highest possible number of
classes known by the system).

To merge an experience φ2 to another experience φ1,
for an image Ii which is contained in both φ1 and φ2,
the probability that it belongs to C1 is updated as

prob(Ii ∈ C1|C1 = C2; φ1, φ2)
= prob(C1=C2|Ii∈C1;φ1,φ2)prob(Ii∈C1|φ1,φ2)

prob(C1=C2|φ1,φ2)
,

where prob(C1 = C2|Ii ∈ C1; φ1, φ2) is
prob(C1 = C2|Ii ∈ C1, Ii ∈ C2; φ1, φ2)prob(Ii ∈
C2|φ1, φ2) = pi2,
by Bayesian inference with prob(C1 = C2|Ii ∈ C1, Ii /∈
C2) = 0. Thus, it is easy to get

prob(Ii ∈ C1|C1 = C2; φ1, φ2) =
pi1pi2

prob(C1 = C2|φ1, φ2)
.

(5)
For an image I , if I ∈ φ1 and I /∈ φ2, we keep

the probability prob(I ∈ C1) unchanged in φ1 when
merging φ2 into φ1. If I /∈ φ1 and I ∈ φ2, to relate I
to φ1 during merging, we assign

prob(I ∈ C1) = prob(I ∈ C2)prob(C1 = C2; φ1, φ2). (6)

When we mention that φ2 is merged to φ1, it implies
that the probabilities of all the images related with C1

or C2 are updated or assigned regarding φ1 as we have
introduced above, and φ2 is deleted.

Algorithm 1 shows our algorithm for the computa-
tion of the concept experience collection Φ. At the
beginning stage of the database without retrieval ex-
perience, Φ is initialized to be a null set. Each time a
new retrieval experience is provided by the a user, we
use a threshold parameters Tmerge (Tmerge = 0.95 in
this work) to decide whether the new retrieval experi-
ence should be added directly to Φ or be merged to an
existing concept experience in Φ. In the second case,
the update of φs may make it eligible to be merged into
another existing concept retrieval φs′ in Φ, and so on.
The “while” loop describes the details of the merging
series.

2.3 Semi-supervised EM framework
2.3.1 Over-splitting initialization: To exploit the
collected concept experiences to help the mixture model
fitting, we defuzzy each of the concept experience in Φ.
At any time t, for the concept experience φj whose
corresponding concept is Cj , we defuzzy the images’
probabilities for Cj in φj as

p̄ij =




1 if prob(Ii ∈ Cj) > 1 − ε
0 if prob(Ii ∈ Cj) < ε
unkown otherwise

(7)

where ε is a small value (ε = 0.1 in this paper) and
Ii is one of the images contained in φj . If φj contains
enough number of images whose defuzzied probabilities
in (7) are “1”, it can be used in the EM algorithm
for the mixture model fitting. We set the threshold
value for such number of images in a concept experience
to be 5. For such defuzzied concept experiences, we
can estimate their centers by averaging the features of
positive images (with p̄ij = 1). Let us denote cΦ as the
number of concept experiences that contained enough
images with defuzzied probabilities of “1”.

To estimate the mixture model using EM, the num-
ber of components for the algorithm has to be given,
although the system usually does not know the real
number of classes creal. With the knowledge of high-
est possible number of classes cmax and size of the de-
fuzzied concept experience collection cΦ, we can deter-
mine the initial number of components c for the EM
algorithm as c = max(cmax, cΦ). We set cΦ of the c
initial component centers to be the cΦ concept experi-
ence centers, and randomly select c − cΦ data as the
remaining c − cΦ component centers. We also initial-
ize the c component covariances matrices to be identity
matrices.

To evaluate the over-splitting clustering result R =
{R1, . . . ,Rc}, we compare it with the groundtruth mix-
ture model C = {C1, . . . , Ccreal

} (c > creal) by using a
statistical index. A pair of vectors {xi, xj} are referred
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to as (I) BS if both vectors belong to the same com-
ponent in C and to the same cluster in R, (II) BB if
both vectors belong to the same component in C. Let
ξ1 and ξ2 be the number of BS and BB respectively, we
use SI = ξ1

ξ2
to evaluate an over-splitting clustering re-

sult. Obviously, for two different clustering results with
the same number of clusters c, the one with higher SI
value is a better clustering since it is more consistent
with groundtruth model.

We argue that if the results of an over-splitting clus-
tering is relatively good, i.e., the value of SI is high,
the system may also yield good retrieval performance
by using this clustering result for classification. When
a query image is given to the system, the system may
limit the search within the cluster region where the
query feature vector is located. If the value of SI is
high, i.e., most of the images within this cluster be-
long to the class which is corresponding to the class
the query image belongs to, the retrieved images within
this cluster can satisfy the user, although their aver-
age visual similarity with the query image around the
boundary of the cluster may be a little lower.
2.3.2 Outlier detection and rejection: For each
component at the EM iteration, we select a small pro-
portion of the images with the lowest PDF values, and
reject them in the estimation for component means,
covariances and proportions in the subsequent M-step.
The number of such images to be selected in Compo-
nent j (j = 1, 2, . . . , c) is ��πjN�, where N is the num-
ber of images in the database, πj is the proportion of
Component j, and the value of � can be given based
on the knowledge on the proportion of outliers. This
strategy is similar to the work in [8], which also detect
outliers based on the distances between a point and the
clusters. In this way, we can prevent the misleading of
the outliers. Even some images may be misclassified
as outliers, this does not influence the model parame-
ter estimation since these images are also relatively far
away from the components.

For outliers, both labeling information and the out-
lier detection mechanism help to avoid them, and the
scenario of their combination has never been addressed
in either clustering or CBIR research.
2.3.3 EM framework: To explore discriminating fea-
tures in a self-supervised fashion, the integration of
multiple discriminant analysis (MDA) with EM frame-
work is proposed [9]. This is called D-EM, whose prob-
abilistic extension is given in [10]. We implement the
probabilistic D-EM in our algorithm.

Since over-split clustering may lead to very small
components, which cause the singularity problem, we
remove those small components right after the com-
ponent proportion estimation at each iteration. The

Algorithm 2 Probabilistic D-EM algorithm for con-
cept learning.

Given the data X , the concept experience collection Φ, and
cmax.
Initialization (see Section 2.3.1).
Estimate component proportions {π1, π2, . . . , πc}.
repeat

1. Remove the jth component if πj < δ 1
c
, j = 1, 2, . . . , c.

Normalize the proportions for the remaining c′ components,
c ← c′.
2. Detect outliers, which will not be used for the subsequent
steps.
3. E-step: Estimate component-indicators Z .
4. Modify Z by concept collection Φ.
5. X ← probabilistic MDA(X ,Z,Φ) [10].
6. M-step: Compute component proportions, means and
covariances respectively ([7]).

until termination criterion is met

removal criterion is: if πj < δ(1
c ), j = 1, 2, . . . , c, the

jth component is removed. This is called component
annihilation [11]. Although component annihilation is
usually based on the relationship between sample sizes
and dimensionality, we simply use a constant parame-
ter δ (δ = 0.1 in this work) since the purpose of our
component removal is only to avoid singularity.

Algorithm 2 presents the EM algorithm for concept
learning with our proposed components, including over-
splitting initialization by exploiting the labeling infor-
mation, outlier detection and rejection, the integration
with MDA and component annihilation.

2.4 Concept-based indexing and search
The huge amount of data necessitates an indexing
structure for the database to achieve efficient search
and update. Our concept-based indexing strategy is
based on the intuition that the images regarded by the
majority of people as belonging to the same class should
be arranged on hard drive as consecutively as possible,
so that the page access on hard drive can be saved
while the retrieval precision is good. We directly use
the clustering result of our EM algorithm for index-
ing, by which the images belonging to the same cluster
are stored consecutively on hard drive. When a query
images comes, the system chooses the cluster with the
highest probability that the query belongs to this clus-
ter based on the mixture model parameters. Thus, the
search is limited to the images belonging to this clus-
ter so that the search time is saved compared with the
global search. Although this concept-based indexing
strategy has been proposed in [12], it cannot achieve
good performance for real image databases without ro-
bust concept learning since the outliers may mislead
the clustering.
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3 Experiments
We implement our concept learning and retrieval ap-
proach on an image database which is not match-
ing Gaussian mixture model assumption well and thus
more challenging for concept learning task. There are
6155 images with 49 classes, which are corresponding
to the CDs in Corel stock photo library. For each CD
included in our database, we select all of its 100 images
except we remove 39 images from the CD of glaciers
& mountains (114000) and remove 6 images from the
CD of polar bears (183000) since these removed im-
ages are obviously outliers. In most of these classes
(concepts), there are also many outliers, whose visual
features are far away the features of the typical images
contained in their classes. Images are represented by
texture features and color features. The texture fea-
tures are derived from 16 Gabor filters [13]. We also
extract means and standard deviations from the three
channels in HSV color space. Thus, each image is rep-
resented by 22 features.

We set the system running time as t = 0, 1, 2, . . .; at
each t, a user makes his/her queries and provides a re-
trieval experience by executing relevance feedback. At
each relevance feedback iteration, the system presents
20 images for users to label. We set different sets
of values for the labeling noise rates α and β, which
are known by the system in advance (see Section 2.2).
We assume that the system only knows that cmax =
�1.5creal� = 73 in advance. To detect outliers, we set
the outlier detection parameter � = 0.1.

To evaluate our concept learning approach, we will
adopt quite a few measurements to show the details
during the learning process, including the number of
clusters after EM algorithm, the reduced feature di-
mensionality, the statistical index to evaluate the over-
splitting clustering, etc. The advantages of our index-
ing and image search approach on image retrieval per-
formance will be demonstrated by retrieval precision,
precision/recall curves, and search time.

Figure 2 provides various performances for concept
learning with different labeling noise rates. All the
curves are the average results by repeating the system
random process 10 times. Figure 2(a) shows that the
percentage of the images ever being labelled (no mat-
ter positive or negative) increases with retrieval expe-
riences increased. We observe that the three curves for
different labeling noise rates in Figure 2(a) are so close
that they can be regarded as the same curve; thus,
it will be fair to compare the learning improvements
with regard to different labeling noise rates since the
amounts of labeling information given the system at
any moment are almost equal.

From Figure 2(b), we observe the changes of the
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Figure 2: Performance for concept learning with vari-
ous labeling noise rates.

number of clusters (after EM algorithm) over time. The
number of resulting clusters increases over time, since
more concept experiences are available to be fed into
EM algorithm.

Figure 2(c) shows that integrating probabilistic
MDA with EM effectively reduces the dimensionality
of feature space (original dimensionality is 22). Since
the main computational load of EM is the compu-
tation of the inverse of each component’s covariance,
whose complexity is O(cd3) (c is the number of compo-
nents and d is feature dimensionality). For the prob-
abilistic MDA, let λ1, λ2, . . . , λd denote the eigenval-
ues for S−1

W S′′
B (see Section 2.3.2). These eigenvalues

are non-negative and arranged in non-increasing order.
We select d′ such that

∑d′

i=1 λi/
∑d

i=1 λi ≤ 95% and∑d′+1
i=1 λi/

∑d
i=1 λi > 95%, i.e., we set the energy re-

mained after MDA is 95%. In this experiment, the
dimensionality is reduced from d = 22 to d′ = 7 ∼ 12.
Thus, the computational load for the EM is alleviated
significantly. Since the number of clusters decreases
over time, the dimensionality of S−1

W S′′
B is lower, i.e.,

this matrix has fewer eigenvalues. As we we have fixed
the value of the remained energy (= 95%), there are
fewer projected features represented by the small eigen-
values to be thrown away. Thus, the reduced dimen-
sionality increases over time in the long term, as we
observe in Figure 2(c).

Figure 2(d) validates that the clustering (evaluated
by the statistical index SI) is improved with more la-
beling information provided by retrieval experiences.
This demonstrates that the model fitting is in the trend
of improvement over time.

Figure 3 compares the proposed robust clustering
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approach (outlier detection parameter � = 0.1) with
the clustering approach without outlier detection (i.e.,
� = 0). For the cases with no labeling noise or label-
ing noise rates being 0.05, the clustering result (repre-
sented by SI) and the retrieval precision using robust
approach are superior to those without outlier detec-
tion: with limited amount of retrieval experiences (t
is small), the robust approach is no better since the
clustering is too bad to support the outlier detection
strategy which is based on the distances between data
and cluster centers (but the cluster centers are too far
away from the true centers). With more retrieval ex-
periences obtained, the clustering is better and, thus,
support the outlier detection strategy better. In this
way, both the exploitation of retrieval experiences and
the outlier detection strategy are to improve the clus-
tering; furthermore, they boost each other to achieve
better clustering which cannot be achieved by any of
them solely. For the case that the labeling noise rates
are 0.1, robust approach has no advantage since the
clustering is too bad.

Figure 4 presents more results on retrieval perfor-
mance for the case without labeling noise. Figure 4(a)
shows the retrieval precision versus the number of re-
trieved images, which is similar to the precision/recall
curve being widely used in CBIR. The curves in the
left region of Figure 4(a) (from 0 to 100) are approx-
imately equal to their corresponding precision/recall
curves since the average size of each class is 100, and
the curves in the right region (from 100 to 200) give in-
formation on the retrieval precision when the number
of images to be retrieved is more than the number of
relevant images in the database. With more retrieval
experiences over time, the precision is better.

To count the image search time, we do not use the
actual running time for the search experiment, since
it is inaccurate and cannot reflect the search time in
the real system. Since the database images are stored
on hard drive, most of the time consumed on search is
spent on reading database images from hard drive, i.e.,
IO access. Due to our indexing structure, the images
within the same cluster are arranged consecutively on
hard drive, which consists of equal-sized pages. The
number of pages to be accessed on hard drive represent
the search time for a real image retrieval system. Since
the number of pages to be accessed is approximately
proportional to the number of images to be read from
hard drive, we use the number of images to be read
to represent IO access. From Figure 4(b), we observe
that the IO access is below 6% of the global search time.
Thus, we conclude that the indexing structure requires
much less IO access compared with the global search.

Figure 5 gives a retrieval example whose precision in-
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Figure 3: Comparison of robust clustering and non-
robust clustering.
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Figure 4: Noise rate = 0.0.

creases when the concept learning improves with more
retrieval experiences.

Besides color and texture features, we have also ex-
tract other features such as structural features to rep-
resent images. In this way, the feature dimensional-
ity is higher (over 40). However, the concept learning
improvement is very similar to the presented results
since the structural features are not as discriminating
as color and texture features for Corel classes, and they
are discarded after MDA in EM. This shows that our
system is flexibly effective for different image feature
representations, as long as some of them are useful for
discrimination.

We observe that even the highest retrieval precision
is still below 50% in Figure 3(b). This is understand-
able since the image search is based on the concept
learning result, which is represented by the mixture
model parameters. Since there are many outlier images
in the feature space, the K -nearest neighbor search (a
pure content-based method) results may yield some un-
related images even the concept learning is very good.
An alternative non-model method memorizing the re-
lationship between each pair of database images (e.g.,
[5]) may yield better retrieval precision, especially for
fixed image database. However, such method is only
the accumulation and exploitation of labeling informa-
tion, instead of exploring visual features systematically.
Furthermore, when the query is non-database image
(which is a very common application scenario), or the
database is dynamic that new images are added, the
information of pairwise image relationship cannot be
exploited to improve retrieval precision. Our mixture-
model-based concept learning approach attempts to
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(a) no retrieval experience (t = 0): precision = 9
20

(b) t = 500: precision = 15
20

Figure 5: Retrieval precision is improved as retrieval
experiences are increased. The user is looking for sail-
ing & sailboats, and the query is the first image in each
image group. (a) When there is no retrieval experience,
the search yields only 9 sailing & sailboats images as
shown in (a) (row 1: image 1, 2, 4, 5; row 2: image
4, 5; row 3: image 4, 5; row 4: image 2). (b) After
500 retrieval experiences, the system gives 15 sailing &
sailboats images (except row 2: image 5; row 3: image
2, 3, 5; row 4: image 1).

systematically and fully explore and exploit visual fea-
tures, so that the model knowledge can help the re-
trieval even for the cases such as non-database query
and dynamic database. More significantly, the learned
concept knowledge from an image database may have
more general application possibilities such that it can
be used for another database.

The goal of our system is to learn concepts to the
best extent given a certain amount retrieval experi-
ences, instead of achieving best retrieval precision af-
ter obtaining enough amount of retrieval experience.
Since users may not be so cooperative to provide label-
ing information by executing relevance feedbacks, it is
difficult for the system to obtain many retrieval experi-
ences during a certain time of the database. Thus, our
learning scenario is more realistic compared with the
system which expects to accumulate enough amount of
retrieval experiences before good retrieval performance
is obtained.

4 Conclusions
In this paper, we explored users’ labeling noise and
outliers for concept learning in image database: (1)
retrieval experiences derived from previous users’ rele-
vance feedbacks are efficiently and correctly processed
using Bayesian analysis, (2) outliers can be detected
and rejected. We integrated these topics into a novel
semi-supervised EM algorithm to achieve satisfactory
concept learning. A visual-concept-based indexing
structure is proposed based on the concept learning re-
sult, and it helps to improve retrieval performance in
two aspects: the retrieval precision is improved, and
the search time is saved.
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