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Abstract

Advances in the area of autonomous mobile
robotics have allowed robots to explore vast and often
unknown terrains. This paper presents a particular
Jform of autonomy that allows a robot to autonomously
control its speed, based on perception, while traveling
on unknown terrain. The robot is equipped with an
onboard camera and a 3-axis accelerometer. The
method begins by classifying a query image of the
terrain immediately before the robot. Classification is
based on the Gabor wavelet features. In learning the
speed, a genetic algorithm is used to map the Gabor
texture features to approximate speed that minimizes
changes in accelerations along the three axes from
their nominal values. Learning is performed
continuously. Experiments are done in real time.

1. Introduction

Robots are usually placed in environments where
traversing surfaces are known and predictable. Their
wheels are specifically equipped for each surface, and
this enables them to drive and maneuver easily
through their environment. Some examples include:
the smooth marble floors of a commercial building
lobby, or a paved road, where the surface is uneven,
but even then, familiar and very much known. The
purpose of this research is to expand on the familiar
kinds of environments upon which current robots are
operated by allowing a robot to adjust its speed
accordingly to its assessment of the terrain roughness.

Howard and Seraji [1, 2, 3] introduce a
traversability index that provides an assessment of the
terrain for navigation by measuring, among several
other factors, rock size, concentration and terrain
slope. The test vehicle can run autonomously run at
different speeds depending upon the terrain, however,
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the speeds are only limited to three types: slow,
moderate or fast.

Tunstel, Edwards and Carlson teamed up with
Ayanna Howard on the same project [4]. Their
strategy uses a fuzzy logic framework for analysis of
terrain traversability. The aim is to navigate a robot to
a goal via the most easily traversable path at the
appropriate speed.

Some robots are used for exploration. Take for
example, the Nomad robot, designed at the Robotics
Institute at Carnegie Mellon University, was designed
to traverse some 200 kilometers across the Atacama
Desert in Chile [5, 6]. Also, the famous Mars
Pathfinder navigates through the sand dunes of Mars
[7]. However, these robots are not entirely
autonomous because a human operator controls them
remotely.

As compared to the three approaches, the
approach presented in this paper involves learning to
control speed autonomously based on the images
acquired by the robot and the accelerations
experienced by the robot. The robot performs
continuous learning and captures the mapping of
terrain texture features to approximate speeds and
organizes its long-term memory to store its
experiences over time.

2. Technical Approach

The overall technical approach is shown in Figure
1.  The robot begins by capturing an image.
Clustering is performed on the current feature vectors
in the knowledge database to find the closest class. If
no close class is found, or if a class is found that does
not have the minimum required 10 members, then a
new class is made using the features, a randomized
speed, and its fitness. If the class does have 10
members, then the robot determines if GA should
terminate by calculating whether the standard
deviation of the velocities are less than the 2% pulse

IEEE‘Z

Co

MPUTER

SOCIETY



width modulation duty cycle that drives the robot. If it
meets the GA termination requirement, then the robot
chooses the best speed within the class based on the
fitness values of its members. If GA does not
terminate, then crossover is performed on the
members to get a new speed value. The process is
then repeated with the capturing of a new image.

Figure 1. Overall system diagram.
2.1 Terrain Characterization

Many texture measures exist that can be used for
terrain assessment, such as the center symmetric auto-
correlation methods presented by Harwood, et. al.[8]
and the famous Laws energy texture measures [9].
However, the advantage of the Gabor texture measures
is in the fact that it is scale and orientation tunable.
We use the Gabor texture [10] features for terrain
assessment of a given query image. 2 scales and 4
orientations produce 8 features that double to 16
features by taking the mean and standard deviation.
Classification of the query images is governed by an
automatic clustering scheme based on scatter matrices.

2.2 Genetic Algorithm

Genetic algorithms are used to learn the
appropriate speeds associated with each texture feature
vector.

A 2-point crossover scheme is used. 2 points are
randomly selected as the crossover point. The bits
between these 2 points in 1 gene are added to the bits
outside the 2 points in the second gene or vice versa.

In mutation, a bit is randomly selected and
changed. The bit changes from a 0 to a 1 or vice
versa. The mutation rate is set at 1%. GA termination
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is determined when the standard deviation of speeds
corresponding to the 10 best fitness values is less than
2% pulse width modulation duty cycle. This criterion
indicates that subsequent crossover will not improve
the class by a significant amount and thus, no more
crossovers will be done for this class. The fitness is
determined by the function,
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a, .. = average acceleration in the x-direction

a, max = Maximum acceleration in the x-direction

(similar for y and z).
2.3 Knowledge Database

The knowledge database is a collection of past
experiences [11] that the robot has encountered. It
includes the image features, its parameters and the
corresponding fitness.

Knowledge Database

Class 1
| Famun:lx-accal y-acccll z-accel | speed |fitness I

| Ftnluns'x-acccl y-accol| z-accel | speed |fitness |
]
1
1

| Features | x-accel | y-accel | z-m:cell speed |mness |

Class n
l Features ')mtv:el y-nccoll z-ncul] speed |lltncu ]

[ Features lx-accel y-act:all z-nccol‘ speeil |lltness |
i
]

| Femuus'x-ac:elly—accal|z-accal'speed |litmu |

Figure 2. Knowledge database.

The knowledge database holds as many items as
necessary to represent all the different classes the
robot has encountered.

Figure 2 provides an example of the knowledge
database. Each class consists of members, where each
member has information about a query image and
consists of the feature vector, robot accelerations,
speed and fitness.

2.4 Automatic Clustering

Scatter matrices measure the variance of members
within a class and the variance of classes among all
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classes. These measurements provide information
when deciding upon the number of classes that a
database should have. In this sense, scatter matrices
[12] can help decide on the optimal number of classes
given as a set of feature vectors. Given a d-
dimensional feature vector and an optimal set of c
classes, the set of equations are defined as,

g nl_zz ™= %2} S, = Y G-m)G-m)

i xeD, xeD,
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Sy =28, Sy=2 m(mi—m)(mi—m)

i=1 i=1
n is the total number of members in all classes, »; is
the number of members in class I, D is the entire
dataset, in which D; is the dataset for class I, m is the
mean of the entire dataset and m; is the mean for class
I, and ¢ denotes the transpose of a matrix.

The within-class scatter measures the separability
of the members of a class and the between-class
scatter measures the separability of the classes. In the
optimal case, the within-class scatter should be small
and the between-class scatter should be large. This
will ensure that the members of each class cluster
close to its mean and the centers of all clusters are well

separated. = The technique normally used is to
maximize the equation,
Beta = Trace(Sy)
Trace(Sy)

The optimal number of classes occurs when the value
of Beta is at its maximum.

Members of the dataset are classified using the K-
means algorithm. Members are classified into the
class for which its distance to the class mean is the
minimum. Initially, all members are classified into a
single class. The number of classes increases until its
subsequent Beta value is less than its previous value.

3 Experiments

The experiments are done in real time on a mobile
robot. The robot is equipped with an onboard camera.

Figure 3. Mobile robot.

The robot also has a 3-axis accelerometer, allowing it
to calculate accelerations in the x, y and z directions.

Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
1051-4651/04 $ 20.00 IEEE

These acceleration values are used for the calculation
of the fitness values for the genetic algorithm. Figure
3 shows a picture of the robot.

The textures were synthetically fabricated with
various materials. Three texture materials are shown
in Figure 4.

Figure 4. Texture materials labeled from right
to left: sand paper, steel wire grid, and
clothesline wire.

3.1 Iterative Robot Motion Description

Each iteration begins with the capturing of an
image and computing its Gabor Featues, and ends
when the appropriate speed is determined. The robot
will move, collect accelerometer data and compute a
fitness value. All information collected up to this
point will form the new member that is added to the
knowledge database.

The standard deviation of the speeds of the 10 best
members is determined ranked according to their
fitness values. If the standard deviation is not less
than a particular threshold, then crossover will be
performed using the 10 best members. From the
offspring, the robot will drive at the new speed, obtain
its fitness, and form a new member that is added to the
knowledge database.

If the standard deviation is less than the 2%
threshold, then GA terminates for that particular class,
and the optimum speed will be the speed value of the
member with the highest fitness in that class.

3.2 Final Results

Examples are given for three terrain types made
from sand paper, steel grid wires and clothesline
wires. Figure 5 shows the fitness as the speed
increases for terrain type labeled as “Sand Paper”.
Similar results appear for “Steel Grid” and
“Clothesline” in which their optimum speeds are
reached at 56% and 20% PWM duty cycles. 20% to
80% duty cycles corresponds linearly to 3.3 to 5.5
in/sec.

Figures 6 through 8 show examples when GA has
terminated for the terrain type. The figures show that
convergence is encountered after 20 to 35 iterations.
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The final speeds differ by only 2% duty cycle as
compared to its actual optimal value. Final number of
classes converges to 3, 4, and 1 for sand paper, steel
grid, and clothesline wire.
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Figure 5. Fitness vs. speed for “Sand Paper.”
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Figure 6. GA with clustering for “Sand Paper”.
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Figure 7. GA with clustering for “Steel Grid”.
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Figure 8. GA with clustering for “Clothesline”.

A total of 5 different terrain types were
experimented upon that produced a total of 13 classes.
An average of 30 iterations was required to converge
upon the appropriate speed.

4. Conclusions

A complete automatic speed control for a mobile
robot is successfully implemented using several
techniques that include the Gabor feature extraction
method, genetic algorithms, the knowledge database,
scatter matrix clustering, and the K-Means algorithm.

The experiments are tested with real data on a mobile
robot. They demonstrate that a robot can successfully
learn the appropriate speed in unknown terrains, in a
completely autonomous manner. This research has
been successful on multiple texture types. Further
experiments include testing on real world terrains and
in much larger environments.
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