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Abstract—1In this paper, we apply genetic programming (GP)
with smart crossover and smart mutation to discover integrated
feature agents that are evolved from combinations of primitive
image processing operations to extract regions-of-interest (ROIs)
in remotely sensed images. The motivation for using genetic
programming is to overcome the limitations of human experts,
since GP attempts many unconventional ways of combination, in
some cases, these unconventional combinations yield
exceptionally good results. Smart crossover and smart mutation
identify and keep the effective components of integrated

“operators called “agents” and significantly improve the efficiency

of GP. Our experimental results show that compared to normal
GP, our GP algorithm with smart crossover and smart mutation
can find good agents more quickly during training to effectively
extract the regions-of-interest and the learned agents can be
applied to extract ROIs in other similar images.

Index Terms—Feature synthesis, Genetic programming, ROI
extraction, Smart crossover and smart mutation.

I. INTRODUCTION

Image segmentation and labeling of terrain region is an
important task in remote sensing application [8, 9]. The
quality of this task is primarily dependent on the data and
features used as input. There are many kinds of features that
can be used, the question is what are the appropriate features
or how to synthesize features, particularly useful for
segmentation/ labeling, from the primitive features extracted
from images. Usually, there are almost infinite ways of
combining primitive features to form synthesized composite
ones. It is the human image experts who, relying on their rich
experience, figure out a smart way of combination. The task
of finding a good combination is equivalent to finding a good
point in the search space of agents formed by the combination
of primitive operations (also called primitive operators) on
images.

However, limited by their speed, previous experience or
even bias, the human experts can only try a very limited
number of conventional combinations. Genetic programming
(GP), on the other hand, may try many unconventional ways
of combination that may yield exceptionally good results.
Also, genetic programming can explore a much larger portion
of agent space due to the inherent parallelism of GP and the
speed of computer. The search performed by GP is guided by
the goodness of agents in the population. As the search
proceeds, GP will gradually shift the population to the portion

of the space that contains good .agents. The crossover
operation is the major mechanism used by GP to search the
agent space and the mutation operation is employed to
increase the diversity of the population to avoid the premature
convergence. However, in the traditional crossover and
mutation, their locations are randomly selected, leading to
disrupting the effective components (subtree in this paper)
within agents and thus greatly reducing the efficiency of GP.
It is very important for GP to identify and keep those effective
components.

In this paper, we use genetic programming to generate
feature agents for terrain labeling. The individuals in our GP
based learning are agents represented by binary trees whose
internal nodes represent the pre-specified primitive operators
and the leaf nodes represent the original image or the
primitive feature images generated from the original image.
The primitive feature images are pre-determined, and they are
not the output of the pre-specified primitive operators. After
applying an agent on the original image or the primitive
feature images, the output image of the agent is segmented to
yield a binary image or mask. The binary mask is used to
extract the region containing the object from the original
image. To improve the efficiency of GP, we propose smart
crossover and smart mutation to identify and keep the
effective components of an agent. The identification is
performed on the basis of analyzing the interactions among
the nodes of an agent. It is worth noting that the primitive -
operators and primitive features in our system are very basic
and domain-independent, not specific to a kind of imagery, so
our system can be applied to a wide variety of images.

II. RELATED RESEARCH

Genetic programming, an extension of genetic algonthm
was first proposed by Koza in [1] and it has been used in
image processing, object detection, object recognition, etc.
Poli [2] used GP to develop effective image filters to enhance
and detect features of interest or to build pixel-classification-
based segmentation algorithms. Bhanu and Lin [3] used GP to
generate agents for ROI extraction. Their experimental results
show that GP is a viable way to search the agent space. They
also found that random selection of crossover and mutation
points may degrade the performance of GP. Stanhope and
Daida [4] used GP paradigms for the generation of rules for
target/clutter classification and rules for the identification of



objects. To perform these tasks, previously defined feature sets
are generated on various images and GP is used to select
relevant features and methods for-amalyzing these features.
Howard et al. [5] applied GP to automatic detection of ships in
low-resolution SAR imagery using an approach that evolves
detectors. Roberts and .Howard [6] used GP to develop
automatic object detectors in infrared images. To improve the
efficiency of GP, Ito et al. [7] proposed a depth-dependent
crossover for GP in which the depth selection ratio is varied
according to the depth of a node. A node closer to the root
node of the tree has a better chance of being selected as a

crossover point. Their experimental results .show the
superiority of the depth-dependent crossover to the random
crossover in which crossover points are randomly selected.

Unlike the work of Stanhope and Daida [3] and Howard et
al. [4], the input and output of each node of the tree in our
system are images, not real numbers. Also unlike the work of
Ito [7] that used only the syntax of the tree (the depth of a
node), the smart crossover and smart mutation proposed in this
paper evaluate the performance at each node to determine the
interactions among them and use the fitness value at each node
to determine the crossover and mutation points.

ADD_OP: A +B. Add two images.
SUB_OP: A —B. Subtract image B from image A.
MUL_OP: A * B. Multiply images A and B.

PN

image takes the maximum pixel value in A).
A and B.

A and B.
7. ADD_CONST_OP: A + c. Increase pixel value by c.
8. SUB_CONST_OP: A - c. Decrease pixel value by c.
9. MUL_CONST_OP: A * c. Multiply pixel value by c.
10. DIV_CONST_OP: A/ c. Divide pixel value by c.

DIV_OP: A/B. Divide image A by image B (If the pixel in B has value 0, the corresponding pixel in the resultant
5. MAX2_OP: A max B: Each pixel in the resultant image takes the larger value of the corresponding pixels in images

6. MIN2_OP: A min B. Each pixel in the resultant image takes the smaller value of the corresponding pixels in images

11. SQRT_OP: sqrt(A). For each pixel p with value v, if v > 0, change its value to \/; . Otherwise, to — \/: .

12. LOG_OP: log(A). For each pixel p with value v. if v > 0, change its value to log(v). Otherwise, to —log(-v).

13. MAX_OP: max(A). Replace the pixel value by the maximum pixel value in a 3x3, 5x5 or 7x7 neighborhood.

14. MIN_OP: min(A). Replace the pixel value by the minimum pixel value in a 3x3, 5x5 or 7x7 neighborhood.

15. MED_OP: med(A). Replace the pixel value by the median pixel value in a 3x3, 5x5 or 7x7 neighborhood.

16. REVERSE_OP: rev(A). Reverse the pixel value. Suppose the maximum and minimum pixel values of image A are
Vmax and Vmin respectively. If a pixel has value v, change its value to Vmax —v + Vmin.

17. STDV_OP: stdv(A). Obtain standard deviation image of image A by applying a template of size 3x3, 5x5 or 7x7.

Figure 1. Seventeen primitive operators (A and B are images of the same size and ¢ is a constant).

IlI. TECHNICAL APPROACH

In our GP based approach, individuals are agents
represented by binary trees. The search space of GP is the
space of all possible feature agents. The space is very large.
To illustrate this, consider only a special kind of binary tree,
where each tree has exactly 30 internal nodes and one leaf
node and each internal node has only one child. For 17
primitive operators (used in this paper) and only one primitive
feature image, the total number of such trees is 17°°. It is
extremely difficult to find good agents from this vast space

unless one has a smart search strategy.

3.1. Design Considerations

There are five major design considerations, which involve
determining the set of terminals, the set of primitive operators,
the fitness measure, the parameters for controlling the run, and
the criterion for terminating a run. ‘

1) The set of terminals - the set of terminals used in this
paper are seven primitive feature images generated from the

original image: the first one is the original image; the others
are mean and standard deviation images obtained by applying
templates of sizes 3x3, 5x5 and 7x7. These images are the
input to the agents. GP determines which operations are
applied on them and how to combine the results.

2) The set of primitive operators - a primitive operator takes
one or two images as input image(s), performs some primitive -
operations on them and stores the result in a resultant image.
Currently, 17 primitive operators are used by GP to compose
agents and they are shown in Figure 1.

3) The fitness measure - the fitness value of an agent is
computed in the following way. Suppose during training G
and G’ are foregrounds in the ground truth image and the
resultant image of the agent respectively. Let n(X) denote the
number of pixels within region X, then:

Fitness = n(GNG') /n(G UG’).

The fitness value is between 0 and ‘1. If G and G’ are
completely separated, the value is 0; if G and G’ are




completely overlapped, the value is 1.

4) Major parameters controlling the run - the key
parameters are the population size M, the number of
generations N, the crossover rate and the mutation rate.

5) Termination - The GP stops whenever it finishes the pre-
specified number of generations or whenever the best agent in

‘the population has fitness value greater than the fitness

threshold.

3.2. Reproduction, Crossover and Mutation :

The GP searches through the agent space to find good
agents. By searching through the agent space, GP gradually
adapts the population of agents from generation to generation
and improves the overall fitness of the whole population. The
search is done by reproduction, crossover and mutation
operations. The initial population is randomly generated and
the fitness of each agent is evaluated. The reproduction
operation involves selecting an agent from the current
population. In this research, we use tournament selection,
where a number of agents are randomly selected from the
current population and the one with the highest fitness value is
copied into the new population.

1) Crossover: Traditionally, to perform crossover, two
agents are selected on the basis of their fitness values. These
two agents are called parents. One internal node in each of
these two parents is randomly selected, and the two subtrees
with these two nodes as root are exchanged between the
parents. In this way, two new agents, called offspring, are
created. The two internal nodes selected during crossover are
called crossover point. Since crossover point is selected
randomly, the traditional crossover is also called random
crossover. Usually, an agent with high fitness value contains a
component (subtree) that is efficient in extracting the region
of interest. However, due to the random selection of crossover
point, random crossover may select an internal node within
this component and disrupt it, leading to the great reduction in
the efficiency of genetic programming.

In order to avoid the above problem, we propose smart
crossover that identifies and keeps the good components of an
agent. In the smart crossover, the output image of each node,
not just the resultant image from the root node, is evaluated
and the fitness value of each node is recorded. Based on the
fitness values of all the nodes, the edges of an agent are
classified as good edge or bad edge. If the fitness value of a
node is smaller than that of its parent node, the edge linking
these two nodes is a good edge. Otherwise, the edge is labeled
as bad edge. During crossover, all the bad edges are identified
and one of them is randomly selected. The child node of the
selected bad edge is chosen as the crossover point. If an agent
has no bad edge, the crossover point is selected randomly.

We use e-greedy policy to determine which crossover is
used. With probability &, the smart crossover is invoked; with
probability 1 - ¢, the random crossover is invoked. In this
paper, € is set to 0.9.

2) Mutation: In order to avoid premature convergence,
mutation is introduced to randomly change the structure of
some agents to help maintain the diversity of the population.
The agent selected for mutation is selected randomly. Also,

both random mutation and smart mutation are used. In the
random mutation, a node of an agent is randomly selected as
mutation point, and the subtree rooted at this node is replaced
by another randomly generated tree. The resulting new agent
replaces the old one in the population. In the smart mutation,
one of the bad edges is randomly chosen, and the child node
of the bad edge is selected as mutation point. If the parent
node has only one child, the parent node is deleted and the
child node is directly linked to the grand parent node (the
parent node of the deleted parent node); if the parent node has
two children, the parent node and the subtree rooted at the
child node with smaller fitness value are deleted and the other
child node is directly linked to the grand parent node. If the
grand parent node does not exist, the child becomes the root
node. The smart mutation attempts to delete internal node that
decreases the fitness value and keeps the good component. If

the agent has no bad edge, the mutation point is selected =

randomly. Similar to the crossover case, e-greedy policy
determines which mutation is invoked.

3.3. Steady-state and Generational Genetic Programming

In steady-state GP, two agents are selected based on their
fitness values for crossover. The children of this crossover,
perhaps mutated, replace a pair of agents with the smallest
fitness values. The two children are executed immediately and
their fitness values are recorded. Then another two agents are
selected for crossover. This process is repeated until crossover
rate is satisfied.

In generational GP, two agents are selected based on their
fitness values for crossover and the two offspring of the
crossover are kept. At this time, the two offspring are not put
into the current population and they will not participate in the
following crossover operations. The above process is repeated
until crossover rate is satisfied. After crossover operations are
finished, all the children resulting from the crossover
operations are combined with the current population and the
tournament selection is employed to select agents from the
combined population to generate the new population of next
generation.

For both GP algorithms, we adopt an elitism replacement
method to copy the best agent from generation to generation.

IV. EXPERIMENTS

Various experiments were performed to test the efficacy of
genetic programming in extracting regions of interest from
real synthetic aperture radar (SAR) images. In this paper, we
show three selected examples. It is worth noting that the
training and testing images are different and the ground truth
is used only during the training. In all the experiments, the
maximum size of agent is 30 and the threshold value for
segmentation is 0. In each experiment, both normal genetic
programming (GP with random crossover and random
mutation) and smart genetic programming (GP with smart
crossover and smart mutation) are applied to the training
image. For the purpose of objective comparison, we invoke
the normal GP and smart GP with the same set of parameters
in each experiment. The population size is 100, the number of
generations is 100, the fitness threshold value is 0.90 in the



first two experiments and 0.95 in the third experiment, the
crossover rate is 0.6, and the mutation rate is 0.1. The
experimental results are shown in Table 1, where the “Best
fitness” column and the “Average fitness” column show the
fitness of the best agent and the population fitness (the
average fitness of all the agents in the population) after a
particular generation. The numbers in the parenthesis in the
“Best fitness” columns are the fitness values of the best agents

on the testing SAR images. A comparison of the performance

between normal GP and smart GP is shown in Figures 2 and
3. Figure 2 shows how the fitness of the best agent improves
as the normal GP and smart GP run. Similarly, Figure 3 shows
the improvement of the population fitness as normal GP and
smart GP run. Both Figures 2 and 3 show that smart GP finds
good agents more quickly. Since population fitness is the
average fitness values of 100 agents in the population, Figure
3 demonstrates convincingly that the smart GP is more
efficient.

Table 1. The performance of normal GP and smart GP on various SAR images during training (and testing).

, Normal genetic programming
e River vs. Field o Field vs. Grass e Lake vs. Field
Generation Best Average | Generation Best Average | Generation Best Average
fitness fitness fitness fitness fitness fitness
0 0.43 0.21 0 0.62 0.44 0 0.65 0.42
48 0.74 (0.84) 0.68 50 0.87 (0.68) 0.86 45 0.93 (0.92) 0.92
Smart genetic programming
* River vs. Field o Field vs. Grass e Lake vs. Field
| Generation Best Average | Generation Best Average | Generation Best Average
fitness fitness fitness fitness fitness fitness

0 0.31 0.14 0 0.62 0.47 0 0.69 0.49

3 0.56 0.25 5 0.85 0.60 0.91 0.85

19 0.75 0.69 32 0.89 0.86 - 17 0.93 0.89

52 0.79 (0.81) 0.75 94 0.90(0.83) | .- 0.89 26 0.94 0.92
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Figure 2. The fitness of the best agent versus generation.
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Figure 3. The fitness of agent population versus generation.

1) Extracting river from real SAR images: We have two
SAR images containing river shown in Figure 4. Figure 4 (a)
was used in training and GP generated an agent to extract the
river in the image. The first primitive feature image is the
original image and the mean and standard deviation images

are shown in Figure 5, where 3x3, 5x5 and 7x7 are the size of
the template used to obtained this primitive feature image
from the original image. The generated agent was applied to
the SAR image shown in Figure 4 (d).to test its efficacy in
extracting the river. The steady-state genetic programming




was used to generate the agent. Figure 4 (b) shows the regions
of interest extracted by the best agent generated by normal
GP. The fitness value of the best agent is not very good (see
Table 1). Two reasons account for this. First, the river in
Figure 4 (a) accounts for a small percentage of the total area in
the image. Second, there are some islands in the river. These
islands are similat to the field, but they are not excluded from
the ground truth. Figure 4 (c) shows the regions of interest
extracted by the best agent generated by smart GP, and the
best agent is shown in Figure 6, where PM_IMO is original
image, PF_IM1 is 3x3 mean image and PF_IM4 is 5x5
standard deviation image. It has 30 internal nodes and 17 of

(b) best ROl in
training
{normal GP)

(c) best ROl in
training
(smart GP)

them contain MED_OP primitive operator, which is very
useful in speckle noise reduction. It is possible to have a more
compact tree representation 6f this agent. It can be-seen from
Table 1 that smart GP is more efficient. We applied the two
best agents to the image shown in Figure 4 (d). Figure 4 ()
shows the region of interest extracted by the best agent from
normal GP. The fitness value of the agent is 0.84. This number-
is larger than the fitness value in the training because the river
in Figure 4 (d) accounts for a much larger percentage of the
total area of the image than in Figure 4 (a). Figure 4 (f) shows
the region of interest extracted by the best agent from smart .
GP. The fitness value is 0.81. '

(d) river vs. field (e) best ROl in
(testing) testing
(normal GP)

(f) best ROl in
testing
(smart GP)

Figure 4. SAR images containing river and field.

(b) 5x5 mean
image

(a) 3x3 mean
image

(c) 7x7 mean
image

() 7x7 stdv
image

) e) x5 tdv \
image

(d) 3x3 stdv
image

Figure 5. Primitive feature images of training SAR image containing river and field.
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(c) best ROl in
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Figure 6. Learned agent in LISP notation by smart GP.

(d) field vs. grass (e) best ROl in

(f) best ROl in
testing
(smart GP)

(testing) testing

(normal GP)

Figure 7. SAR images containing field and grass.

2) Extracting field from real SAR images: Figure 7 shows
two SAR images containing field and grass. Figure 7 (a) was

used in training and Figure 7 (d) was used in testing. We v

consider extracting field from a SAR image containing field
and grass as the most difficult task among the three
experiments, since the grass and field are similar to each other.



The generational genetic programming was used to generate
the agent. Figure 7 (b) shows the region extracted by the best
agent found by normal GP and Figure 7 (c) shows the region
extracted by the best agent found by smart GP. Table 1 shows
that smart GP searches the agent space more efficiently than
normal GP. We applied the two best agents to the image in
Figure 7 (d). Figure 7 (e) shows the region of interest
extracted by the best agent from normal GP. The fitness value
of the agent is 0.68. Figure 7 (f) shows the region of interest
extracted by the best agent from smart GP. The fitness value
of the agent is 0.83. The best agent evolved by smart GP is
much better than that evolved by normal GP.

3) Extracting lake from real SAR. images: Two SAR
images contain lake. The first one contains a lake and field,
and the second one contains a lake and grass. Figure 8 (a)
shows the original image containing lake and field and Figure
8 (d) shows the image containing lake and grass. We used the
SAR image containing the lake and field as the training image
and applied the agent generated by GP to the SAR image

(a) lake vs. field

(b) best ROlin  (c) best ROlin (d) lake vs. grass | (e) best ROlin  (f) best ROl in
(training) training training (testing) testing testing
’ (normal GP) (smart GP) (normal GP) (smart GP)

containing the lake and grass. The steady-state genetic
programming was used to generate the agent. Figure 8 (b)
shows the region extracted by the best agent from normal GP
and Figure 8 (c) shows the region extracted by the best agent

- from smart GP. Smart GP finds the good agents more quickly

than normal GP. We applied the two best agents to the image

in Figure 8 (d). Figure 8 () shows the region of interest

extracted by the best agent from normal GP. The fitness value
of the agent is 0.92. Figure 8 (f) shows the region of interest
extracted by the best agent from smart GP. The fitness value
of the agent is 0.97, which is higher than that from normal GP.

It is worth noting that since elitism mechanism is adopted,
the fitness value of the best agent is not decreased from
generation to generation. However, the average fitness value
of the population may be decreased, although the fluctuation is
very small. The general trend is that the average fitness values
increases quickly within the first 20 generations. Then the
marginal improvement can be achieved in the rest of the
generations.

Figure 8. SAR image containing lake and field.

Y. CONCLUSIONS

In this paper, we presented a basic approach that uses
genetic programming to evolve agents for extracting terrain
regions in remotely sensed images. In order to improve the
efficiency of genetic programming, we proposed smart
crossover and smart mutation that can identify and keep the
effective ROI extraction components in agents. We used SAR
imagery to demonstrate the approach for extracting terrain
regions. Our experimental results showed that GP can find
good agents to effectively extract ROIs in SAR images and the
smart crossover and smart mutation make GP find these good
agents more quickly, thus greatly improving the efficiency of
GP. The agents generated by GP during the trammg can be
applied to extract ROIs in other similar i images. Currently, in
order to get the fitness at each node, we have to evaluate its
output image, which is a time consuming and inefficient
process. To further improve the efficiency of GP, it is
important to find a way to estimate the fitness of internal
nodes based on the fitness of the root node.
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