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Abstract

In an infrared (IR) image sequence of human walk-
ing, the human silhouette can be reliably extracted from
the background regardless of lighting conditions and col-
ors of the human surfaces and backgrounds in most
cases. Moreover, some important regions containing
skin, such as face and hands, can be accurately detected
in IR image sequences. In this paper, we propose a
kinematic-based approach for automatic hurman motion
analysis from IR image sequences. The proposed ap-
proach estimates 3D human walking parameters by per-
forming a modified least squares fit of the 3D kinematic
model to the 2D silhouette extracted from a monocu-
lar IR #mnage sequence, where continuity and symmetry
of humnan walking and detected hand regions are also
considered in the optimization function. Ezperimental
results show that the proposed approach achieves good
performance in gait analysis with different view angles
with respect to the walking direction, and is promising
Jor further gait recognition.

1. Introduction

Current human recognition methods, such as finger-
prints, face or iris biometrics, generally require a coop-
erative subject, views from certain aspects and physi-
cal contact or close proximity. These methods can not
reliably recognize non-cooperating individuals at a dis-
tance in real-world situations with changing environ-
mental conditions. Moreover, in various applications
of personnel identification, many established biomet-
rics can be obscured. Gait, which concerns recognizing
individuals by the way they walk, has been used as a
important biometric without the above-mentioned dis-
advantages.

In recent years, some approaches have already been
employed for automatic gait recognition from regular
cameras. Niyogi and Adelson [9] make an initial at-
tempt in a spatiotemporal (XYT) volume. They first
find the bounding contours of the walker, and then
fit a stick model on them. A characteristic gait pat-
tern in XYT is generated from the model parameters
for recognition. Little and Boyd [7] propose a model-
free approach making no attempt to recover a struc-
tural model of human motion. Instead they describe
the shape of the motion with a set of features de-
rived from moments of a dense flow distribution. Sim-
ilarly, He and Debrunner’s [2] approach detects a se-
quence of feature vectors based on Hu’s moments of
motion segmentation in each frame, and the individual

is recognized from the feature vector sequence using
hidden Markov models. To avoid the feature extrac-
tion process which may reduce reliability, Murase and
Sakai [8] propose a template matching method to cal-
culate the spatio-temporal correlation in a parametric
eigenspace representation for gait recognition. Huang
et al. [4, 3] extend this approach by combining canon-
ical space transformation (CST) based on canonical
analysis, with eigenspace transformation (EST) for fea-
ture selection.

Unlike regular cameras which detect visible light,
a long wave infrared (IR) camera records electromag-
netic radiation emitted by objects in a scene as ther-
mal images whose pixel values represent temperature.
Therefore, in an IR image that consists of human in
a scene, a simple thresholding can extract the human
silhouette from the background regardless of lighting
conditions and colors of the human surfaces and back-
grounds, because the temperatures of the human body
and background are different in most cases. In cool
weather or without direct sunshine, a person will nor-
mally be warmer than the background due to body’s
internal heat. In most other cases, such as with the sun
shining on a person’s back, the ground may be warmer
than the person. Moreover, by setting the temperature
range to approximate human body temperature, image
regions corresponding to human skin can be easily and
reliably detected in IR images [1, 5, 10].

In this paper, we propose a kinematic-based ap-
proach to analyze gait from IR image sequences. The
proposed approach automatically estimates 3D human
model parameters by performing a least squares fit of
the 3D kinematic model to the 2D silhouette extracted
from an IR image sequence. Moreover, continuity and
symmetry of human walking and detected hand regions
are considered in the optimization [unction. Our ap-
proach also eliminates the assumption of human walk-
ing frontoparallel to the image plane in most existing
gait recognition approaches. Thus, in our approach,
people can walk at different angles with respect to the
image plane.

2. Image Analysis

2.1. Silhouette Extraction

Assuming that people are the only moving objects
in the scene, they can be extracted by a simple back-
ground subtraction method. Given an IR image se-
quence containing moving people and the correspond-
ing background IR image, for each frame I; in the se-
quence, the difference Ap;(z,y) = ||pi(z,y) — ps(z,y)||
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Figure 1. An example of silhouette extraction re-
sults: (a) original IR image; (b) background-
subtracted image; (c) segmented human silhou-
ette; (d) segmented face and two hands.
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Figure 2. An example of face position (row position
from the bottom of the image) variation in an IR
image sequence.

face position
H

is computed for each pixel, where p;(z,y) and py(z,y)
are the intensity (temperature) values of the pixel at
(z.y) in the ith frame and background image, respec-
tively. Given a threshold t, if Ap;(z,y) > t the pixel at
(z,y) is determined to be part of the moving objects;
otherwise, it is part of the background. In addition,
by setting the temperature range to approximate hu-
man body temperature, image regions corresponding
to human skin, such as face and hands, can be eas-
ily and reliably detected in IR images. An example of
silhouette extraction results is shown in Figure 1.

2.2. Pre-processing

In a human walking sequence, the hand on the cam-
era side is always visible and the other hand is occluded
by the body in some frames. According to the walking
direction, hand regions in each frame, and the continu-
ity of the hand position in adjacent frames, we can de-
termine which hand is the left hand in each frame. This
is very important in our 3D model matching. Given a
2D human silhouette, there would be many additional
corresponding solutions of 3D model parameters if the
order of left and right body parts were unknown.

Once the order of left and right body parts in each
frame is known, a sequence can be divided into motion
cycles. The motion cycle can be detected by exploiting
the face position (row position from the bottom of the
image) variation in a sequence as shown in Figure 2.
In each walking cycle, the silhouette with highest local
face position means that person stands straight in that
frame; the silhouette with lowest local face position
means the person is in mid-stride. Qur approach will
be carried out during these walking cycles.

2
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Figure 3. 3D Human Kinematic Model (the hand is
viewed as a part of the lower arm).

Figure 4. Body part geometric representation.

After the silhouette has been cleaned by a filtering
procedure, its height, width and centroid can be easily
extracted for subsequent motion analysis. In addition,
the moving direction of the walking person is deter-
mined as follows

—1_flhi—hn) . .
g {zan W: if y1 > yn; i
=1 1—hpn .
tan™ g —hny; T 7 Otherwise.

where f is the camera focal length, y; and yy are the
horizontal centroid of the silhouette in the first and
last frames of the walking cycle, and h; and Ay are
the height of the silhouette in the first and last frames
of the walking cycle.

3. Technical Approach
3.1. 3-D Human Kinematic Model

A human body is considered as an articulated ob-
ject, consisting of a number of body parts. The body
model adopted here is shown in Figure 3, where a cir-
cle represents a joint and a rectangle represent a body
part (N: neck, S: shoulder, E: elbow, W: waist, H: hip,
K: knee, and A: ankle).

Most joints and body part ends can be represented
as spheres, and most body parts can be represented
as cones. The whole human kinematic model is rep-
resented as a set of cones connected by spheres [6].
Figure 4 shows that most of the body parts can be ap-
proximated well in this manner. However, the head is
approximated only crudely by a sphere and the torso
is approximated by a cylinder with two spheroid ends.

3.2. Matching 3D Model with 2D Silhouette

The matching procedure determines a parameter
vector x so that the proposed 3D model fits the given
2D silhouette as well as possible. For that purpose,
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two transformations transform human body local coor-
dinates (z,y, z) into image coordinates (z',y')[11]: the
first transformation transforms local coordinates into
camera coordinates; while the second transformation
projects camera coordinates into image coordinates.

In the human body local coordinates (z,y,z), the
z axis is the human vertical axis, the y axis is along
the walking direction, the z axis is perpendicular to
the (z,y) plane, and the origin is the human centroid.
In the image coordinates (z',%'), the z’ and y' axes
are the vertical and horizontal axes, respectively. In
the camera coordinates (z”,y"”, 2z""), assuming that the
camera axis is parallel to the ground, the z” axis is
the camera axis, and the z" and y"” axes are along the
z' and y' axes in the image coordinate, respectively.
Assuming the origin of the human local coordinate at
a specific moment in the camera coordinate (z”, 3", z")
is (z(,y{, z4) and the walking angle with respect to the
image plane of the camera is @ given by Equation (1),
we have " =z + z, y’ =y + ycosf — zsin8, 2" =
2y +wysing + zcosd, and ' = faj2!; y' = fy' )2,
where f is the camera focal length.

Each 3D human body part is modeled by a cone
with two spheres s; and s; at its ends, as shown in
Figure 4 [6]. Each sphere s; is fully defined by 4 scalar
values, (z;, yi, zi,7:), which define its location and size.
Given these values for two spheroid ends (z;. i, zi, ;)
and (z;,;, z;, ;) of a 3D human body part model, its
projection F;;) onto the image plane is the convex hull
of the two circles defined by (z,y!,r!) and (x5, 9. 75)-

Therefore, given a set of 3D sphere parameters
x = {x; : (¢i,¥i,2i,7i)} and camera parameters, its
projection Py(z',y') is uniquely determined, where ',
y' are 2D image plane coordinates.

3.3. Model Parameter Selection

Human motion is very complex due to so many de-
grees of freedom (DOFs). To simplify the matching
procedure, we use the following reasonable assump-
tions: (1) the camera is stationary; (2) people are walk-
ing before the camera at a distance; (3) people are mov-
ing in a constant direction; (4) the swing direction of
arms and legs parallels to the moving direction. Ac-
cording to these assumptions, we do not need to con-
sider the waist joint, and only need to consider one
DOF for each other joint. Therefore, the elements of
the parameter vector of the 3D human kinematic model
are defined as: (a) Radius r;(11): torso(3), shoulder,
elbow, hand, hip, knee, ankle, toe, and head; Length
13(9): torso, inter-shoulder, inter-hip, upper arm, fore-
arm, thigh, calf, foot, and neck; (b) Location (z, y)(2):
Angle 0;(11): neck, left upper arm, left forearm, right
upper arm, right forearm, left thigh, left calf, left foot,
right thigh, right calf, and right foot. With 33 station-
ary and kinematic parameters, the projection of the
human model can be completely determined.

3.4. Model Parameter Estimation

If the 2D human silhouette is known, we may find
the related 3D body parts locations and orientations
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with the knowledge of camera parameters. A simple
method is to perform a least squares fit of the 3D
human model to the 2D human silhouette. That is,
to estimate the set of sphere parameters x = {x; :
(zi, i, zi,73)} by choosing x to minimize

J =error(x;I) = Z (Pl ') = I(',9'))2, (2)
z'y'erl
where [ is the silhouette binary image, Py is the binary
projection of the 3D human model to image plane, and
x', y' are image plane coordinates.

However, model fitting in a single frame is unreli-
able, especially when the segmentation result is not
good. A better method is to consider all the frames in
a walking cycle as a whole. In this way, we can con-
sider not only the continuity and symmetry of model
parameters in a walking cycle but also the extracted
hand regions as important references. We accordingly
modify Equation (2) as follows

J' =E+aC + (S +~H. (3)

e £ = Ei\;l error(x;; I) is the matching error over
the complete walking cycle. error(x;;I) is the
matching error between the ith projected model
image and corresponding silhouette image which
is defined in Equation (2).

e (' is the discontinuity error of the kinematic pa-
rameters on the complete walking cycle. Disconti-
nuity means that the variation of the motion pa-
rameters is not smooth during the complete walk-
ing cycle.

e 5 is the non-symmetry error of the kinematic pa-
rameters on the complete walking cycle. Non-
symmetry means that the motion parameters of
the left body parts in the first half cycle do not
coincide with the motion parameters of the right
body parts in the second half cycle.

e H is the lower arm matching error over the com-
plete walking cycle. In our approach, it is the stan-
dard deviation of the average pixel value of the
lower arm (including hand) on the camera side.
This makes use of the detected hand regions in
the IR images.

In Equation (3), «, § and 7 are corresponding weights
which will be explained in next section.

To estimate the model parameters over the whole
walking cycle, we first initialize these parameters
according to average human statistical information.
Then, the set of parameters is estimated from these
initial parameters by choosing a parameter vector x to
minimize the optimization function J' in equation (3)
with respect to some human kinematic constraints.

A Genetic Algorithm (GA) is appropriate to solve
this optimization problem. GA provides a learning
method motivated by an analogy to biological evo-
lution. Rather than search from general-to-specific
hypotheses, or from simple-to-complex, GA generates
successor hypotheses by repeatedly mutating and re-
combining parts of the best currently known hypothe-
ses. At each step, a collection of hypotheses called
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Figure 5. Four IR sequences used in our experi-
ments with walking angles of —7, 182, 3, and 9
degree of arc, respectively. Each row represents
one sequence with four example frames shown.
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Figure 6. lllustration of the walking direction angle
from top view.

the current population is updated by replacing some
fraction of the population by offspring of the most fit
current hypotheses. After a large number of steps, the
hypotheses having the best fitness are considered as
solutions. In our approach, we use 7 bits to represent
each body part length and 5 bits to represent each an-
gle in the given range (totally 720+ 5% 13 %10 = 790
bits for a 10-frame cycle); fitness function is (1 — (J' —
Trin) | (Dhaz — Ihin)); Population size is 100; crossover
rate is 0.5; crossover method is uniform crossover; mu-
tation rate is 0.2; the GA will terminate if the fitness
values have not changed for 15 successive steps.

4. Experimental Results

The IR data used in our experiments are real human
walking data from the same person recorded in an in-
door environment. In the four testing sequences, one
person walks in different directions as shown in Figure
5. In each sequence, the walking direction @ remains
the same, ranging from —10° to 10° along the image
plane of the camera as illustrated in Figure 6. The size
of IR image is 240 x 320.

In our experiments, we first set the range of body
parts length and angle variation from human statis-
tical data. With regard to the weights in Equation
(3), they cannot be large because the matching error
should be the dominant factor in J'. Also, they should
be chosen in such a way that all the three additional
factors have a similar contribution to J'. In our exper-
iments, we choose a« = 1/6, 3 = 1 and v = 6 for all
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Figure 7. Matching results for the four sequences.
Each block represents one sequence with six ex-
ample frames shown. In each block, the first row

consists of the segmented silhouette and the sec-
ond row show the projected model images.
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Figure 8. Fitness value variation in a typical run of
matching four sequences.

the four sequences according to the ratio of the average
values of these factors. Figure 7 shows typical match-
ing results for some frames in the four image sequences.
Our approach achieves good matching performance be-
tween the 2D silhouette and the projected 3D model,
although they may not seem perfect in some frames
on close inspection due to the non-zero matching er-
rors. The fitness value variation during the matching
procedure for the four sequences is shown in Figure
8. It demonstrates that our GA-based matching algo-
rithm converges after 500 ~ 600 steps for the complete
cycle. The size of the search space is approximately
2799 ~ 10%7, where 790 is the number of bits in the
encoded string of a 10-frame cycle. The efficiency of
GA as a tool for global optimization is clear by exam-
ining the ratio of the search space examined divided
by the size of the search space. Note that the size of
the search space is greatly reduced by the high degree
dependency of the parameters in adjacent frames.
The estimated angle variation curves from the four
sequences are shown in Figure 9. Figure 9 is obtained
by normalizing each walking cycle to 20 frames so that
walking at different speeds does not affect the motion
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Figure 9. Estimated angle variation curves from the
4 normalized cycles from different sequences for
(a) left upper arm, (b) left forearm, (c) right upper
arm, (d) right forearm, (e) left thigh, (f) left calf,
right thigh, (g) right calf, and (h) right foot, respec-
tively. The horizontal axis is the normalized frame
number, and the vertical axis is the angle.

curve. Table 1 shows the maximum, minimum and
average values of the standard deviation over the com-
plete normalized sequence. Each value of the standard
deviation are computed from the four angle values at
each frame. The experimental results show that the
curves coincide well even when walking in different di-
rections. This means that our approach can compute
very similar human motion patterns from different se-
quences of the same person.

5. Conclusions

In this paper, we proposed an approach to estimate
3D human motion from a monocular IR image sequence
for automatic gait recognition. The proposed approach
performs a least squares fit of a complex 3D human
model to the 2D human silhouette. Continuity and
symmetry of human walking and detected hand regions
are also considered in the optimization function. Ex-
perimental results show that the proposed approach
achieves good performance in gait analysis with differ-
ent view angles with respect to the walking direction.
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(@ [(B) [(c) [(d) [(e) [ ) [ (g) [ ()
max. | 4133 (543247 ]56]33]6.6
min. [ 0706 [05[05]02]04]06] 0.2
ave. |24 116 (251819171923

Table 1. The maximum, minimum and average val-
ues (degree of arc) of the standard deviation over
the complete normalized sequence.

In the future with large database, we plan to evalu-
ate the parameter estimation in the presence of intra-
personal variation. The angle differences among dif-
ferent persons might be more than 10° of arc and the
average intra-personal variation value is about 2° (see
Table 1). Thus, we expect to extract promising gait
features from these curves. In addition, we plan to
deal with complex situations like the 2D silhouette is
not properly extracted (due to partial occlusions or the
person wearing a thick coat), the direction of motion
of the person changes, or the hands are not accurately
identified.
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