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abstract 

Fingerprint matching is still a challenging problem for reliable person authentication because of 
the complex distortions involved in two impressions of the same finger. In this paper, we propose 
a fingerprint matching approach based on Genetic Algorithms (GA), which finds the optimal 
global transformation between two different fingerprints. In order to deal with low quality fin-
gerprint images, which introduce significant occlusion and clutter of minutiae features, we de-
sign the fitness function based on the local properties of each triplet of minutiae. The experimen-
tal results on National Institute of Standards and Technology fingerprint database, NIST-4, not 
only show that the proposed approach can achieve good performance even when a large portion 
of fingerprints in the database are of poor quality, but also show that the proposed approach is 
better than another approach, which is based on mean-squared error estimation. 
 

Keywords: Fitness value, Corresponding triangles, Minutiae, Optimization, Fingerprint Verifica-
tion. 

 

1 Introduction 

Fingerprint is one of the most promising methods among biometric recognition techniques and 

has been used for person authentication for a long time. Now, it is not only used by police for 

law enforcement, but also in commercial applications, such as access control and financial trans-

actions. In terms of applications, there are two kinds of fingerprint recognition systems: verifica-

tion and identification. In verification, the input is a query fingerprint and an identity (ID), the 

system verifies whether the ID is consistent with the fingerprint. The output is an answer of yes 

or no. In identification, the input is only a query fingerprint, the system tries to answer the ques-
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tion: are there any fingerprints in the database that resemble the query fingerprint? The output is 

a short list of fingerprints. In this paper, we are dealing with the verification problem. 

 
A fingerprint is formed by a group of curves. The most useful features, which include endpoints 

and bifurcations, are called minutiae. Figure 1 shows examples of an endpoint and a bifurcation 

in a fingerprint image. Generally, the minutiae based fingerprint verification is a kind of point 

matching algorithm. However, the distortions between two sets of minutiae extracted from the 

different impressions of the same finger may include significant translation, rotation, scale, 

shear, local perturbation, occlusion and clutter, which make it difficult to find the corresponding 

minutiae reliably. 

 

bifurcation 

endpoint 

 

 

 

Figure 1. Examples of minutiae. 

2 Related Work And Contribution 

2.1 Related work 

Generally, fingerprint matching algorithms have two steps: 1) align the fingerprints and 2) find 

the correspondences between two fingerprints. The approach proposed by Jain et al. [11] is capa-

ble of compensating for some of the nonlinear deformations and finding the correspondences. 

However, since the ridges associated with the minutiae are used to estimate the alignment 

parameters, the size of the templates has to be large, which takes much memory and 
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computation, otherwise, the alignment will be inaccurate. Jiang and Yau [8] use the local and 

global structures of minutiae in their approach. The local structure of a minutia describes a 

rotation and translation invariant feature of the minutia in its neighborhood, and the global 

structure tries to determine the uniqueness of a fingerprint. The problem with this technique is 

that it can not compensate for real-world distortions of a 3D elastic finger. These distortions can 

be considered equivalent to a space variant scale distortion. Furthermore, the weight vector that 

is associated with each component of the feature vector, such as distances, directions, relative 

local orientations, etc., has to be empirically determined. Another prominent matching algorithm, 

which is proposed by Kovacs-Vajna [15], uses triangular matching to deal with the deformations 

of fingerprints. However, the final results of matching have to be validated by a Dynamic Time 

Warping (DTW) algorithm. Without DTW for further verification, the results are not acceptable. 

In our previous work [23], we have developed a fingerprint identification approach, which is 

based on the local optimization of the corresponding triangles to perform verification between 

two fingerprints. 

 
Besides minutiae, researchers have also used other features for fingerprint matching. Saleh and 

Adhami [20] proposed an approach which transforms fingerprint images into a sequence of 

points in the angle-curvature domain. The matching between a query fingerprint and a template 

fingerprint is based on the least square error of the Euclidean distance between corresponding 

points in the angle-curve domain. Jain et al. [13] presented a filter-based algorithm, which uses a 

bank of Gabor filters to capture both local and global details in a fingerprint as a compact fixed 

length FingerCode. The authors reported that the FingerCode based system performs better than 

a state-of-the-art minutiae-based system when the performance requirement of the application 

system does not demand a very low false acceptance rate. 
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The combinations of different kind of features have also been used in fingerprint matching. Jain 

et al. [12] presented a hybrid matching algorithm that uses both minutiae and texture informa-

tion. Ceguerra and Koprinska [6] proposed an approach that uses matched minutiae as the refer-

ence axis to generate shape signature of the fingerprint. Shape signature is then used to form a 

feature vector describing the fingerprint. A linear vector quantizer (LVQ) neural network is 

trained using the feature vectors to match fingerprints. Both approaches reported improvements 

in the matching results. 

 
2.2 Contribution 

In this paper, we use genetic algorithms (GA) to achieve a globally optimized solution for the 

transformation between two sets of minutiae extracted from two different fingerprints. The fit-

ness function is based on the local properties of each triplet of minutiae, which include angles, 

triangle handedness, triangle direction, maximum side, minutiae density and ridges counts. The 

performance of our approach on the NIST-4 database, which has a large portion of fingerprints of 

poor quality, shows that our approach can tolerate highly nonlinear deformations. The compari-

son of the proposed approach with another approach based on mean-squared error estimation 

shows the advantage of GA based verification. 

 

3 Technical Approach 

3.1 Fingerprint matching problem 

Suppose the sets of minutiae in the template and the query fingerprints are {(xn,1 , xn,2)} and {(ym,1 

, ym,2)} respectively, where n = 1,2,3,…,N, m = 1,2,3,…,M. The number of minutiae in the 
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template and the query fingerprints are N and M, respectively. The transformation Yi = F(Xi) be-

tween Xi(xi,1 , xi,2) and Yi(yi,1 , yi,2) can be simplified as: 

TXRsY ii +⋅⋅=        (1) 

where s is the scale factor, , θ  is the angle of rotation between two fin-

gerprints, and T  is the vector of translation. 
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Thus, the matching problem can be defined as to find the optimized transformation, which can 

map as many as possible minutiae in the template fingerprint to the minutiae in the query 

fingerprint. 

 
3.2 Selection of an optimization technique 

We have reviewed many techniques commonly used for optimization to determine their useful-

ness for fingerprint recognition [29]. The drawbacks of each of these methodologies are as fol-

lows: 

• Exhaustive techniques (Random walk, depth first, breadth first, enumerative): Able to find 

global maximum but computationally prohibitive because of the size of the search space and 

real-time considerations; 

• Calculus-based techniques (Gradient methods, solving systems of equations): No closed 

form mathematical representation of the objective function is available. Discontinuities and mul-

timodal complexities are present in the objective function; 
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• Partial knowledge techniques (Hill climbing, beam search, best first, branch and bound, 

dynamic programming, A*): Hill climbing is plagued by the foothill, plateau, and ridge prob-

lems. Beam, best first, and A* search techniques have no available measure of goal distance. 

Branch and bound requires too many search points while dynamic programming suffers from the 

curse of dimensionality and is expensive computationally; 

• Knowledge-based techniques (Production rule systems, heuristic methods): These systems 

have a limited domain of rule applicability, tend to be brittle, and are usually difficult to formu-

late. Further, the visual knowledge required by these systems may not be representable in knowl-

edge-based formats; 

• Hierarchical techniques: Generally, a coarse resolution is employed to find a narrow range 

of the solution, then using a fine resolution in the narrow range search is performed to achieve 

the optimal solution. However, like hill climbing techniques, hierarchical techniques can not al-

ways find the optimal solution. 

 
Genetic algorithms are able to overcome the problems mentioned in the above. They search from 

a population of individuals, which make them ideal candidates for parallel implementation, and 

more efficient than exhaustive techniques. Since they use simple rules to generate new individu-

als, they do not require domain specific knowledge or measures of goal distance. 

 
3.3 Optimization based on GA 

Genetic algorithms (GA), introduced by Holland [7], provide an approach to learning that is 

loosely based on simulated evolution. The search for an appropriate hypothesis begins with a 

population of initial hypotheses. Members of the current population generate the new generation 
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by means of selection, crossover and mutation, which are patterned after processes in biological 

evolution. At each step, hypotheses in the current population are evaluated by a fitness function, 

with the better fit hypotheses selected probabilistically for generating the next population. A 

detailed introduction to GA can be found in [3]. 

 
GA has been widely used for optimization. Johnson [9] considered the design of a switched beam 

linear array in which two beams with specified shapes are to be produced. GA based optimiza-

tions are used for the design task. It is discovered that much better results are obtained by 

simultaneous, multi-objective optimization based design using GA. Lam et al. [16] proposed the 

stability analysis of fuzzy model-based nonlinear control systems, and the design of nonlinear 

gains and feedback gains of the nonlinear controller using GA. The solution of the stability 

conditions are also determined by GA. An application example of stabilizing a cart-pole typed 

inverted pendulum system was given to show the stability of the nonlinear controller. Other re-

searches, who have used GA for optimization, can be found in [10][17][18][21]. 

 
GA has also been used in applications of object recognition. Bebis et al. [4] used GA to recognize 

2D or 3D objects from 2D intensity images. The approach is model-based, while the recognition 

strategy lies on the theory of algebraic functions of views. Tsang [25] presented a GA based 

technique for searching the best alignment between contours of near-planar objects. The method 

is more efficient and robust than the dominant point approaches. Similar idea has been used in 

[24]. Ozcan and Mohan [19] applied GA to the partial shape matching problem. The quality of 

matching is evaluated by a measure derived from attributed shape grammars. Kawaguchi and 

Nagao [14] and Zaki et al. [28] also used similar idea in their recognition systems. GA has also 

been used in handwriting recognition systems, [5] and [27], and stereo matching of images [22]. 
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Figure 2 shows the block diagram of our approach. First, a feature extraction procedure, which is 

based on learned template introduced in [1], is applied to both the template and query finger-

prints. The extracted features are the input to GA module, which is used to find the optimized 

transformation parameters corresponding to the maximum fitness value. If the maximum fitness 

value is greater than the threshold, then the input fingerprints are from the same finger. 

Otherwise, they are not. In the following, we introduce our GA based approach in detail. 

Template Fingerprint Query Fingerprint
 

Genetic 
Algorithms 

Feature Extraction

No

Yes

Maximum fitness 
value > Threshold?

Generate new 
population Pn 

Selection
Crossover 
Mutation

Yes

No
Satisfy termination 

condition? 

Compute fitness value for each 
hypothesis in P 

Chromosome representation and 
initialization of population P 

Feature Extraction 

 

 

 

 

 

 

 

 

From same finger From different finger 

Figure 2. Block diagram of GA based approach for fingerprint matching.  

3.3.1 Chromosome representation and initialization 

As shown in Section 3.1, the parameters that need to be optimized are s, θ, tx and ty. According to 

our experimental results, which are explained in detail in Section 4.2, the ranges of these parame-
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ters (for NIST-4 database) are: 0.9 ≤ s ≤ 1.1, -30o ≤ θ ≤ 30o, -128 ≤ tx ≤ 128, -128 ≤ ty ≤ 128. The 

resolutions of these parameters are 0.01, 1o, 1 pixel and 1 pixel, respectively. Thus, the number 

of bits to represent s, θ, tx and ty are 5, 6, 8 and 8, respectively. The length of chromosome 

representation is 27 bits. The size of the entire search space is about 227 ≈ 1.34×108. The bit 

string is initialized randomly. 

 
3.3.2 Fitness Function 

Fitness function is critical to the performance of GA. In our approach, fitness function is defined 

by a two-step process. During the first step, the optimized transformation is used to check the 

global consistency between two sets of minutiae. In the second step, local properties of the 

minutiae are used to verify the detailed matching. 

 

1) Step 1: Suppose the optimized transformation is , where   ∀ j, j = 

1,2,3,…,N, and N is the number of minutiae in the template.  Let 
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If dj is less than a threshold Td , then we define the points  and  are potential corre-

sponding points. Figure 3 shows the illustration of . If n
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transformation  be . In this case, it does not make sense to further evaluate 

the matching. Otherwise, we check the local properties of the triplets of minutiae. 
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 Template minutiae Query minutiae

 Figure 3. Illustration of . )(ˆ
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2) Step 2: Each noncolinear triplet of potential corresponding points can form a triangle, the 

local properties associated with the triangle include: 

• Angles αmin and αmed : Suppose αi are three angles in the triangle, i = 1, 2, 3. Let αmax = 

max{αi}, αmin = min{αi}, αmed = 180° - αmax - αmin , then the label of the triplets in this triangle is 

such that if the minutia is the vertex of angle αmax , we label this point as P1 ; if the minutia is the 

vertex of angle αmin , we label it as P2 ; the last minutia is labeled as P3. Figure 4 shows an 

example of this definition. 

P1
 

αmin
αmed

αmax

P3 P2

Figure 4. Definition of feature points’ labels.
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 Figure 5. ∆A′B′C′ and ∆ABC have the same internal angles but different triangle handedness.
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 Figure 6. Examples of minutiae with different ν value. 

• Triangle handedness φ: Let Zi = xi + jyi be the complex number ( 1−=j ) corresponding 

to the coordinates (xi , yi) of point Pi , i = 1,2,3. Define Z21 = Z2 – Z1 , Z32 = Z3 – Z2 , and Z13 = Z1 

– Z3 . Let φ = sign(Z21 × Z32), where sign is the signum function and × is the cross product of two 

complex numbers. Figure 5 shows two triangles that have the same αmin and αmed but different φ. 

• Triangle Direction η: Search the minutia from top to bottom and left to right in the 

fingerprint, if the minutia is the start point of a ridge or valley, then ν = 1, else ν = 0. Let η = 

4ν1 + 2ν2 + ν3 , where νi is the ν value of point Pi , i = 1,2,3. Figure 6 shows examples of 

minutiae with different ν value. 

• Maximum Side λ: Let λ = max{Li}, where L1 = |Z21|, L2 = |Z32|, and L3 = |Z13|. 

 

Figure 7. Examples of ridge count and minutiae density. 

Minutiae density: 2

Ridge count: 5

 

 

 

 

 11



• Minutiae Density χ: In a local area (32×32 pixels) centered at the minutiae Pi, if there exists 

nχ minutiae, then minutiae density for Pi is χi = nχ . Minutiae density χ is a vector consisting of 

all χi’s. 

• Ridge Counts ξ: Let ξ1 , ξ2 and ξ3 be the ridge counts of sides P1P2 , P2P3 and P3P1 , 

respectively, then ξ is a vector consisting of all ξi’s. Figure 7 shows the examples of ridge count 

and minutiae density. 

 
If two triangles from two different fingerprints satisfy the following criteria, then they are 

potential corresponding triangles, and the fitness value of the hypothesis , where 

n

tnFFV =)ˆ(
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Where ( )'''''''
min ,,,,,, iimed ξχληφαα  and ( )"""""""

min ,,,,,, iimed ξχληφαα

medαT

 are the local properties of the 

triangle in different fingerprints; T , , T
minα λ, Tχ, and Tζ are thresholds to deal with the local 

distortions. 

 
Thus, the fitness function is defined as: 
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where nc is the number of potential corresponding points, nt is the number of potential 

corresponding triangles, and Tn is the threshold. Generally, the larger the Tn, the longer the evo-

lution of GA takes. 

 
3.3.3 Population generation 

Suppose (a) the size of population P is Np; (b) hypotheses of the transformation are , i = 

1,2,3…N

iF̂

p; (c) crossover rate is ps; (d) mutation rate is pm; (e) hypotheses are ordered in the 

descending order of their fitness values; (f) the fitness value of a hypothesis  is FV( ). iF̂ iF̂

 
Then, a new generation Pn is generated by 

• Selection: probabilistically select the first ps Np ×  hypotheses from P and add them to Pn . 

• Crossover: probabilistically select 
2
)1( ps Np ×−

 pairs of hypotheses from P according to 

Pr( ). For each pair hypotheses, generate two children by applying the crossover operator and 

add them to P

iF̂

n. The probability Pr( ) is defined by iF̂
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• Mutation: choose pm × Np hypotheses from P with uniform probability. For each hypothesis, 

invert one randomly selected bit. 

 Crossover MaskParents Children

 11101001000 

00001010101 

10011010011
10001000100

01101011001 

Figure 8. An example for uniform crossover operators in GA. 

Generally, crossover operators include single-point crossover, two-point crossover, and uniform 

crossover. In uniform crossover, the crossover mask is generated as a random bit string with each 

bit chosen at random and independent of the others. Figure 8 shows an examples of uniform 

crossover, which is used in our approach. 

 
3.3.4 Termination conditions 

Termination conditions decide the length of the learning time and possibly how good the solution 

is. The termination conditions we use are: 1) terminate GA if the maximum fitness value does not 

change in Nt generations; 2) Terminate GA if the fitness value of a matching is greater than 100, 

then it is a correct genuine matching and is unnecessary to continue the evolution. 

 
3.3.5 Computation time reduction 

One problem with GA is that the computation time of the evolution can be long. In order to re-

duce it, we use the termination conditions that are defined above. In addition, during the 
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evolution, the first ps×Np hypotheses are selected and added to the next generation. Only muta-

tion can change the fitness value of these hypotheses. If no mutation happens for a particular in-

dividual corresponding to any one of these hypotheses, then it is unnecessary to compute their 

fitness value again. 

 

4. Experimental Results 

4.1 Database and parameters 

The database we use in our experiments is the NIST Special Database 4 (NIST-4) [26], which is a 

publicly available fingerprint database. Since the fingerprints in NIST-4 are collected by an ink-

based method, a large portion of the fingerprints are of poor quality and contain certain other ob-

jects, such as characters and handwritten lines. The size of the fingerprint images is 480×512 

pixels with a resolution of 500 DPI. NIST-4 contains 2000 pairs of fingerprints. Each pair is a 

different impression of the same finger. The fingerprint is coded as a f or s followed by 6 num-

bers, which means the fingerprint image is the first or second impression of certain finger. Some 

sample fingerprints are shown in Figure 9. 
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s0031_02

f0031_02

s0022_05

f0022_05

s0021_0 

f0021_07 

s0011_02

f0011_02

f0002_05

f0002_05

s0001_10 

f0001_10 

Figure 9. Sample fingerprints in NIST-4 database. 
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Figure 10. Histograms of transformation parameters (first 100 pairs of fingerprints in NIST-4).

 
4.2 Estimation of data range for GA 

Parameters that need to be optimized are s, θ, tx and ty. The data range of these parameters are critical 

to the performance of the approach. On one side, if the data range is too small, we may miss the 

optimal solution. On the other side, if the data range is too large, the GA may take a much longer 

time to finish. The estimation of the data range is based on the experiments of the first 100 pairs of 

fingerprints of NIST-4. 

 
For the first fingerprint in each pair of fingerprints, we manually choose minutiae features, then find 

the correspondences in the second fingerprint. Using the pairs of correspondences of minutiae 

features in each pairs of fingerprint, we estimate the transformation parameters by Mean Squared 

Error [23]. Figure 10 shows the distributions of s, θ, tx and ty. The data range that we choose for 
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these parameters are: 0.9 ≤ s ≤ 1.1, -30o ≤ θ ≤ 30o, -128 ≤ tx ≤ 128, -128 ≤ ty ≤ 128. Figure 10 shows 

that the transformation parameters of the first 100 pairs of fingerprints are all within these data 

ranges. 

 

α

y2 

x2 x1

Β 

O X

 

 

Figure 11. Illustration of variables. 

4.3 Estimation of parameters for GA 

Figure 11 shows a triangle. Without loss of generality, we assume that one vertex, O, of the triangle 

is (0, 0), and it does not change under distortions. The analysis of angle α shows that 1) the 

minimum and the median angles αmin and αmed in a triangle are more robust than the maximum angle 

αmax under distortions; 2) 2º can accommodate the uncertainty of most distortions and keep the size 

of the search space as small as possible. Details of the analysis can be found in [2]. Thus, we have 

 and T . Other parameters are decided based on experimental evaluations. The pa-

rameters used in our experiments are shown in Table 1. 
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Figure 12. Fitness value changes for
(f0001_10 and s0001_10). 
 

 
 

Table 1. Parameters. 

Parameters Value Parameters Value 

Tn 5 ps 0.2 

 2o pm 0.005 

Tχ  2 Nt 15 

Np 100   

medαT
Generations

10 20 30 40

1st Experiment
2nd Experiment
3rd Experiment
4th Experiment
5th Experiment

 matching between the first pair of fingerprints in Figure 9 
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f0025_06 and s0025_06, fitness value = 162

f0032_03 and s0032_03, fitness value = 75

f0026_03 and s0026_03, fitness value = 14

 

 

 

 

 

 

 

 

 

 

 

 

 

 

f0023_04 and s0023_04, fitness value = 290

Figure 13. Examples of genuine matching: Maximum fitness value between two
fingerprints which are from the same finger. 

 20
 



 

f0637_08 and s0448_03, fitness value = 1

f0848_01 and s0234_10, fitness value = 0

f1295_07 and s0814_01, fitness value = 0

f1174_07 and s0310_05, fitness value = 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Examples of imposter matching: Maximum fitness value be-
tween two fingerprints which are from different fingers. 
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Figure 15. PDF of fitness value for genuine matchings. 
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 Figure 16. PDF of fitness value for imposter matchings. 

4.4 Results 

A total of 2000 matchings, between consistent pairs, are performed to estimate the distribution of 

genuine matching. We also perform 200,000 matchings between inconsistent pairs to estimate 

the distribution of imposter matching, where for each matching we randomly select two finger-

prints from NIST-4 that are the impressions of different fingers. Figure 12 shows five evolutions 

of the fitness value for the matching between the first pair of fingerprints (f0001_10 and 

s0001_10) shown in Figure 9. Since we use two methods, explained in Section 3.3.4, for the 

computation time reduction, if the fitness value becomes greater than 100, then the evolution 
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stops. We observe that the evolutions terminate within 40 generations. Considering the size of 

the search space is 227, the GA searches only a fraction of the search space. We repeat 

experiments of genuine matchings and imposter matchings five times, respectively. Figure 13 

shows four pairs of fingerprints, which are the different impressions of the same fingers, and 

their corresponding maximum fitness values. Figure 14 shows four pairs of fingerprints, which 

are the different impressions of the different fingers, and their corresponding maximum fitness 

values. We observe that the more similar the two fingerprints, the larger the fitness value. Since 

the fingerprints in Figure 14 are not from the same fingers, their fitness values are small. Figure 

15 and Figure 16 show the average probability distribution function (PDF) of 10 experiments for 

both distributions, respectively. Note that the fitness value is shown on logarithmic scale along 

different axis, and on the average, 99.1% imposter matchings and 11.5% genuine matchings’ 

have fitness value of 4. 
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 Figure 17. Comparison of ROC curves of two approaches using 
entire NIST-4 (2000 pairs of fingerprints). 

 
Based on genuine and imposter distributions, the receiver operating characteristic (ROC) curve is 

defined as the plot of Genuine Acceptance Rate (GAR) against False Acceptance Rate (FAR). 

Figure 17 shows the comparison of the average ROC curve of our GA based approach in this pa-

per and the ROC curve reported in [23]. It also shows the lower and upper bounds of GA base 
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approach, which are estimated by repeating the experiments 10 times. The advantage of GA 

based approach is about 3.0%. When FAR is small, i.e. less than 0.02%, the advantage is about 

2.0%. One main reason is that this approach finds global transformation and uses the local prop-

erties to verify it, which is better than finding local transformation only. Note that we have 

shown the results on the entire NIST-4 database. Verification results on NIST-4 are reported in 

[15]. However, in [15] 6.0% data are rejected manually by the author because of bad quality. 

Without dynamic time warping (DTW) for the detailed verification, the FAR is 10.0%, which is 

unacceptable, although the GAR is 85.0%. With DTW, the GAR is 85% and 80%, and the 

corresponding FAR is 0.002% and 0.05%. It makes no sense for us to compare the performance 

reported in [15] with DTW since the author has not used the entire database, and we do not know 

which of the fingerprints have been rejected manually. 
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Figure 18. Sample fingerprints with low fitness value in genuine matching. 
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Examining the results, we find that: a) the low fitness values for most genuine matchings are due 

to the poor quality of fingerprints. There is not enough overlapped areas from which the feature 

extraction procedure can extract enough good minutiae; b) the nonzero fitness value for most 

imposter matchings are due to the similar structures and clutter features in two different 

fingerprint images. Figure 18 shows some low quality fingerprint pairs. In each case, the maxi-

mum fitness value is 4 (obtained in different runs of experiments). 

 
4.5 Effectiveness of selection and crossover 

In order to demonstrate the effectiveness of selection and crossover operators, we compared the 

performance of the pure GA and that of other two variations of GA. These variations are: 

• Instead of selecting hypotheses from parental population according to their fitness value, the 

first variation selects the hypotheses randomly for further evolution. The only restriction is that 

any hypothesis can only be selected once. 

• The second variation simply skips the crossover. In order to generate the same number of 

children as the pure GA, the mutation rate of this variation is increased to 0.8, which is the same 

as the crossover rate. 

 
We perform the same experiments, which are explained in Section 4.4, to test the performance of 

both variations. Figure 19 shows the comparison of the average performance of the pure GA and 

both variations. We observe that the performance of pure GA is much better than that of the other 

two variations. This demonstrates that the selection and crossover are critical to the success of 

GA. 
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 Figure 19. Comparison of the average performance of pure GA and its two variations.

 
4.6 Computation time 

On a SUN Ultra II workstation, which has a 200MHZ cpu, the average computation time for a 

genuine matching and an imposter matching are 15 and 8 seconds, respectively. The difference 

of run-time between two kinds of matching is because the GA needs to check more detailed local 

properties of the fingerprints for the genuine matchings, while it does not need do this for impos-

ter matchings. This run-time can not satisfy the real-time requirement of the real-world applica-

tions. However, the computation time can be reduced by: 

• Faster CPU (e.g. 3.0 GHZ CPU) is available in the PC market now, and it is supposed to 

have faster CPUs according to Moore’s law; 

• Parallel computation. Computation time may be reduced by parallel hardware. 

 

5 Conclusions 

In this paper, we proposed a fingerprint matching approach, which is based on GA to find the 

globally optimized transformation. The local properties of each triplets of minutiae are used to 

find potential corresponding triangles and tolerate reasonable distortions, including translation, 
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rotation, scale, shear, local perturbation, occlusion and clutter. We achieve promising 

experimental results on the NIST-4 database, which has a large portion of poor quality 

fingerprints. The comparison shows the advantage of the proposed approach. 

 
Acknowledgment: To be filled later. 
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