
 1 

Feature Selection for Target Detection in SAR Images 
 
 

Bir Bhanu, Yingqiang Lin and Shiqin Wang 
Center for Research in Intelligent Systems 

University of California, Riverside, CA 92521, USA 
 

 
Abstract 

 
     A genetic algorithm (GA) approach is presented to select a 
set of features to discriminate the targets from the natural 
clutter false alarms in SAR images. Four stages of an 
automatic target detection system are developed:  the rough 
target detection, feature extraction from the potential target 
regions, GA based feature selection and the final Bayesian 
classification. Experimental results show that the GA selected 
a good subset of features that gave similar performance to 
using all the features. 
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1. Introduction 
    Automatic detection of potential targets in SAR imagery is 
an important problem. A CFAR (constant false alarm rate) 
detector is commonly used to “prescreen” the image to 
localize the possible targets. Generally, targets correspond to 
bright spots caused by strong radar return from natural or 
man-made objects. Parts of the imagery that are not selected 
are rejected from further computation. In the next stage of pro-  
cessing,  regions of interest are further examined to distinguish 
man-made objects from natural clutter. Finally, a classifier 
such as a Bayesian classifier, a template matcher or a model-
based recognizer is used to reject man-made clutter.  
    The goal of feature selection is to find the subset of features 
which produces the best detection/recognition accuracy and 
requires the least computational effort. Feature selection is 
important to target detection and recognition systems mainly 
for two reasons: 
    First, using more features can increase system complexity, 
yet it may not always lead to higher detection/recognition 
accuracy. Sometimes, many features are available to a 
detection/recognition system. However, these features are not 
independent and may be correlated. A bad feature may greatly 
degrade the performance of the system. Thus, selecting a 
subset of good features is important.  
    Second, using fewer features can reduce the computational 
cost, which is important for real-time applications. Also it may 
lead to better classification accuracy due to the finite sample 
size effect.     

   Genetic algorithms (GAs) are widely used in image    
processing, pattern recognition and computer vision. 
They are used to generate structural elements in 
mathematical morphology, to select good parameters 
for object detection and recognition, to generate image 
filters for target recognition, to select training data for 
neural networks, etc. GAs are also used to 
automatically determine the relative importance of 
many different features and to select a good subset of 
features available to the system 
    The focus of this paper is to select a minimal set of 
features to distinguish targets from natural clutter. The 
approach is based on a closed loop system involving 
GA based feature selection and a Bayesian classifier. 
GA uses an appropriate fitness function that combines 
the number of features to be used and the error rate of 
the classifier. The results are presented using real SAR 
images. The experimental results show that the subset 
of features selected by GA can greatly reduce the 
computational cost while at the same time the detection 
accuracy is maintained. 
    Section 2 presents the related research and the 
contribution of this paper. Section 3 describes the 
approach, the prescreener used to detect potential target 
regions, the features for target discrimination, feature 
evaluation criteria and the application of GAs to feature 
selection. Experimental results are presented in Section 
4 and Section 5 provides the conclusion of the paper. 
 
2. Related Research 
    Chaikla and Qi [1] consider the importance of the 
domain in eliminating noisy features for feature 
selection. They present an approach to designing a 
multi-objective fitness function for the genetic 
algorithm. The results show that the proposed fitness 
function can perform more satisfactorily than the 
traditional one. Emmanouilidis et al. [2] discuss the use 
of multicriteria genetic algorithms for feature selection. 
The algorithm is shown to yield a diverse population of 
alternative feature subsets with various accuracy and 
complexity trade-off. It is applied to select features for 
performing classification with fuzzy models and is 
evaluated on real-world data sets. Estevez et al. [3] 
propose a genetic algorithm for selecting features for 
neural network classifiers. Their algorithm is based on a 
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niching method to find and maintain multiple optima. They 
also introduce a new mutation operator to speed up the 
convergence of the genetic algorithm. Rhee and Lee [10] 
present an unsupervised feature selection method using a 
fuzzy-genetic approach. The method minimizes a feature 
evaluation index which incorporates a weighted distance used 
to rank the importance of the individual features. Matsui et al. 
[6] use genetic algorithm to select the optimal combination of 
features to improve the performance of tissue classification 
neural networks and apply their method to problems of brain 
MRI segmentation to classify gray matter/white matter 
regions. 
    In this paper, we use genetic algorithm to select a good 
subset of features used for target detection in SAR images. 
The target detection task involves the selection of a subset of 
features to discriminate SAR images containing targets from 
those containing clutter. Our method is a novel combination of 
genetic algorithm based optimization of a criterion function 
that involves classification error and the number of features 
that are used for the discrimination of targets from natural 
clutter in SAR images. The criterion function is optimized in 
closed-loop with a Bayesian classifier.  As compared to this 
work, the feature selection presented in [5, 8] for target vs. 
natural clutter discrimination is not optimal but ad hoc.  
 
3.  Technical Approach 
    The purpose of the genetic algorithm (GA) based feature 
selection approach presented in this paper is to select a set of 
features to discriminate the targets from the natural clutter 
false alarms in SAR images. The approach includes four 
stages: rough target detection, feature extraction from the 
potential target regions, feature selection based on the training 
data and the final discrimination. The first two stages are 
based on the Lincoln Lab ATR system [5, 7, 8]. In the feature 
selection stage, we use GAs to select a best feature subset, 
defined as a particular set of features which is the best in 
discriminating the target from the natural clutter false alarm. 
The diagram for feature selection is given in Fig. 1. 

 

3.1. CFAR Detector     
   A two-parameter CFAR detector is used as a 
prescreener to identify potential targets in the image on 
the basis of radar amplitude. A guard area around a 
potential target pixel is used for the estimation of clutter 
statistics. The amplitude of the test pixel is compared 
with the mean and standard deviation of the clutter 
according to the following rule: 
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where tX  is the amplitude of the test pixel, cû  is the 

estimated mean of the clutter amplitude, cσ̂  is the 

estimated standard deviation of the clutter amplitude, 
and CFARK  is a constant threshold value that defines 
the false-alarm rate. 
   Only those test pixels whose amplitude is much 
higher than that of the surrounding pixels are declared 
to be targets. The higher we set the threshold value of 

CFARK , the more a test pixel must stand out from its 
background for it to be declared as a target. Because a 
single target can produce multiple CFAR detections, the 
detected pixels are grouped together if they are within a 
target-sized neighborhood. The CFAR detection 
threshold in the prescreener is set relatively low to 
obtain a high initial probability of detection for the 
target data. It is the responsibility of the discriminator 
to capture and reject those escaping clutter false alarms 
from the prescreen stage. An example SAR image and 
corresponding detection results are shown in Fig. 2. 
 
3.2. Feature Extractor  
    First, we use a target-size rectangular template to 
determine the position and orientation of the detected 
target [4]. The algorithm slides and rotates the template 
until the energy within the template is maximized. Then 
we extract a set of features from the target-sized 

Fig. 1. System diagram for feature selection. 
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template or the region of interest. By using this set of features 
[2], we try to discriminate the targets from the natural clutter.  
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  Targets usually exhibit much larger standard devi-
ation than the natural clutter, as  illustrated by Fig. 3. 

 

3.2.2. The fractal dimension feature 
    The fractal dimension of the pixels in the region of 
interest provides information about the spatial 
distribution of the brightest scatterers of the detected 
object. It complements the standard-deviation feature, 
which depends only on the intensities of the scatterers, 
not on their spatial locations. 
    The first step in applying the fractal-dimension 
concept to a radar image is to select an appropriately 
sized region of interest, and then convert the pixel 
values in the region of interest to binary. One method of 
performing this conversion is to select the N brightest 
pixels in the region of interest and convert their values 
to 1, while converting the rest of pixel values to 0. 
Based on these N  brightest pixels, we approximate the 

(a) Example SAR image. 

(a) A typical natural clutter 
image with standard deviation 

4.5187. 

(b) A typical target image 
with standard deviation 

5.2832. 

Fig. 3. Example of the standard deviation feature. 

 

(b) Detection result. 

Fig. 2. SAR image and CFAR detection result.
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.1. The standard-deviation feature   
he standard deviation of the data within the template is a 
istical measurement of the fluctuation of the pixel 
nsities. If we use ),( arP  to represent the radar intensity 

ower from range r and azimuth a, the standard deviation 
 be calculated as follows: 
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 N is the number of points in the region. 

fractal dimension by using the following formula: 
 
 
 
 
where M1 represents the minimum number of 1-pixel-
by-1-pixel boxes that cover all N brightest pixels in the 
region of interest (This number is obviously equal to N) 
and M2 represents the minimum number of 2-pixel-by-
2-pixel boxes required to cover all N brightest pixels. 
    The bright pixels for a natural clutter tend to be 
widely separated, thus produce a low value for the 
fractal dimension, while the bright pixels for the target 
tend to be closely bunched, thus we expect a high value 
for the fractal dimension, which is illustrated by Fig. 4. 
Fig. 4. (a) shows a natural clutter image chip. In Fig. 4. 
(b), the 50 brightest pixels from this natural clutter are 
relatively isolated, and 46 2×2-pixel boxes are needed 
to cover them, which results in a low fractal dimension 
of 0.29. Fig. 4. (c) shows a target image chip. In Fig. 4. 
(d), the 50 brightest pixels from the target image are 
tightly clustered, and 22 2×2-pixel boxes are needed to 
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cover them, which results in a high fractal dimension of 1.2. 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.3. Weighted-Rank Fill Ratio Feature 
   This textual feature measures the percentage of the total 
energy contained in the brightest scatterers of a detected 
object. We define the weighted-rank fill ratio as follows: 
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This feature attempts to exploit the fact that power returns 
from most targets tend to be concentrated in a few bright 
scatters, whereas power returns form natural-clutter false 
alarm tend to be more diffuse. Fig. 5 shows the fill ratio we 
get from typical examples of target and clutter images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2.4. Size-related feature 
    The three size-related features utilize only the binary 
image created by the morphological operations. 

1. The mass feature is computed by counting the 
number of pixels in the morphological blob. 

2. The diameter is the length of the diagonal of 
the smallest rectangle that encloses the blob. 

3. The square-normalized rotational inertia is the 
second mechanical moment of the blob around 
its center of mass, normalized by the inertia of 
an equal mass square.  

(a) Natural clutter image.  (b) 50 brightest pixels in (a). 

(c) Target image. (d) 50 brightest pixels in (c). 

Fig. 4. Example of the fractal dimension feature. 

(a) A typical natural clutter 
image and the fill ratio is 

0.2321. 

(b) A typical target image 
and the fill ratio is 0.3861. 

Fig. 5. An illustration of the fill ratio feature. 

(a) The left-hand side figures represent the target images 
and right-hand figures represent their corresponding 

morphological blobs. 

(b) The left-hand side figures represent the clutter 
images and right-hand figures represent their 

corresponding morphological blobs. 
Fig. 6. Examples of the size feature for (a) targets and 

(b) clutter. 
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    In our experiments, we found the size features are not 
effective in scenarios where the targets are partially occluded 
or hidden. After the prescreener stage, the size and the shape 
of the detected morphological blob can be arbitrary. For the 
clutter, there is also no ground to assert that the resulting 
morphological blob will exhibit a certain amount of 
coherence. The experimental results in Fig. 6 show the 
arbitrariness of the morphological blobs for the targets as well 
as the clutter. 
      
3.2.5. The contrast-based features 
    The CFAR statistic is computed for each pixel in the target-
shaped blob to create a CFAR image. Then the three features 
can be derived as follows: 
 
1. The maximum CFAR feature is the maximum value in the 

CFAR image contained with the target-sized blob. 
2. The mean CFAR feature is the average of the CFAR 

image taken over the target-shaped blob. 
3. The percent bright CFAR feature is the percentage of 

pixels within the target-sized blob that exceed a certain 
CFAR value. 

 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
We can see from Fig. 7 that the CFAR feature values for the 
target are much larger than those for the natural clutter false 
alarm. 

 
3.2.6. The count feature 
   The count feature is very simple; it counts the number of 
pixels that exceeded the threshold T and normalize this value 
by the total possible number of pixels in a target blob. The 
threshold T is set to the quantity corresponding to the 98th 
percentile of the surrounding clutter. The Fig. 8 shows the 
count feature values obtained from a pair of typical target and 
clutter images. 
    We can see from Fig. 8 that the count feature value for the 
target is much larger than that for the nature clutter false 
alarm. This makes sense because the intensity values of the 
pixels belonging to the target stand out from the surrounding 

clutter, while the natural clutter false alarms do not 
have this property. 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 
3.3. Feature Evaluation and selection  
    Adding more features does not necessarily improve 
discrimination performance. An important goal is to 
choose the best set of features from the discrimination 
features given in section 3.2 above. Before we do the 
feature selection, it is appropriate to give a set of 
feature evaluation criteria, which measure the disci- 
mination capability of each feature or the combination 
of several features.  
 
• Divergence:  Divergence is basically a form of the 
Kulback-Liebler distance measure between density 
functions. If we assume that the target as well as the 
natural clutter feature vectors follow the Gaussian 

distributions respectively, that is, ),( 11 ΣuN  and 

),( 22 ΣuN , the divergence can be computed as 

follows: 
 

  
 
 
 
 
• Scatter Matrices:  One major drawback of the 
divergence d12 is that it is not easily computed, unless 
the Gaussian assumption is employed. For SAR 
imagery, the Gaussian assumption itself is in question. 
So we consider a simpler criterion that is based upon 
the information related to the way feature vector 
samples are scattered in the l-dimensional feature space. 
At the beginning, we define two kinds of scatter 
matrices, that is, within-class scatter  matrix and 
between-class scatter matrix. Within-class scatter 

matrix  ∑
=

=
M

i
iiw SPS

1

, where iS  is the covariance 

(a) A typical natural clutter image 
and the count feature value is 

0.1375. 

(b) A typical target image 
and the count feature value 

is 0.6.  

Fig. 8. The illustration of the count feature. 

Fig. 7. Examples of the CFAR features. 

(a) A typical natural clutter 
image and the three CFAR 
features are 10.32, 2.37 and 

0.0042, respectively. 

(b) A typical target image 
and the three CFAR 

features are 55.69, 5.53 and 
0.15, respectively.  { }
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matrix for class iω  and iP  is the a priori probability of class 

iω . Sω matrix measures how feature vector samples are 

scattered within each class. 
     Between-class scatter matrix is defined as 

follows: ( )( )∑
=

−−=
M

i

T
iiib PS

1
00 uuuu , where 0u is the 

global mean vector and iu  is the mean for each class, i = 1, 

…, M. The between-class scatter matrix measures how the 
feature vector samples are scattered between different classes. 
     Based on the different combinations of these two scatter 
matrices, a set of class separability criteria can be derived. We  
choose to use one of them that can be defined as 

follows:
||

||

w

b

S

S
J = .  If the feature vector samples within each 

class are scattered compactly and different classes are far 
away from one other, we expect that J value would be high.  
This also implies that the features we choose have large 
discrimination capability. 

 
• Feature vector evaluation using a classifier: Another 
method for feature  evaluation depends on the specific 
classifier. The task of feature selection is to select or 
determine a set of features, that when fed into the classifier, 
will let the classifier achieve the best performance. So it 
makes sense to relate the feature selection procedure to the 
particular classifier used. During the training time, we have all 
the features extracted from the training data. What we can do 
is to select a subset of these features and feed them into the 
classifier and see the classification result. Then the goodness 
of each feature subset is indicated by their classification error 
rate. 
 
3.3.1  GAs for Feature selection  
   The genetic algorithm is an optimization procedure that 
operates in binary search spaces (the search space consists of 
binary strings). A point in the search space is represented by a 
finite sequence of 0's and 1's, called a chromosome. The 
algorithm manipulates a finite set of chromosomes, the 
population, in a manner resembling the mechanism of natural 
evolution. Each chromosome is evaluated to determine its 
“fitness,” which determines how likely the chromosome is to 
survive and breed into the next generation. The probability of 
survival is proportional to the chromosome’s fitness value. 
Those chromosomes which have higher fitness values are 
given more chances to "reproduce" by the processes of 
crossover and mutation.  The function of crossover is to mate 
two parental chromosomes to produce a pair of offspring 
chromosomes. In particular, if a chromosome is represented 
by a binary string, crossover can be implemented by randomly 
choosing a point, called the crossover point, at which two 
chromosomes exchange their parts to create two new 
chromosome. Mutation randomly perturbs the bits of a single 

parent to create a child. This procedure can increase the 
variability of the population. A mutation can be created 
by flipping at random one or more bits in the 
chromosome. 
     In this work, there are 10 features as described 
earlier. Each feature is represented as a bit in the 
genetic algorithm. There are 1024 possible combination 
of these features. 
 
• Applying GA for feature selection:  We use GA 
to seek the smallest (or the least costly) subset of 
features for which the classifier’s performance does not 
deterio-rate below a certain specified level [9, 11]. The 
basic system framework is shown in the Fig. 1.        
    When the error of a classifier is used to measure the 
performance, a subset of features is defined as feasible 
if the classifier's error rate is below the so-called 
feasibility threshold. We search for the smallest subset 
of features among all feasible subsets. During the 
search, each subset can be coded as a d-element bit 
string (d is the initial number of features). The 
ith element of the bit string assumes 0 if the ith feature 
is excluded from the subset and 1 if it is present in the 
subset.  We use the following penalty function [11]: 

 

 

where e is the error rate, t is the feasibility threshold 
and m is called the “tolerance margin”. This penalty 
function can be seen Fig 9, where t = 0.1 and m = 0.05.           
     We can see from Fig. 9, if e < t, p(e) is negative and 
as e approaches zero, p(e) slowly approaches its 
minimal value. Note also that p(t) = 0 and p(t + m) = 1. 
For greater values of the error rate, this penalty function 
quickly rises toward infinity. We modify the penalty 
function in equation (6) by adding the number of 
features in the evaluated subset to produce the score J: 

 

 

where γ  is the weight between [0, 1] that we give to 

the number of features. 

   The last thing we need to do is to design a fitness 
function used to evaluate the fitness of each 
chromosome ci. Since in our case, we look for the 
minimum of the score, we define the fitness function as 

 

)6(
1)1exp(

1)/)exp((
)(

−
−−= mte

ep

( ) ( ) )7(1

__

ep

featuresofnumberJ

×−
+×=

γ
γ

(8))()( ii cJcf −=



 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Experimental Results 
    All the SAR images used in these experiments are 
downloaded from a website of the MIT Lincoln Lab 
http://www.mbvlab.wpafb.af.mil/public/sdms/menu/sitemapfr
ame.htm. From these SAR images, 40 target chips (containing 
target) and 40 clutter chips (containing clutter) are generated. 
Some of the target and clutter chips are used as training data in 
our experiments and the rest are used as testing data.  The GA 
selects a good subset of features from the 10 features 
described previously to classify an image chip into either a 

target or clutter. Based on the data we have, we use the 
CFAR detector in the prescreener stage to detect the 
potential target regions. Since we know the ground 
truth, we know which one is the real target and which 
one is the clutter false alarm among the potential target 
regions detected. This allows us to construct a set of 
training data (training target data and training natural 
clutter false alarm data) for the feature selection. Then 
we extract a set of 10 features from each potential target 
region and do the feature selection. Finally in the 
testing stage we use the selected features to 
discriminate the targets from the natural clutter false 
alarm 
    Fig. 10 shows the feature extraction interface. On the 
left-hand side of the interface, we can choose any 
combination of the features and the number of the 
training samples. The plot in the middle of right-hand 
side visualizes the target samples as well as the natural 
clutter false alarm samples in the feature space. At the 
bottom, we give a set of feature evaluation values by 
using the divergence, scatter matrix and the Bayesian 
Classifier. We can also use the interface to browse 
through the target training images and the natural 
clutter raining images. If we are interested in a 
particular training image, by clicking on that image, we 
can get the values of the features we extract from that 
image. 

Fig. 9. The penalty function. 
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Fig. 10. The feature extraction interface. 
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      The feature extraction interface is used to conduct a set of 
experiments to evaluate the discrimination power of the 
features.  If the features are uncorrelated, we can select the l 
best features individually and form a l-dimensional feature 
vector features. This is called scalar feature selection.  But in 
reality, there are always some correlations between different  

 
 
features.  So we consider the classification accuracy of 
feature  vectors. 
     For our GA feature selection framework, we adopt a 
Bayesian Classifier to classify the training data and the 
resulting error rate is used as the feedback into the 

Training     Data 
 

Testing Data Number of errors 

Target 
number 

Clutter 
number 

 
Feature 
selected 

 

 
Number 

of 
features 

 
Error 
rate 

Target 
number 

Clutter 
number 

 
Error 
rate 

Target 
error 

Clutter 
error 

15 15 1101001001 5 0 25 25 0.1 1 4 

20 20 1011101001 6 0 20 20 0.075 0 3 

25 25 1011101001 6 0 15 15 0.1 1 2 

30 30 0001001111 5 0 10 10 0.1 1 1 

Table 1. GA feature selection training and testing results. 

 

 

(b) 20 training target and clutter chips. 

(a) 15 training target and clutter chips. 

 Target Clutter 

Target 24 1 

Clutter 4 21 

(c) 25 training target and clutter chips. 

(d) 30 training target and clutter chips. 

Fig. 11. Confusion matrices of GA for 
various training and testing experiments. 

 Target Clutter 

Target 20 0 

Clutter 3 17 

 Target Clutter 

Target 14 1 

Clutter 2 13 

 Target Clutter 

Target 9 1 

Clutter 1 9 

(d) 30 training target and clutter chips. 

Fig. 12. Confusion matrices for various 
training and testing experiments using all

10 features. 

(b) 20 training target and clutter chips. 

(a) 15 training target and clutter chips. 

 Target Clutter 

Target 23 2 

Clutter 2 23 

(c) 25 training target and clutter chips. 

 Target Clutter 

Target 20 0 

Clutter 5 15 

 Target Clutter 

Target 14 1 

Clutter 3 12 

 Target Clutter 

Target 8 2 
Clutter 0 10 
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feature selection algorithm. We fix the parameters of the GA 
algorithm: crossover rate 0.6, mutation rate 0.1 and the size of 
the population 100. γ is set to 0.5 in equation  (7). 
    A series of four experiments was conducted to test the 
effectiveness of the GA feature selection. In the first 
experiment, 15 target and 15 clutter chips are used in training 
and the rest are used in testing; in the second experiment, 20 
target and 20 clutter chips are used in training and the rest are 
used in testing; in the third experiment, 25 target and 25 
clutter chips are used in training and the rest are used in 
testing; in the fourth experiment, 30 target and 30 clutter chips 
are used in training and the rest are used in testing. The 
experimental results are reported in Table 1 and confusion 
matrices are shown in Fig. 11. 
    In order to further evaluate the features selected by GA, 
another four experiments were performed, where all the 10 
features are used to distinguish the target chips from the 
clutter chips.  Similar to the experiments reported above, the 
number of training target chips and clutter chips are 15, 20, 25 
and 30, respectively.  Fig. 12 shows the confusion matrices 
that resulted from these four experiments. 
    From Fig. 11 and Fig. 12, it is easy to see that the 
performance of the features selected by GA is similar to that 
of using all the 10 features. So GA is capable of selecting a 
good subset of features from all the features available. 
However, by using fewer features, a lot of computation is 
saved. 
 
5.  Conclusions 
   In this paper, we introduced the GA feature selection 
algorithm into a specific application domain to discriminate 
the targets from the natural clutter false alarm in SAR images. 
Rough target detection, feature extraction, GA feature 
selection and final discrimination are successfully 
implemented and good results are obtained. Our experimental 
results show that the GA selected a good subset of features 
that gave similar performance to using all the features.  In the 
future, we plan to extend this approach to additional features 
and more complex background clutter. 
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