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Abstract 

We present a novel approach for extraction of 
minutiae features from fingerprint images. The proposed 
approach is based on the use of logical templates for 
minutiae extraction in the presence of data distortion. A 
logical template is an expression that is applied to the 
binary ridge (valley) image at selected potential 
locations to detect the presence of minutia at these 
locations. It is adapted to local ridge orientation and 
frequency. We discuss the proposed technique in detail, 
and present experimental results on low-resolution 
images of various qualities. 

1. Introduction 

Reliable extraction of minutiae features in low 
resolution fingerprint images has been a difficult problem. 
This problem is complicated by the fact that fingerprint 
images can be substantially distorted due to several 
factors, such as noise, scars and small undesired artifacts. 
In order to deal with this problem, most of the approaches 
attempt to utilize the special nature of fingerprint images. 

A feature extraction procedure generally consists of 
three steps: preprocessing, feature extraction and 
postprocessing. Preprocessing techniques attempt to 
capitalize on the special ridge-and-valley nature of 
fingerprint images for image filtering that is adapted to 
local orientation, and possibly local frequency (e.g., [ 11). 
Feature extraction approaches are based on either: (a) 
thresholding, thinning and minutiae detection, or (b) ridge 
following in either gray scale image, or binary ridge 
image. The approaches based on thresholding and 
thinning are simple in principle, and some of the 
algorithms, like thinning, can be implemented in parallel. 
However, they tend to perform poorly in noisy and low 
contrast images. The ridge following approaches have the 
advantage that they can perform better on low contrast 
and noisy images. However, the algorithms are generally 
complex and nonadaptive. Representative feature 
extraction approaches can be found in the work of 
Coetzee and Botha [Z], Mario and Maltoni [ 3 ] ,  and Ratha 
et al. [4]. Postprocessing techniques attempt to rectify 
imperfections of the feature extraction process by utilizing 
model information such as minimum ridge length, and 
duality between ridge and valley minutia. 

Motivated by the development of a distortion tolerant 
approach which can be computationally efficient and be 
implemented in parallel, we have developed an adaptive 
logical template based approach for feature extraction. 

2. A New Minutiae Extraction Approach 

The proposed algorithm consists of three steps: 
construction of orientation image, construction of ridge 
and valley images, and minutiae extraction. These steps 
are summarized as follows: 

a) Construction of Orientation Image: The input 
image is first smoothed using a 5 x 5 Gaussian kemel of 
standard deviation 1.0. The Sobel operators are then 
applied to the smoothed image to estimate the gradient 
magnitude. The image is split into 16 x 16 blocks with one 
pixel overlap. For each block, the dominant orientation of 
the ridge pattem is obtained through least-squares 
estimation [ 5 ] .  

b) Construction of Ridge and Valley Images: The 
ridge (valley) image is a binary image, where the value of 
each pixel is one, if the pixel corresponds to a ridge 
(valley) pixel, and zero otherwise. Ridge and valley 
images are obtained as follows. The input image is first 
adaptively smoothed through guidance from the 
orientation image obtained in the first step. The purpose 
of this process is to eliminate most fine details such as 
islands, and merges “sub-ridge” sections that are very 
close to each other. We perform uniform smoothing along 
the local ridge orientation, and Gaussian smoothing 
normal to it. The kernel of the smoothing filter currently 
used is the normalized product of a 3 x 1 uniform- 
averaging kemel and a 1 x 5 Gaussian kemel of standard 
deviation 1 .O. Possible orientations of the smoothing filter 
are discretized into 16 values. At each pixel, the 
appropriate filter is selected, according to the local 
orientation, and applied at the pixel’s location. 

Thinned ridges (valleys) are then obtained by finding 
local minima (maxima) normal to ridge directions. We 
deal with the problem that a few ridge (valley) pixels can 
be missing near some bifurcations by exploiting the fact 
that the missing points should have almost the same gray 
scale value in the smoothed image as that of the ridge 
(valley) points. In a small local area around each potential 
minutiae, we calculate the mean and the standard 
deviation of the gray levels, p and 0. Let v , ~  be the gray 
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scale value of the point located at (i,j). If vi4 < p - ko, 
then we take this point as a connecting ridge point. On the 
other hand, if vi2 > p + ko, then we take this point as a 
connecting valley point. We choose a 4 x 4 local area, and 
k =  1. 

e) Logical-Template-Based Minutiae Extraction: At 
this stage, ridge ends and bifurcations are extracted using 
logical templates. A template-matching approach has to 
consider three types of ridge variations: ridge width, ridge 
orientation, and angle between bifurcation ridges. 
Dependency on ridge width is eliminated by operating on 
the thinned ridge binary image, instead of the gray scale 
image. Furthermore, dependency on the angle between 
bifurcation ridges is eliminated by extracting bifurcations 
as end points in the valley image. Thus, only ridge 
orientation has to be considered. The straightforward 
approach is to apply the template at all potential locations 
and orientations. Such an exhaustive approach would be 
computationally expensive. In our system, the number of 
potential locations is significantly reduced by examining 
only a small subset of pixels that appear to belong to 
minutia. The number of possible orientations is also 
significantly reduced by utilizing the orientation image. 

Let us denote a logical template by T. A logical 
template is rectangular in shape. It is composed of two 
rectangular sub-templates, T, and T, , which are concemed 
with detecting a ridge (valley) section, and the “gap” that 
follows it, respectively (see Figure 1). The lengths of T, 
and T ,  , denoted by 1, and I,, respectively, correspond to 
minimum ridge length and minimum ridge gap length at 
an end minutiae. Thus, the dimensions of T are w x (1, + 
I,), where w is a width parameter that depends on factors 
such as data distortion and inter-ridge distance. In our 
experiments, we have 1, = 6,1, = 3 and w = 3. 

f 

Tr I Tg T 
Figure 1. An illustration of a logical template. 

The template logic can be explained as follows. 
Template T must retum “true”, iff both of its sub- 
templates retum true as well. That is, 

where E, E, and E, are logical expressions representing T, 
T, and T,, respectively. Ideally, E, should return true, iff 
each column in the corresponding sub-template has at 
least one ridge (valley) pixel. Similarly, E, should retum 
true, iff there are no ridge (valley) pixels in the 
corresponding sub-template. That is, 

E = E, & E,, 

E, = (N (T,) = l,), and E, = (N (TJ = 0), 
where N (A) is a function that returns the number of non- 
zero columns in binary matrix A. In order to handle 
distortion and simplify the implementation, we use the 
following expression: 

where M (A) is a function that returns the number of ones 
in binary matrix A, w, and w, are weights associated with 
the ridge and gap components of the logical expression 
and A is a threshold. The values of these parameters are 
determined in the following discussion. 

The implementation of template matching can be 
described as follows. We dilate the ridge (valley) image in 
a direction normal to the local ridge (valley) direction, 
where the extent of dilation is adaptive to the local 
frequency. The local frequency is measured by the 
distance between ridges (valleys). Then, we apply 2-D 
templates along ridges. Note that the dilation approach is 
an alternative to adjusting the width of the logical 
template (parameter w) according to the local frequency. 
Since 1, # 1, , we assign w, = 1 and w, = -2 .  Accordingly, 
after template filtering the ideal value should be 18 for 
end points and 0 for ridge points. In order to deal with 
distortion, we empirically select threshold A = 12 for 
ridge images, and A = 8 for valley images. The use of 
different thresholds is needed since ridges and valleys 
tend to have different characteristics in our image set . In 
particular, the valleys tend to be wider than the ridges. 

The actual minutiae extraction algorithm proceeds in 
two steps: 

1. In order to improve efficiency, logical templates are 
applied to only a subset of ridge (valley) pixels that are 
likely to correspond to ridge (valley) ends. These points 
are selected by calculating the crossing number at each 
pixel, which is simply half the number of changes in pixel 
values when traversing the eight-neighborhood of a pixel 
[3].  Pixels with crossing number equal to one are selected 
as potential ridge (valley) ends. 

2. The logical template is applied at each ridge (valley) 
pixel selected in the first step. The local ridge (valley) 
orientation is used to determine the orientation of the 
logical template. In particular, if 0 is the local orientation, 
then the template is applied twice, at orientations 0 and 8 
+ n. 

d) Postprocessing: If the fingerprint image is of poor 
quality then we will have many false minutia. These extra 
minutia can be removed by postprocessing. For simplicity, 
the postprocessing in our experiments is that in a 4 x 4 
local area centered at the potential minutiae, if p~ + klol < 
p, + kzo,, then we ignore this minutiae, where p1, p, , 01 , 
and o, are local mean, global mean, local standard 
deviation, and global standard deviation, respectively, and 

E = ( w,M (T,) + wg M (T,) ) 2 A, 

kl=k2=1.  
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Image 1 
Image quality: Very good 

Image 2 Image 3 Image 4 
Image quality: Good Image quality: Fair Image quality: Poor 

Figure 2 .  Four fingerprint images of varying quality. 

Figure 3. Logical templates placed on potential ridge-derived minutia (end points) in Figure 2. 

Figure 4. Logical templates placed on potential valley-derived minutia (bifurcations) in Figure 2 .  
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Figure 5. Performance of minutiae extraction (end points and bifurcations). 

Table1 . Typical experimental results for minutiae extraction on the images shown in Figure 2. 

+ verywal + G o d  

Poor 
- 0 Fair 

Quality and 
Image 

# of Test 
Truth 

Features 

Good, 

Analysis of Computed Features 
# of Features # of Features # of Features # of Extra 

Found Matched Missed Features 

10 
15 
8 

22 
14 
17 
10 

8 8 (80.0%) 2 (20.0%) 0 
13 12 (80.0%) 3 (20.0%) 1 
13 8 (1 00.0%) 0 (0.0%) 5 

21 11 (64.7%) 6 (35.3%) 10 

25 17 (77.3%) 5 (22.7%) 8 
28 14 (100%) 0 (0.0%) 14 

33 9 (90.0%) 1 (10.0%) 24 Poor, 
Image 4 

End points 
Bifurcations 

Image 
Quality and 
# of Images i in Each 

16 

Class 
Very good 

Fair 
(26) 

13 I 8 (50.0%) I 8 (50.0%) I 5 

Table 2. Average experimental results based on 100 images for minutiae extraction. 

Avg. # of 
Test Truth 
Features 

Avg. Results 
of 4 Classes 

of Image L Qualit 

Analysis of Computed Features 
Avg. # of Avg. # of Avg. # of Avg. # of 
Features Features Features Extra 
Found Matched Missed Features 

Feature 
Type 

11 
22 
10 
22 
8 

End points 
Bifurcations 
End points 

Bifurcations 
End Doints 

11 9 (81.8%) 2 (18.2%) 2 
18 16 (72.7%) 6 (27.3%) 2 
13 9 (90.0%) 1 (10.0%) 4 
19 15 (68.2%) 7 (31.8%) 4 
13 7 (87.5%) 1 (12.5%) 6 

Bifurcations 
End points 

Bifurcations 

24 
8 

23 
9 End points 

22 14 (58.3%) 10 (41.7%) 8 
22 8 (100.0%) 0 (0.0%) 14 
23 14 (60.9%) 9 (39.1%) 9 
15 8 (88.9%) 1 (11.1%) 7 

Bifurcations 23 I 21 I 15(65.2%) 1 8 (34.8%) I 
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3. Experimental Results 

In this section, we present experimental results to 
demonstrate the performance of the proposed technique. 
The data set used in the experiments consists of 100 
fingerprint images of pixel dimensions 248 x 120. They 
are obtained from a Sony fingerprint optical sensor (FIU- 
500-F01) of resolution 96 pixels per inch. We classify 
these images according to their quality into four classes: 

verygood 
good 
fair 
poor 

The quality of each image is determined visually based 
on the following criteria: 

1) 
2) 
3) distance between ridges. 

contrast between ridges and valleys, 
ridge continuity and width, and 

A sample of an image from each category is shown in 
Figure 2. Notice that the first two images, 1 and 2, are of 
considerably better quality than the last two images, 3 and 
4. In particular, image 3 has many small cuts, while image 
4 has broken ridges. In addition, notice the variations in 
the widths of the ridges and valleys in these images. 

Processing proceeds as described in Section 2. The 
crossing number method for minutiae extraction results in 
a significant number of false minutia. These minutia are 
then filtered using the logical templates. These templates 
are applied to the ridge and valley images after being 
dilated according to the local measured frequency. Figures 
3 and 4 show logical templates placed at the potential 
minutiae locations in the ridge and valley images, 
respectively. They are shown superimposed on the 
original images for examination. 

Table 1 shows the experimental results of the images in 
Figure I ,  and Table 2 shows the average results for the 
selected set of 100 fingerprint images. The test truth 
features are obtained by manual marking on the image. An 
extracted feature is considered to be matched if it lies 
within four pixels of a test truth feature. From the 
experimental results shown in Table 2, we observe the 
following: 

1. The proposed approach is very effective in the 
extraction of end points. The average percentage of 
matched end points is 88.9%. However, it is less effective 
for extraction of bifurcations. The average percentage of 
matched bifurcations is 65.2%. 

2. For both feature points, the rate of spurious features 
generated is strongly proportional to the image quality. 

This rate ranges from 12.1% for images of very good 
quality to 74.2% for images of poor quality. 

Figure 5 shows the performance of feature extraction 
for the four image-quality classes. In this figure, the 
horizontal axis represents the probability of generating a 
spurious feature, while the vertical axis represents the 
probability of detecting a minutiae. As expected, we 
observe that false alarm tends to be proportional to the 
image quality. This suggests that considerable 
improvement in performance can by obtained by 
developing robust fingerprint enhancement techniques. 
This is a subject of our future research. 

4. Conclusions 

We have developed a novel technique for extraction of 
minutiae features from fingerprint images. The technique 
is based on adaptive logical templates for minutiae 
extraction in the presence of data distortion. Our future 
work will focus on refinement of the technique and use of 
these features for indexing and recognition of fingerprint 
images. 
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