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Abstract

Content-based image retrieval methods based on the Euclidean metric ezpect the feature space to be isotropic.
They suffer from unequal differential relevance of features in computing the similarity between images in the input
feature space. We propose a learning method that attempts to overcome this limitation by capturing local differential
relevance of features based on user feedback. This feedback, in the form of accept or reject ezamples generated in
response to a query image, is used to locally estimate the strength of features along each dimension. This results
in local neighborhoods that are constricted along feature dimensions that are most relevant, while enlongated along
less relevant ones. We provide experimental results that demonstrate the efficacy of our technique using real-world
data.

1 Introduction

The rapid advance in digital imaging technology makes possible the wide spread use of image libraries
and databases. This in turn demands effective means for access to such databases. It has been well
documented that simple textual annotations for images are often ambiguous and inadequate for image
database search. Thus, retrieval based on image “content” becomes very attractive [1, 3, 5, 6]. Generally,
a set of features (color, shape, texture, etc.) are extracted from an image to represent its content. As
such, image database retrieval becomes a K nearest neighbor (K-NN) search in a multidimensional space
defined by these features under a given similarity metric.

Simple K nearest neighbor search, as an image retrieval procedure, returns the K images closest to
the query. Obviously this involves the issue of measuring the closeness or similarity between two images.
The most common measure of the similarity between two images is the distance between them. If the
Euclidean distance
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is used, then the K closest images to the query xg are computed according to {x|D(x,xq) < dk},
where dg is the Kth order statistic of {D(x;,xg)}.. Here N is the number of images in the database.
The major appeal for the simple K-NN search method resides in its ability to produce continuous and
overlapping rather than fixed neighborhoods, and to use a different neighborhood for each individual
query so that all points in the neighborhood are close to the query.

One problem with the Euclidean metric, however, is that it does not take into account the influence of
the scale of each feature variable in the distance computation. Changing the scale of a feature dimension
in different amounts alters the overall contribution of that dimension to the distance computation, hence
its influence in the nearest neighbors retrieved. This is usually considered undesirable. An additional
limitation is that the use of the Euclidean distance, while simple computationally, implies that the input
space is isotropic. However, the assumption for isotropy is often invalid and generally undesirable in
many practical applications.

In this paper, we propose a novel method that provides a solution to the problems discussed above.
With this method an image retrieval system is able to learn differential feature relevance in an efficient
manner by estimating the strength of each feature dimension in predicting a given query. In addition,
since the estimation process is carried out locally in the vicinity of the input query, the method is highly
adaptive to query locations.

D(x,y) = (1)
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2 System Overview
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Figure 1: System for learning feature relevance.

Figure 1 shows the functional architecture of our system. Images in the database are represented
by feature vectors, such as normalized mean and standard deviations of responses from Gabor filters.
The user presents a query image to the system. At this time feature relevance along each dimension is
assumed to be equal, and its associated weighting is initialized to 1/q, where ¢ is the dimension of the
feature space. The system carries out image retrieval using a K-NN search based on current weightings
to compute the similarity between the query and all images in the database, and returns the K nearest
images. The user then marks the retrieved images as positive (class 1) (e.g., click on an image by using
the left mouse button) or negative (class 0) (e.g., click on an image by using the right button). The user
“thinks” that the positive images look similar to the query image but the negative ones do not. Note
that in practice, only images that are dissimilar to the query (negative images) need to be marked. These
marked images constitute training data. From the query and the training data, the system computes local
feature relevance in terms of weights, from which a new round of retrieval begins. The above process
repeats until the user is satisfied with the results or the system cannot improve the results from one
iteration to the next.

3 Weighted K-Nearest Neighbor Search

Simple K-NN search clearly has its limitations as a procedure for content-based image retrieval. The
objective of our approach is to develop a retrieval method that inherits the appealing properties of K-NN
search, while at the same time overcomes its limitations by capturing the notion of local feature relevance.

3.1 Local Feature Relevance

The retrieval performance for image databases can be characterized by two key factors. First, for a
given query image, the relevance of all the features input to the database system may not be equal for
retrieving similar images. Irrelevant features often hurt retrieval performance. Second, feature relevance
depends on the location at which the query is made in the feature space. Capturing such relevance
information is a prerequisite for constructing successful retrieval procedures in image databases.

We note at the outset that this problem is opposite to typical classification problems based on lazy
learning techniques, such as nearest-neighbor kernel methods. While the goal in classification is to predict
the class label of an input query from nearby samples, the goal in retrieval is to find samples having the
same “class label” as that of the query. Moreover, many lazy learning techniques for classification lend
themselves to the kind of problems retrieval tasks may face. It is important to realize that, unlike classi-
fication problems, the notion of classes in image databases is a user-centered concept that is dependent
on the query image. There is no labelling of images in the database. Nonetheless, the “class label” of

13

I‘




an image is simply used here as a vehicle to facilitate the theoretical derivation of our feature relevance
measure for content-based image retrieval. As we shall see later, the resulting relevance measure and its
associated weightings are independent of image labels in the database and, thus, fit our goals nicely here.

3.2 Local Relevance Measure

We begin this section by introducing some classification concepts essential to our probabilistic deriva-
tion.

In a two class (1/0) classification problem, the class label y € {0,1} for query x is treated as a
random variable from a distribution with the probabilities {Pr(1]x),Pr(0|x)} [2]. We then have

f(x) = Pr(1|x) = Pr(y = 1|x) = E(y[x), )

To predict y at x, f(x) is first estimated from a set of training data using techniques based on regression,
such as the least-squares estimate!. Decision tree methods, neural networks and nearest-neighbor kernel
methods are examples of using this regression paradigm to the classification problem. The Bayes classifier
can then be applied to achieve optimal classification performance. In image retrieval, however, the “class
label” of x is known, which is 1 in terms of the notation given above. All that is required is to exploit the
differential relevance of input features for image retrieval. Consider the least-squares estimate for f(x).
In the absence of values for any variable assignments, it is simply

E[f(x)] = / F()p(x)dx. 3)

That is, the optimal prediction (in the least-squares sense) for f(x) is its average value. Now given only
that x is known at dimension z; = z. The least-squares estimate becomes

Elf (0l = 2] = / F)p(xlz; = 2)dx. (4)

Here p(x|z; = 2) is the conditional density of the other input variables defined as
plxlz: = 2) = p()6(as = 2/ [ p)3(z: - 2)ax, )

where §(z — 2) is the Dirac delta function having the properties §(z—2z) = 0if z # z and ffzo d(z—2z)dz =
1. It is evident that
0 < E[flz; = 2] < 1.

Furthermore, Equation (4) shows the predictive strength (probability) once the value of just one of the
input features z; is known.

Let z be the query. Since f(z) = 1 (recall that query z has the same class label (class one) as the
positive images), it follows that

f(z)-0

is the largest error one makes in predicting f at z. That is, f(z) — 0 is the error incurred when one
predicts f(z) to be zero (z is not in class one), but in fact f(z) is in class one with probability 1. On the

other hand
f(2z) — E[f(x)|z; = 2]

is the error one makes by predicting the probability of z being in class one as E[f(x)|z; = z], conditioned
on feature z; taking the value z. Then

[(f(z) = 0) = (f(2) — E[f(®)|z: = 2])] = E[f (x)|z: = 2] (6)

INote that one can also use techniques based on density estimation to compute f(x).
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represents a reduction in error between the two predictions. We can now define a measure of feature
relevance for query z as

ri(2z) = E[f (x)|z: = 2]. (7)

That is, feature z; is more relevant for query z if it contributes more to the reduction in prediction error
(6).

The relative relevance, as a weighting scheme,\can then be given by

wi(z) = (ri(2))/ Y_(ri(2))". (8)
=1

where t = 1,2, giving rise to linear and quadratic weightings, respectively. In this paper we propose the
following exponential weighting scheme

wi(z) = exp(Tri(z))/ Y exp(Tri(2)) (9)
=1

where T is a parameter that can be chosen to maximize (minimize) the influence of r; on w;. When
T = 0 we have w; = 1/q, thereby ignoring any difference between the r;’s. On the other hand, when T is
large a change in r; will be exponentially reflected in w;. In this case, w; is said to follow the Boltzmann
distribution. The exponential weighting is more sensitive to changes in local feature relevance (7) and
gives rise to better performance improvement, as we shall see later.

It is clear from (8) and (9) that 0 < w;(z) < 1, where w;(z) = 0 indicates that knowing z; at z does
not to help predict the query. On the other hand, w;(z) = 1 states that having the knowledge of z; at z
is sufficient to predict the query. Values in between show the degrees of relevance that z; exerts at z. It
reflects the influence of feature z; on the variation of f(x) at query location z. Thus, (8) and (9) can be
used as weights associated with features for weighted similarity computation

It can be shown that (10) is indeed a metric. These weights enable the similarity computation to elongate
less important feature dimensions, and, at the same time, to constrict the most influential ones.
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Figure 2: (a): Large E[ f(x)|z2 = 2] implies that the subspace spanned by X; at z is likely to contain
samples having the same class label as the query. (b): Small E[f(x)|z2 = 2] indicates that the subspace
is unlikely to have samples similar to the query.

A justification for (7) and, hence, (8) and (9), goes like this. Suppose that the value of E[f(x)|z; = 2]
(4) is large, which implies a large weight along dimension z;. This, in turn, penalizes points along z; that

15




are moving away from z. Now E[f(x)|z; = z] can be large only if the subspace spanned by the other
input dimensions at z; = z likely contains samples coming from class 1, assuming a uniform distribution.
This scenario is illustrated in Figure 2(a). Then a large weight assigned to z; based on (8) says that
moving away from the subspace, hence from the data in class 1, is a bad thing to do. Similarly, a small
value of E[f(x)|z; = z], hence a small weight, indicates that in the vicinity of z; at z one is unlikely to
find samples similar to the query, as shown in Figure 2(b). Therefore, in this situation in order to find
samples resembling the query, one must look farther away from z.

4 Estimation of Relevance

In order to estimate (8) and (9), one must first compute (7). The retrieved images with relevance |

feedback from the user can be used as training data to obtain estimates for (7), hence (8) and (9). Let
{x;,y;}¥ be the training data. Here x; denotes the feature vector representing jth retrieved image, and
y; is either 1 (relevant) or O (irrelevant) marked by the user as the class label associated with x;. To
compute E[f(x)|z; = 2], recall that f(x) = E[y|x]. Thus, it follows that

E[f(x)|=: = 2] = Elyle; = 2]

However, since there may not be any data at z; = z, the data from the vicinity of z; at z are used to
estimate E[y|z; = 2], a strategy suggested in [2]. Therefore, (7) can be estimated according to

K K
Elylei=21= yl(zji — 2l <)/ ) 1z — 2| £ Q), (11)

j=1 j=1

where 1(-) is an indicator function. That is, 1(-) returns 1 if its argument is true, and 0 otherwise. {2 can
be chosen so that there are sufficient data for the estimation of (4). In this paper, 2 is chosen such that

K
> 1(lzji — 2l < Q) = C, (12)

i=1

where C < K is a constant. It represents a trade-off between bias and variance. In addition, (11) can
be computed within a subregion, thus making the relevance measure more local. Note that it is possible
to extend this technique to multiple class situations where the user can grade the retrieved images. Our
retrieval and feature relevance computation algorithm is summarized in Figure 3, where precision denotes
the average retrieval precision.

Let i be current query; initialize weight vector w to {1/¢}{.
Compute K nearest images using w.

User marks the K images as positive or negative.

L e

While precision < § Do

(a) Tset + TsetU {marked K images}.

(b) Update w from Egs. (11) and (9) using training data in T'set.
(c) Compute K nearest images using w.

(d) User marks the K images as positive or negative.

Figure 3: The probabilistic feature relevance learning (PFRL) Algorithm.

The bulk of the computational expense involved in the feature relevance estimation algorithm shown
in Figure 3 is consumed by the K-nearest neighbor search, while the relevance estimation is quite efficient.
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This is particularly pronounced when the image database is large. In practice, however, the amount of
computation associated with the nearest neighbor search can be significantly reduced by partitioning or
indexing the image database in such a way that the nearest neighbor search can be localized within a
given partition. This issue, however, is beyond the scope of this paper.

Figure 4: A simple two class problem with a uniform distribution. The red square indicates the query.

We use a simple two class problem, shown in Figure 4, to illustrate the feature relevance computation
process. In this problem, the data for both classes are generated from a uniform distribution. The number
of data points for both classes is roughly the same. The red square, located at (1,0.1), represents the
query. Figure 5(a) shows the 200 nearest neighbors (red squares) of the query found by the unweighted
K-NN method (1). The resulting shape of the neighborhood is circular, as expected. In contrast, Figure
5(b) shows the 200 nearest neighbors of the query, computed by the technique described above. That
is, the retrievals (with relevance feedback) shown in Figure 5(a) are used to compute (7) and, hence, (9)
with estimated new weights: w; = 0.134 and wy = 0.866. As a result, the new (elliptical) neighborhood
is elongated along the horizontal axis (the less important one) and constricted along the vertical axis (the
more important one). The effect is that there is a dramatic increase in the retrieved nearest neighbors
that are similar to the query.

This example demonstrates that even a simple problem in which the class boundary ideally separates
two classes can benefit from the feature relevance learning technique just described, especially when the
query approaches the class boundary. It is important to note that for a given distance metric the shape of
a neighborhood is fixed, independent of query locations. Furthermore, any distance calculation with equal
contribution from each feature variable will always produce spherical neighborhoods. Only by capturing
the relevant contribution of the feature variables can a desired neighborhood be realized that is highly
customized to query locations.

5 Empirical Results

In the following we compare two competing retrieval methods using real data. (a): The probabilistic
feature relevance learning (PFRL) algorithm described above; and (b): The MARS algorithm [6]. Note
that there is a third method, the simple (unweighted) K-NN method, that is being compared against
implicitly. The first retrieval by the two methods is based on the unweighted K-NN method. Also,
in all the experiments, features representing data are first normalized to lie between 0 and 1, and the
performance is measured using the average retrieval precision [5, 6].

5.1 The Problems

Database 1. The data set (SegData), taken from the UCI repository [4], consists of images that
were drawn randomly from a database of 7 outdoor images. The images were hand segmented by the
creators of the database to classify each pixel. Each image is a region. There are 7 classes, each of which
has 330 instances. Thus, there are total 2310 images in the database. These images are represented by
19 real valued attributes.
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(a) (b)

Figure 5: Effect of feature relevance on retrieval. (a) Circular neighborhood (no learning). (b) Elliptical
| neighborhood (after learning). ‘

Database 2. The data are obtained from MIT Media Lab at: whitechapel.media.mit.edu/
pub/VisTex. There are total 640 images of 128 x 128 in the database with 15 classes. The images in this
database are represented by 8 Gabor filters (2 scales and 4 orientations).

Database 3. Letter Image Recognition Data (LIRD) taken from [4] consists of a large number of
black-and-white rectangular pixel arrays as one of the 26 upper-case letters in the English alphabet. The
characters are based on 20 Roman alphabet fonts. They represent five different stroke styles and six
different letter styles. Each letter is randomly distorted through a quadratic transformation to produce
a set of 20,000 unique letter images that are then converted into 16 primitive numerical features.

Database 4. This is a set, also taken from [4], of 208 data points having two classes (Mines and
Rocks) with equal number of instances in each class. The data are represented by 60 features. For details,
see [4].

5.2 Results

: For all the problems, each image in the database is selected as a query and top 20 (corresponding to
L parameter K in the algorithm (Fig. 3) described above) nearest neighbors are returned that provide nec-
i essary relevance feedback. Note that only negative images (that are different from the query determined
by the user) need to be marked in practice. The average retrieval precision is summarized in Table 1.
| There are two rows under each problem in the table, comparing the performance of the two competing
' methods.

The second column in Table 1 shows the average retrieval precision obtained by the method without
any relevance feedback (rf). That is, it is the results of applying the simple K-NN method using un-
weighted Euclidean metric. The third column and beyond show the average retrieval precision computed,
at the specified iterations, after learning has taken place. That is, relevance feedback obtained from
the previous retrieval is used to estimate local feature relevance, hence a new weighting. The procedural
parameters input to the algorithms under comparison were determined empirically that achieved the best
performance. They are by no means exhaustive. For the SegData image database, they were set to 13
and 19 (PFRL), and 0.1, 0.6 and 0.1 (MARS); for the MIT image database, they were set to 13 and 20
(PFRL), and 0.1, 0.6 and 0.1 (MARS); for the LIDR data, they were set to 14 and 19 (PFRL), and 0.1,
i 0.6 and 0.1 (MARS); for the Sonar data, they were 11 and 25 (PFRL), and 0.1, 15.0 and 0.8 (MARS),

" ' ‘respectively. .
: It can be seen from Table 1 that both methods demonstrate significant performance improvement
‘ across the tasks. In general, PFRL seems to outperform MARS on all the tasks. Superior performance
! by PFRL is particularly pronounced on the SegData and Sonar data sets. Moreover, the results show
| that PFRL can handle large problems with high dimensionality well by its superb performance on the 60
dimensional Sonar data set.
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Table 1: Average retrieval precision for real data.

SegData Data Set
Method [ 0 (cf) | 1 (rf) | 2 («f) | 3(xf) | 4 (cf)
PFRL | 90.90 | 94.67 | 95.78 | 96.49 | 96.79
MARS | 83.01 | 86.41 | 87.38 | 87.12 | 87.81
MIT Data Set
Method [ 0 (rf) [ 1 (xf) [ 2 (xf) [ 3 (cf) | 4 (zf)
PFRL | 81.14 | 85.30 | 86.95 | 88.71 | 89.46
MARS | 83.66 | 86.72 | 87.58 | 87.93 | 88.18
LIRD Data Set
Method [ 0 (cf) | 1 (xf) | 2 (xf) | 3 (rf) | 4 (cf)
PFRL | 76.85 | 84.59 | 87.34 | 89.13 | 89.97
MARS | 77.61 | 84.34 | 86.26 | 86.95 | 87.25
Sonar Data Set
Method [ 0 (cf) [ 1 (cf) | 2 (xf) [ 3 (xf) [ 4 (cf)
PFRL | 61.61 | 82.50 | 90.05 | 93.29 | 94.38
MARS | 66.30 | 75.94 | 78.39 | 79.50 | 79.69

6 Conclusions

This paper presented a novel probabilistic feature relevance learning technique for efficient content-
based image retrieval. The experimental results using large real data show convincingly that learning
feature relevance based on user’s feedback can indeed improve retrieval performance of an image database
system. Furthermore, since the relevance estimate is local in nature, the resulting retrieval, in terms of
the shape of the neighborhood, is highly adaptive and customized to the query location.
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