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Abstract

This paper presents a general approach to image
segmentation and object recognition that learns a
mapping from images with varying properties to
segmentation algorithm parameters. The mapping
is built using a reinforcement learning algorithm
that is based on a team of generalized stochas-
tic learning automata and operates separately in
a global or local manner on an image. The edge-
border coincidence is first used as an immediate re-
inforcement to reduce computational expenses asso-
~iated with model matching during the early stage
Jf the learning process. Since this measure however
can not reliably predict the outcome of object recog-
nition, it is used in conjunction with model match-
ing that provides optimal segmentation evaluation
in a closed-loop object recognition system. Results
are presented for both indoor and outdoor color im-
ages where the performance improvement over time
is shown for both image segmentation and object
recognition.

1 Introduction

A model based object recognition system has three
key components: image segmentation, feature ex-
traction, and model matching. The goal of image
segmentation is to extract meaningful objects from
an input image. Image segmentation is an impor-
tant and one of the most difficult low-level image
processing and computer vision tasks 4, 9]. All sub-
sequent image interpretation tasks including feature
extraction and model matching rely heavily on the
quality of the image segmentation process.

The inability to adapt the image segmentation
process to real-world changes is one of the funda-
mental weaknesses of typical model-based object
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recognition systems. Despite the large number of
image segmentation algorithms available, no general
methods have been found to process the wide diver-
sity of images encountered in real world applica-
tions. Typical object recognition systems are open-
loop. Segmentation and feature extraction mod-
ules use default algorithm parameters, and generally
work as pre-processing steps to the model match-
ing component. These parameters are not reliable,
since when the conditions for which they are de-

signed are changed slightly, these algorithms gen-

erally fail without any graceful degradation in per-
formance. To achieve reliable performance in real-
world applications, a need exists to apply learning
techniques that can efficiently search the segmen-
tation parameter space and find parameter values
that produce optimal results for the given recog-
nition task. In this paper, our goal is to develop
a general approach for learning integrated model-
based object recognition system, which has the ca-
pability of inducing a mapping from input images
to segmentation parameters. We emphasize at the
outset that for simplicity it is assumed that only
one instance of the model is present in the image.
Multiple instances of the model can be recognized
by slight modification of the algorithm.

1.1 Overview of the approach

We develop a general approach to learning inte-
grated image segmentation and object recognition.
The basic assumption is that we know the models
of the objects that are to be recognized, but we do
not know the number of objects and their locations
in the image. The system consists of image seg-
mentation, feature extraction, model matching, and
reinforcement learning modules. The image seg-
mentation component extracts meaningful objects

471




from input images, feature extraction step performs
polygonal approximation of connected components,
and the model matching step tells us which regions
in the segmented image contain the recognized ob-
ject. The model matching module indirectly eval-
uates the performance of the image segmentation
and feature extraction processes by generating a
real valued matching confidence indicating the de-
gree of success. This real valued matching confi-
dence is then used as feedback to drive learning for
image segmentation parameters in a general learn-
ing framework. The goal is therefore to maximize
the matching confidence by finding a set of segmen-
tation parameters for the given recognition task.

The particular framework adopted in this pa-
per is reinforcement learning, which closes the loop
between model matching and image segmentation.
There are good reasons for using reinforcement
learning in our image segmentation and computer
vision system. First, reinforcement learning re-
quires knowing only the goodness of the system per-
formance rather than the details of algorithms that
produce the results. It is natural to use matching
confidence as reinforcement. Second, convergence
is guaranteed for several reinforcement learning al-
gorithms. Third, reinforcement learning performs
efficient hill-climbing in a statistical sense with-
out excessive demand for computational resources.
Furthermore, it can generalize over unseen images.
Fourth, reinforcement learning can systematically
assign credit to different levels in a multi-level im-
age processing and computer vision system.

The learning integrated image segmentation and
object recognition system is designed to be funda-
mental in nature and is not dependent on any spe-
cific image segmentation algorithm or type of in-
put images. To represent segmentation parameters
suitably in a reinforcement learning framework, the
system only needs to know the segmentation param-
eters and their ranges. In our approach, a binary
encoding scheme is used to represent the segmen-
tation parameters. While the same task could be
learned in the original parameter space, for many
types of problems, including image segmentation,
the binary representation is expected to learn much
faster [15, 14]. In this sense, our system is indepen-
dent of a particular segmentation algorithm used.

1.2 Related work and our contribu-
tions

There is no published work in image processing
and computer vision on learning integ'fated image
segmentation and object recognition using multiple

feedbacks. The adaptive parameter control of seg-
mentation algorithm and the adaptive selection and
combination of different algorithms in a learning in-
tegrated system are unsolved problems in the field
of image processing and computer vision [1}. Most
threshold selection techniques in image processing
and computer vision do not involve any learning to
improve future performance with experience.

In a recent article Burges et al. [8] describe a
method for coupling recognition and segmentation
by the principle of heuristic over segmentation. The
basic idea is that a segmentation algorithm gener-
ates a graph that summarizes a large number of seg-
mentation hypotheses that are scored by a recogni-
tion algorithm. A globally optimal decision is then
made that combines uncertainties in segmentation
and recognition. Each time a new input comes in
a over segmented hypothesis graph must be gener-
ated and traversed in order to classify the input. In
contrast, the system presented in this paper uses a
learned mapping to compute segmentation param-
eters for a given input to achieve optimal model
matching. In addition, the learning of mapping in
our system is driven completely by the matching
confidence, whereas their graph generation is largely
based on heuristics. In another work [11], graph
generation is actually learned by minimizing global
errors that take into account both segmentation hy-
potheses and recognition scores. In [2], a method
is described for fitting segmentation parameters to
maximize the likelihood of a model of an object.
In comparison, our system attempts to maximize a
classification (conditional) probability.

Bhanu and Lee [4, 5] present an image segmen-
tation system which incorporates a genetic algo-
rithm to adapt the segmentation process. In their
approach, multiple segmentation quality measures
are used as feedback. Some of these measures re-
quire ground-truth information that may not be al-
ways available. Recently, Peng and Bhanu [15, 14]
develop an approach in which learning is used to
close the loop between segmentation and recogni-
tion. Their approach is based on global image seg-
mentation which is not the most appropriate way
to extract objects in an image. We need the ca-
pability of performing segmentation based on local
image properties (local segmentation). Another dis-
advantage of their method is its time complexity
that makes it problematic for practical applications
of image processing and computer vision.

The original contributions of the learning inte-
grated image segmentation and object recognition
system presented in this paper are: (1) Model
matching confidence is used as feedback to influence
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the image segmentation process, thereby providing
our object recognition system with adaptability in
real-world applications. (2) A team of generalized
stochastic learning automata is used to represent
both global and local image segmentation param-
eters, making faster learning possible. (3) Edge-
border coincidence, when combined with matching
confidence, reduces overall computational costs of
the learning process. (4) Explicit bias is introduced
in a reinforcement learning system in order to speed
up the learning process for adaptive image segmen-
tation.

2 Technical approach

The ultimate goal of our system is to maximize the
model matching confidence for a given recognition
task by finding a set of segmentation algorithm pa-
rameters that are represented by a network of in-
dependent Bernoulli units. To do so, the following
steps are taken.

Initial Approximation. The edge-border coin-
cidence is first used as an immediate reinforcement
to locate an initial good point in weight space from
which to begin search that will give rise to high
recognition performance. Once the edge-border co-
incidence has exceeded a given threshold, learning
is then driven by the matching confidence, which
requires more expensive computation of feature ex-
traction and model matching. Although the edge-
border coincidence can not reliably predict the out-
come of model matching, lower edge-border coin-
cidence values always result in poor model match-
ing. Likewise, higher edge-border coincidence val-
ues suggest with high probability that the current
set of segmentation parameters is in a close neigh-
borhood of the optimal one.

Global Segmentation Learning. Global seg-
mentation is carried out for the entire image. We
assume that we have a prior knowledge of the size
of objects of interest in the images. For those con-
nected components that pass through the size fil-
ter based on the expected size of objects of inter-
est in the image, we perform feature extraction and
model matching. The highest matching confidence
is taken as reinforcement to the learning system,
which computes a global mapping from input im-
ages to segmentation parameters. Since significant
differences in characteristics exist between an image
and its subimages, however, this mapping may not
always be possible to achieve optimal segmentation
and recognition performance for individual objects
in the input image. This calls for local segmentation
learning,.

Local Segmentation Learning. The goal of
local segmentation learning is to optimize and lo-
calize computation to meet each individual require-
ment. The local learning process starts with the set
of weights obtained from global learning. Similar
to global learning, the matching confidence is used
as reinforcement to update the local weights. Lo-
cal learning computes a mapping from subimages to
segmentation parameters, which is then applied to
selected subimages to further optimize recognition
performance.

Learning Bias. In order to further speed-up the
learning process we introduce bias favoring such a
distribution that encourages local exploitation (note
that the reinforcement learning is unbiased initially
when the edge-border coincidence is used as rein-
forcement). We achieve better computational effi-
ciency of the learning system and improved recog-
nition rates compared to the system with no bias.

2.1 Phoeniz image segmentation algo-
rithm

Since we are working with color imagery in our ex-
periments, we have selected the Phoeniz segmen-
tation algorithm [10, 13]. It works by recursively
splitting regions using histogram for color features.
Phoeniz contains seventeen different control param-
eters, fourteen of which are adjustable. The four
most critical ones that affect the overall results
of the segmentation process are selected for adap-
tation: Hsmooth, Mazmin, Splitmin, and Height.
Hsmooth is the width of the histogram smoothing
window. Mazmin is the lowest acceptable peak-to-
valley height ratio. Splitmin represents the mini-
mum area for a region to be automatically consid-
ered for splitting. Height is the minimum acceptable
peak height as a percentage of the second highest
peak. Each parameter has 32 possible values. The
resulting search space is 220 sample points. Each
of the Phoeniz parameters is represented using 5
bit binary code, with each bit represented by one
Bernoulli unit (see section 2.3). To represent 4 pa-
rameters, we need a total of 20 Bernoulli units.

2.2 Segmentation evaluation

Given that feature extraction and model matching
are computationally expensive processes, it is im-
perative that initial approximation be made such
that overall computation can be reduced. In or-
der to achieve this objective, we introduce a sec-
ond feedback signal - the edge-border coincidence
(EBC)[4, 12] that evaluates the segmentation qual-
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ity. EBC measures the overlap of the region borders
in the segmented image relative to the edges found
using an edge detector, and does not depend on any
ground-truth information. Let E be the set of pix-
els extracted by the edge operator and S be the set
of pixels found on the region boundaries obtained
from the segmentation algorithm:

EBC =n(EN S)/n(E), 1)

where n(-) computes the number of elements of its
argument.

In this paper, we use the Sobel edge detector [17]
to compute the necessary edge information. It is
possible that EBC is high while matching confidence
level is low, or EBC is low while matching confi-
dence is high. Figure 1 shows that EBC does not
correlate well with matching confidence. The model
matching confidence is arguably the only measure
that can conclusively evaluate the performance of
the segmentation process. It must be said that al-
though the edge-border coincidence does not cor-
rectly predict the matching confidence, for our pur-
pose it is sufficient to drive initial estimation. If
the edge-border coincidence is under a prespecified
threshold, which indicates a low possibility to get
a good recognition result, the system repeats the
initial estimation process using the edge-border co-
incidence as the sole reinforcement signal. Once
the threshold has been reached, the segmentation
performance will be determined completely by the
model matching.
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Figure 1: Edge-border coincidence vs. matching

confidence.

2.3 Reinforcement learning for im-
age segmentation

Reinforcement learning is the problem faced by
an agent that must learn behavior through trial-
and-error interactions with a dynamic environment.
This type of learning has a wide variety of applica-
tions, ranging from modeling behavior learning in
experimental psychology to building active vision

systems. The basic idea is that if an action is fol-
lowed by a satisfactory state of affairs or an im-
provement in the state of affairs, then the tendency
to produce that action is reinforced. Reinforcement
learning is similar to supervised learning in that
it receives a feedback to adjust itself. However,
the feedback is eveluative in the case of reinforce-
ment learning. In general, reinforcement learning
is more widely applicable than supervised learning
and it provides a competitive approach to building
autonomous learning systems that must operate in
the real world.

The particular class of reinforcement learning al-
gorithms employed in our system is the connection-
ist REINFORCE algorithm [18], where units in such
a network are Bernoulli quasi-linear units. The
output, y;, of a unit ¢ is either 1 or 0 determined
stochastically using the Bernoulli distribution

~_ J 1 with probability p; @)
¥i= 1 0 with probability 1 —p;

where p; is the probability mass function computed
according to p; = f(s;) = 1/(1 + e~%), with
$i = )_; WijTj, Wij is the weight of the jth input for
unit 7, and z; is the jth input value for the unit. In
the reinforcement learning paradigm, the learning
component uses the reinforcement r(t) to drive the
weight changes. The specific algorithm we used has
the following form: for each unit, at the tth time
step, after generating output y(¢) and receiving re-
inforcement signal r(t), increment each weight w;;
by

Awy(t) = a[r(t)_f(t_l)][y,.(t)_g,.(t_l)]z,.-aw,-,ét;
where a is the learning rate, ¢ is the weight decay
rate, z; is the input to each Bernoulli unit, and y;
is the output of the ith Bernoulli unit. 7(t) is the
exponentially weighted average of prior reinforce-
ment values 7(t) = y7(t — 1) + (1 — v)r(t), where
7(0) = 0 and v is the trace parameter. Similarly,
7i(t) is an average of past values of y; computed by
the same exponential weighted scheme used for 7(t),
Fi(t) = v¥:(t — 1) + (1 - 7)yi(t). The algorithm has
the convergence property [18] such that it statisti-
cally climbs the gradient of expected reinforcement
in weight space. The weight decay (see the second
term in equation (3) is used as a simple method
to force the sustained exploration of the parameter
space. This type of learning rule has shown greater
computational efficiency [19).
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Figure 2: Matching confidence history of three runs of the biased and unbiased RL algorithms on the image
shown in Figure 3. (a) Biased; (b) Unbiased (c) Average.

2.4 Biased reinforcement learning
for image segmentation

The RL algorithm described in section 2.3 is “unbi-
ased” in that the output of a bit is governed solely
by the Bernoulli probability law. The advantage
is that rapid changes in output values allow giant
leaps in the search space, which in turn enables the
learning system to quickly discover suspected high
pay-off regions. However, once the system has ar-
rived at the vicinity of a local optimum, as will be
the case after the initial estimation, changes in the
most significant bit will drastically alter the param-
eter value, often jumping out of the neighborhood
of the local optimum. Ideally, once the learning sys-
tem discovers that it is within a possible high pay-off
region, it should attempt to capture the regulari-
ties of the region. This then biases future search
toward points within it. The challenge, of course,
is to have a learning algorithm that allows the pa-
rameters controlling the search distribution to be
adjusted so that this distribution comes to capture
this knowledge. The algorithm described here shows
some promise in this regard. In order to force pa-
rameters to change slowly, after the initialization
phase, we apply a biased RL algorithm in which the
two most significant bits of a parameter are forced
to change in a “lazy” fashion as:

_J 1 ifp>05
bi = { 0 otherwise )

Other bits use the the same rule (2) as described
in the unbiased RL algorithm. Figure 2 shows the
experimental results of the two schemes on the first
image shown in Figure 3. In this experiment, we
apply the initialization followed by global learning
without switching between global and local learn-
ing. The results show that the biased RL algorithm

demonstrates a speed up by a factor of 2 to 3.

2.5 Feature extraction and model
matching

Feature extraction consists of finding polygon ap-
proximation tokens for each connected component
obtained after image segmentation. To speed up
the learning process, we assume that we have the
prior knowledge of the approzimate size (area) of
the object, and only those connected components
whose area (number of pixels) are comparable with
the area of the model object are approximated by a
polygon.

The polygon approximation is implemented by
calling the polygon approximation routine in
Khoros [17). The resulting polygon approximation
is a vector image to store the result of the linear
approximation. The image contains two points for
each estimated line. Model matching employs a
cluster-structure matching algorithm [7]. It is based
on forming the clusters of translational and rota-
tional transformations between the object and the
model. The algorithm takes as input two sets of to-
kens, one of which represents the stored model and
the other represents the input region to be recog-
nized. It then performs topological matching be-
tween the two token sets and computes a real num-
ber that indicates the confidence level of the match-
ing process. For further details, see [7].

2.6 Algorithm description

There are three distinct learning phases. The ini-
tial estimation does not involve the polygonal ap-
proximation and model matching. The segmenta-
tion parameters are computed based on (2), and
weights are updated according to (3) using EBC
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Figure 3: Column 1: input color images 1, 2, 3; column 4: input color images 6, 7, 8; column 2, 3, 5, 6:

corresponding segmented image and recognized object.

(1) as reinforcement. The initial estimate termi-'

nates when EBC exceeds a given threshold at which
point global segmentation learning begins. In both
global and local segmentation learning, the seg-
mentation parameters are computed using the lazy
strategy (4), and the matching confidence is used
as reinforcement that requires polygon approxima-
tion and model matching. The training images for
local segmentation learning consist of subimages ex-
tracted from target areas in the training images
for global segmentation learning. The global learn-
ing procedure calls the local learning routine when
the matching confidence has reached a prespecified
level. Training terminates when the average match-
ing confidence is above a given threshold.

3 Experimental evaluation

The system is verified through twelve indoor and
twelve outdoor color images. The indoor images are
acquired at different viewing distances with varying
lighting conditions. The outdoor images are col-
lected every 15 minutes over a three-hour period
using a JVC GXF700U color video camera. These
images simulate a photo interpretation/surveillance
scenario in which the camera positions are fixed and
the image undergoes significant changes over time
due to changing environmental conditions (time of
the day, position of the sun in the sky, and cloud
cover). Varying light level is the most prominent
change throughout the outdoor images. Although
the environmental conditions also created varying
object highlights, moving shadows and many subtle
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contrast changes between the objects in the image.
The size of indoor images is 120 by 160 pixels, and
the size of outdoor images is 120 by 120 pixels. Each
image is decomposed into 4 images for Phoeniz seg-
mentation - red, green, blue components, and the Y
component of YIQ model of color images. For the
indoor images, the desired object is the cup in the
image, and in the outdoor images, the target object
is the traffic sign. The expected size of the cup and
the traffic sign are 200 to 450 pixels and 36 to 100
pixels, respectively.

Based on the size of the object to be recognized
in the image, we divide the Y component image into
48 subimages for the indoor images, and 36 subim-
ages for the outdoor images. Each subimage’s size
is 20 by 20 pixels. The images are first histogram
equalized using the Khoros routines [17]. The stan-
dard deviations of these subimages serve as inputs
to each Bernoulli unit, i.e., each Bernoulli unit has
a total of 48 inputs (and therefore, 48 weights) for
the indoor image, and has a total of 36 inputs (36
weights) for the outdoor image. To learn the four
selected Phoenir segmentation parameters, we need
20 Bernoulli units. So there is a total of 960 weights
for the indoor images, and 720 weights for the out-
door images. It should be noted that, because of
independence of these units, the effective number
of free parameters is forty-nine for the indoor im-
ages and thirty-seven for the outdoor images, re-
spectively.

For the team of 20 Bernoulli units, the parameters
@, 7, and § are determined empirically, and they are
kept constant for all images. In our experiments,




.

a = 0.02, y = 0.9, and § = 0.01. The threshold
for matching confidence Switch = 0.6, and Accept =
0.8. The threshold used for extracting edges using
the Sobel operator is set to 200. The parameters for
feature extraction are fixed. Note that during the
local learning phase, we extract and enlarge the lo-
cal subimage by a factor so that the enlarged image
is of the same size as the input image. The stored
model to be recognized is scaled by the same factor.

3.1 Results on indoor and outdoor
images

Figure 3 shows the experimental results on the first
six of the twelve indoor color images while Figure
4 shows the results on the first six of the twelve
outdoor color images. For each indoor image, the
globally segmented image using the set of learned
parameters and the extracted object that has been
successful recognized are presented. For each set of
images, the 12 images are taken sequentially. Ex-
cept for the first image, the learning process for each
image starts from the global segmentation parame-
ters learned from all the previous images. For the
first input image, the learning system is initialized
using the unbiased RL algorithm. Usually, it takes
less than 45 iterations to find a set of segmenta-
tion algorithm parameters that produce high edge-
border coincidence values. The final matching confi-
dence values obtained are 0.87, 0.93, 0.86, 0.91, 0.92
and 0.97 for the indoor images, and 0.82, 0.91, 0.86,
0.90, 0.90 and 0.91 for the outdoor images. The
results demonstrate clearly that our system works
well on images exhibiting condition changes.

4 Conclusions

We have presented a general approach to learning
integrated image segmentation and object recogni-
tion. The approach systematically combines a do-
main independent simple measure for segmentation
evaluation (edge-border coincidence) and domain
dependent model matching confidence in a novel re-
inforcement learning framework to efficiently learn
segmentation parameters and perform object recog-
nition simultaneously. Experimental results demon-
strate that the simple approach is promising in real-
world applications.

In order to accommodate the wide variety of im-
ages encountered in real-world applications, we can
develop an autonomous gain control system that
will allow switching between different classes of im-
ages taken under significantly different weather con-
ditions (sunny, cloudy, snowy, rainy) and learn sep-

arate segmentation parameters within each class of
images. We can use image context to divide the
input images into several classes based on image
properties and external conditions. When an image
is presented, we use an image property measure-
ment module and the available external informa-
tion to find the stored information for this category
of images, and use the parameters associated with
that category to perform image segmentation. This
will overcome the problem of adapting to extremely
large variations among images. Further, our learn-
ing approach can be readily extended to systems
using different segmentation algorithms.
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