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Abstract

This paper presents a model-based matching tech-
nique for recognition of articulated objects (with two
parts) and the poses of these parts in SAR (Synthetic
Aperture Radar) images. Using articulation invariants
as features, the recognition system first hypothesizes the
pose of the larger part and then the pose of the smaller
part. Geometric reasoning is carried out to correct
identification errors. The thresholds for the quality of
match are determined dynamically by minimizing the
probability of a random match. Results are presented
using SAR images of three articulated objects. The sys-
tem performance is evaluated with respect to identifica-
tion performance, accuracy of estimates for the poses
of the object parts and noise.

1. Introduction

Recognition of objects in SAR imagery is an active
area of research in pattern recognition [4]. In this pa-
per we focus on the problem of recognizing articulated
objects (with two parts) and the poses of the articu-
lated parts. Previous work in this area, [1] and (3],
has used simple models (like scissors and lamps) in vi-
sual imagery and has used constraints around a joint to
recognize these objects. Because of the unique charac-
teristics of SAR image formation (specular reflection,
multiple bounces, low resolution and non-literal nature
of the sensor), it is difficult to extract linear features
(commonly used in visual images), especially in SAR
images of targets at six inch to a foot resolution. Previ-
ous recognition methods for SAR imagery using tem-
plates [4] or boundary contours are not suitable for
the recognition of articulated objects, because articu-
lation or occlusion changes the object outline and each
different articulation configuration requires a different
template leading to a combinatorial explosion.

The key contribution of the paper is the recogni-
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tion of articulated objects and the articulation of the
objects in SAR imagery using models based on artic-
ulation invariants. An end-to-end system has been de-
veloped whose input is a target chip and the final result
is the identification of the target and the poses of its
parts. The system has been extensively tested against
occluded articulated objects and noise.

2. System Overview
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Figure 1. Our system for object recognition.

The basic assumption behind our approach is that
more scattering centers (features) are from the larger
part than from the smaller one so that the models for
the larger part are used first to find the target identi-
fication (ID) and the pose of the larger part. For some
targets like the M1al tank, occasionally more scatter-
ing centers come from the smaller part (turret) than
from the larger one (body). If the system succeeds in
recognizing the target and its body pose, those scat-
tering centers used for the body part recognition (the
positives) are eliminated from the test data. The re-
maining scattering centers (called the negatives) are
supplied to the next stage to recognize the turret part
and its pose. If the system fails to recognize the tar-
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get ID and its body pose, the system tries to recognize
the target ID and its turret pose instead. After the
recognition of the turret, it tries to recognize the body
pose based on the negative scattering centers, which
are left over from the turret part recognition. Figure 1
shows the matching components including the feedback
(loop) used in geometric reasoning from the matching
module to the indexing module.

e Invariant feature extraction and model
building: We find that some of the scattering cen-
ters remain invariant to the turret articulations. The
articulation invariances of Mlal, T72, and T80 tanks
are 37%, 48%, and 53% respectively. For model build-
ing and experimentation, we use the invariants to build
body models and a subset of variants to build turret
models. We do not fix the number of scattering centers
to be extracted from the target chips because we want

to get as many features as possible from both body and
turret.

e Hypotheses generation and verification: In
the recognition phase, a set of hypotheses is generated
using a geometric hashing technique. The program
then finds the best data/model correspondence using a
quadrant analysis technique which transforms the scat-
tering centers from the model coordinate system to the
image coordinate system. In this transformation, only
translation is considered because rotation is handled
by 360 models for every single degree of azimuth (note
that there is no scaling involved in SAR image forma-
tion). This quadrant analysis technique allows posi-
tional error, €,, within one pixel. Finally, the system
verifies the top ten hypotheses, from the quadrant anal-
ysis, which have the highest matching scores.

(a) Quadrant analysis: Each entry in the trans-
formation space represents a transformation 7 and
the value represents the number of correspondences
between model and data scattering centers for exact
matching positions. Since the feature extraction mod-
ule uses eight-neighbor comparison, the closest two
scattering centers are two pixels apart from each other.
In order to allow correspondence between pixels that
are one pixel apart, the quadrant analysis routine gen-
erates a new transformation space by adding all values
at the four corners of each quadrant. A new transfor-
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Figure 2. An example of new transformation

space with convex octagonal bounding box.

given object model. We use this approach with re-
strictions and modifications that are required for SAR
images. In particular, we are concerned with scatter-
ing centers as point features in a SAR image and only
the translation transformation between the model and
data features. ,

Given a correspondence between data and model
points for a fraction f (fe[0,1]) of the m model points,
what is the relation between f and the probability &
that correspondences can occur at random? Once f
and & are known, the matching threshold can be dy-
namically selected for each input. In order to charac-
terize the probability of a false match of a model to
an image, statistical occupancy models are used. Let
! be the number of random feature correspondences.
Assuming the acceptable positional error to be within
+e, in both z and y directions, which is a square of
dimensions 2¢, X 2¢p, the volume of the range of fea-
sible transformations Vj; for single data-model pairing
(j,J) is ¢j; = 4ep2. Let the sum of the sizes of all the
transformation space volumes over the total size of the
transformation space be A. Then,

N = smdep?
A

where s and m are the number of scattering centers for
data and model, respectively, A is the convex octag-
onal area (the bounding octagon) of the transforma-
tion space, and ¢ is the average normalized volume size
which is 4e,? /A.

Given n cells and r events, what is the prob-

= smc

e mation space, Q, is constructed as follows: Q(z,y) = ability, px, that a given cell contains exactly k
r- TEy) + T+1y) + T(ey+1) + T(e+1y+1). events? Two widely used models for the probabil-
n Figure 2 shows an example of quadrant analysis. ity are Mazwell-Boltzmann and Bose-Einstein models.
n (b) Dynamic selection of matching threshold: Mazuwell-Boltzmann model assumes that the events are
t- We use a dynamic matching threshold based on a sta- uniformly randomly distributed, such that all n" possi-
ae tistical occupancy model developed by Grimson and ble placements of the r events in the n cells are equally
e Huttenlocher [2]. The main assumption underlying this probable. Bose-Einstein model, an alternative model,
e model is that the extraneous features in an image will assumes that each distinguishable distribution of events
ot be uniformly randomly distributed with respect to a across cells has an equal probability of occurrence. To
- -
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Figure 3. Comparison for the fitness of two
occupancy models.

select a particular occupancy model for articulated ob-
ject recognition, we generated test data with random
scattering centers inside the bounding box whose size
is the average size of all test SAR chips. We compute
the cumulative empirical distribution as follows.

(1) For each pair of model and data points, com-
pute a point in the transformation space. Enter an
event into the cell containing this point. (2) Do the
quadrant analysis to get a new transformation space.
(3) Over all cells inside the convex octagonal hull of the
events, count the number of events in each cell (the oc-
cupancy numbers), and tally the number of cells with
each occupancy number. (4) For each entry in the tally,
normalize the entry by the total number of cells, thus
producing the empirical distribution of the number of
events per cell. (5) Sum the normalized values to ob-
tain the cumulative empirical distribution.

Figure 3 shows the fitness comparison of the two
occupancy models for the empirical distribution gen-
erated using the model and data shown in Figure 2.
Then we compute the total area of the convex octago-
nal hull 4, and the average distribution of the events
A. This cumulative empirical distribution is supplied
to the Kolmogorov-Smirnov test (K-S test). The K-
S test measures the maximal difference between the
empirical distribution and some hypothesized distribu-
tion (e.g., Bose-Einstein model or Maxwell-Boltzmann
model). All 360 models of both body and turret mod-
els for each target are tested against the data. Ta-
ble 1 shows the results of the K-S test. For a = 0.05
level, D,’s (the maximum difference between two cu-
mulative distribution function) for Maxwell-Boltzmann
model are large enough to reject Hy while D,’s for
Bose-Einstein model are not large enough to reject Ho.
Accordingly, we choose Bose-Einstein model for the oc-
cupancy model.

From Pr{v > l}, probability that ! or more of the

Table 1. D,, for Kolmogorov-Smirnov Test.

(Total 360 Models/Target)

Body Turret
Bose- | Maxwell- Bose- | Maxwell-
Einstein | Boltzmann | Einstein | Boltzmann
Mial | 4.13 (%) | 13.20 (%) [3.31 (%) | 10.99 (%)
T72 || 12.52 (%) | 32.41 (%) |3.64 (%)| 9.38 (%)
T80 4.31 (%) | 15.97 (%) |4.97 (%) | 5.22 (%)
AVE || 6.90 (%) | 2053 (%) [3.97 (%) | 8.53 (%)]

volumes intersect at random, we can determine the
fraction of model features fo such that the probability
of m fy features being matched at random is less than
some predefined level §. Since § is a function of the
noise in the data measurements, and the uncertainty
in position 4e,?, we have

log(727)

mlog(l + -

ms(‘)

fo>

In the verification stage, we consider the number of
correspondences from the quadrant analysis, the num-
ber of data features, the number of model features,
and the size of the transformation space. Based on
this information, the verification stage calculates the
matching score along with the formal threshold.

¢ Geometric reasoning: In our approach, we as-
sume that a target has two parts one of which is larger
than the other. For example, the body part is larger
than the turret part and the body part has more ar-
ticulation invariant points than the turret part. But
there are some exceptions like the Mlal tank which
has a very large turret compared to the size of the
body. Even though the body part is still larger than
the turret part, there are more articulation invariant
points on the turret than on the body for some config-
urations. In this case, the recognition of body part will
fail because of the lack of articulation invariant points
from the body. For this case we try to recognize the
turret part first. Figure 4 shows the improvement ob-
tained through geometric reasoning (the ‘loop’ cases).
The identification does not consider the pose of each
part. For the turret pose recognition, the correctness is
within + 5 degree accuracy. Improvement of recogni-
tion is significant for the identification and turret pose
recognition cases.

3. Results

¢ Models and Data: In building models, we have
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Figure 4. Effect of geometric reasoning.

used three targets: T-72 tank, Mlal tank and T-80
tank. Each target has four different articulation con-
figurations which are achieved by rotating the turret
0°, 30°, 60°, and 90° relative to the tank body. For
each articulation configuration, we generated 360 im-
ages (one for each degree in azimuth ) for a given de-
pression angle of 15°. So, the total number of images
generated is 4320 (3 targets x 4 articulations x 360).
From each image, we extracted scattering centers from
their signal returns as point features of the model. For
each of the six experiments, we used two articulation
configurations of each target (3 targets x 2 articula-
tions x 360) to build 360 body models and 360 turret
models. The other two remaining articulation config-
urations are used as test data. These results averaged
to demonstrate the final performance.

e Matching results: In Figures 5 (a) through (f),
average, Mlal, T72, T80 curves represent the experi-
mental results of the average and each individual tar-
get, respectively. The x-axis shows the occlusion rate
which ranges from 0% to 50% in 10% steps. The y-axis
shows the correct recognition percentages. The identifi-
cation performance degrades gracefully as the occlusion
rate increases. The recognition of T-72 and T-80 are
similar while M1al’s recognition rate decreases faster
as the occlusion rate increases. In the body and tur-
ret pose recognition results, correct pose recognition
is within + 5°. The low pose recognition rate of the
M1al tank body is due to the fact that the relative size
of the turret to the body is large. This characteristic
is reflected in the pose recognition of the turret part.
M1lal turret pose recognition is much better than the
other two targets. As the occlusion rate increases, the
turret pose recognition drops rapidly beyond 30% oc-
clusion. This is expected because the turret part is in
the middle of the image, in general, and will have fewer
valid point features as the occlusion rate increases.

4. Conclusions

We have developed an end-to-end system for recog-
nition of articulated objects. We have demonstrated
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the performance of our approach using extensive ex-
periments. Currently we are extending the system with
additional features.
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