oty

7 A

. following scene data and model properties are considered in our approach for performa-nce modeling::. .
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ABSTRACT

We present a novel method for modeling the performance of a vote-based approach for target classification in SAR
imagery. In this approach, the geometric locations of the scattering centers are used to represent 2-D model, views of a
3-D target for a specific sensor under a given viewing condition (azimuth, depression-and squint angles): Performance
of such an approach is modeled in the presence of data uncertainty, occlusion; and clutter.. The ‘proposed .method
captures the structural similarity between mcdel views, which plays an important: role:in: determlmng the classification
performance. In particular, performance would improve if the model views are dissimilar-and. vice versa,. The method .
consists of the following steps. In the first step, given a bound on data uncertainty, model similarity is: determmed by
finding feature correspondence in the space of relative translations'between each pair of model views. .In ighe second
step, statistical analysis is carried out in the vote, occlusion and chitter spaée, in order. to determine, the probablhty
of misclassifying each model view. In the third step, the misclassification probability is averaged for all model views
to estimate the probability-of-correct-identification (PCI) plot as a funétion-of occlusion-and clutter: rapes: Va.hdlty of
the method is demonstrated by comparing predicted PCI plots with' oneé that are: obtamed experlmentally Results
are presented using both XPATCH and MSTAR SAR data. S MLy ai s ;

Keywords: Performance prediction, Expected bounds on performa,nce, Class1ﬁca,t10n under occlusion, clutter, and
data uncertainty, Model-based ATR, Model similarity S Ll e er ey el

1. IN’I’RODUCTION

Model-based automatic target recognition (ATR) has received con81derab1e attention during the last two decades 1,2,6
It can be defined as follows: Given a set of model targets and sersory data possibly. belonging to one of these targets,
the objective is to determine identity and/or pose of the scene target, if it éxists, by comparing; features. extracted from
the scene data with those of the model targets. The performance of the recognition process:depends on: propertles
of both the scene data (e.g., the extent of measurement error, missing and‘spurious features, etc.) and the, ,model
targets (e.g., articulation of model parts, similarity of model views, etc.). Systematic modehng of.all these properties
in a single approach has been a challenge for predicting the recognition' performance. ::

In this paper, we present a method for predicting the probabilities of correct target 1dent1ﬁcat10n and target
misclassification in SAR imagery. The geometric locations of the scattering centers are used to represent the 2-D
model views of a 3-D target under a given viewing condition (azimuth, depression-anc squint-apgles). A vote-based

" decision criterion is used for selecting the best target hypothesis; i.2., we choose the hygothesis with the ma.xnnum

number of model features (votes) that are consistent with scene data features in an apprepriate configuration. The

s
Fhse

o Distortion of Scene. Data: Thr.: distortion types are considered: data. uncortamty, m:ssmg scene 1eatures

(occlusion), and spurious scene features (clutter). R B TSR PR fra g

e Similarity of Model Views: Model similarity means the degree of siructural, or ceometnc, overlap between two
target views. A model view which is considerably similar to other views can be misclassified as any of them
under moderate levels of data distortioz, whereas a distinct vxew can be correctly class;ﬁed even ynder very
high distortion levels. : S 2R T mecn e .
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Figure 1. The similarity between P;, and PJ; is proportional to the area of the intersection (shaded) region.

Since, as mentioned in Section 3.2, data uncertainty is assumed to be uniform, it can be easily shown that this
probability is proportional to the area corresponding to the intersection of the uncertainty regions associated with
P, and P]; (see Fig. 1):

A(Re(Pix) N Re(PF))
A(Re (Pik))

FFSE(-sz;Ptﬁ) =

where A(X) is the area of region X. It is clear that FFSc(Pi, P};) > 0, only if || Pz — Pj; ||< 2¢. In such a case,
features P;; and 7 are said to be similar.

Next, we introduce a similarity measure between point Pj; and view M;. We define this similarity to be the
probability that an uncertain measurement of any feature in M; can be interpreted as an uncertain measurement of
Pj. Formally, feature/view similarity is defined as follows:

A(R.(Pix) N R(P}))
A(R(Pix)) - ?

FVS(M, Py =1-[J-
k

Now, we turn to our original problem of measuring the similarity between M; and M7. A plausible way to
quantify such a similarity is to estimate the number of votes that M7 would get if the scene data view is an
uncertain version of M;. That is, the similarity between M; and M] is the number of features in M;’ that are
consistent with uncertain measurements of the features in M;. This number of consistent features, denoted by

VV S (M, M]’), is a random variable whose probability distribution can be defined as follows:

Pr(VVS M M) =z)~ 5. [[FVSMi, P) T (1 - FVS(M;, PR))
VYN N|=z leN 1gN ’

where N is a subset of feature indices in M. The above equation is approximate since it assumes that the
correspondence between similar features in M; and M} is many-to-one, thus making the terms F'VS.(M;, P}),
Vi, statistically independent.

It can be easily shown that V'V S¢(M;, M) is bounded by the number of coincident features, those having exactly
the same location, in both views (lower bound), and the number of features in M7 that are similar to any feature in
M; (upper bound). In order to simplify the analysis, we choose our view/view similarity measure, S¢(M;, M]), to
be the mean of VVS(M;, M}). That is,

Se(Mi, M)

E(VVS(Mi, M3))
= Y FVS(M;,Pj). ®)
l

Notice that, in general, view/view similarity is not symmetric, i.e., S¢(M;, M]) # Se(M7, M;). However, when
there is a one-to-one correspondence between similar features in M; and M7, Se (M, M;’) becomes symmetric.



3.4. Model Similarity: Variable-Location Case

In this section, we develop a method for measuring the similarity between views M; and M; as a function of the
relative location between them. As will be seen later, this similarity function is fundamental for determining the
misclassification probability. The obvious problem in this case is the infinite number of relative locations between M;
and M. One possible approach is discretizing the transformation space and computing the similarity between the
two views, equation (3), at each sample relative location. The problems associated with this approach are difficulty
of “filling in the gaps” between samples, and complexity of determining the optimal sampling frequency. We alleviate
the exhaustive sampling approach by considering that, for our purposes, we are interested in only those locations
that result in a minimum degree of similarity between the two views, i.e., a minimum number of similar features.

Locations which result in a minimum degree of similarity between M; and M; can be obtained as follows.
Features of M; are aligned with those of M; to generate | M; || M; | locations of M;. Each one of these
locations corresponds to an instance of M; which has at least a single feature that is coincident with one in M;. The
estimated locations in this alignment-based approach become uncertain, when we consider the uncertainty associated
with measured features of M;. For example, matching P;;, € M; with P; € M; generates a location P, — Pji, with
associated uncertainty region R(Pi, — Pji). The set of generated instances, along with the associated uncertainty,
covers all possible instances of M that share at least a single similar feature with M;, which is the minimum degree
of similarity that we are interested in. We consider only these uncertain instances when determining the similarity
“between M; and M (after eliminating redundant ones). Thus, our approach reduces the infinite number of possible
instances that need to be considered to only a quadratic number of uncertain instances.

The next step is to compute the similarity between M; and each uncertain instance of M, defined by 7. C 7,
which is generated by a scene/model feature match. Attempting to compute the similarity measure defined in (3) as
a function of T € 7, is very complex, and appears to be solvable only through sampling of 7. Since 7. is expected to
be very small, we resort to a simpler solution by treating the infinite number of instances defined by 7., as a single
instance, M}", with uncertainty in its point features. Each P} € MJ* is a region that accommodates the variation
in the location of feature Pj. It can be easily shown that P} = R(Pj1). The similarity between M; and M,
Se(Mi, Mj°), is measured in a manner similar to the fixed-location case (equation (3)). Specifically,

SMi, Mj?) = D FVS(M;, Pf) “)
1
where FV S(M;, Pjy) is a feature /view similarity measure between P and M;. This measure is defined as follows
(see equation (2)):

A(Re(Pik) n Re(Pﬁe))
ARE) ®

FVS(M;, Py)=1-][(1-
k

Region R.(Pj), the dilation of P by, is referred to the uncertainty region of Pjr;. Notice that FVS.(M;, Pj) >0,
only if the center of PJTle lies at a distance less than 3¢ from any Pj € M;.

3.5. Effects of Scene Data and Model Properties on Classification Performance

In this section, we outline the effects of data uncertainty, occlusion, clutter, and model similarity on misclassification
probability. In order to simplify both the presentation in this section and the probabilistic analysis in the next
one, we assume that the correspondence between similar features in M; and M’* is one-to-one, i.e., each feature
in M; has at most one similar feature in MJT-‘, and vice versa. Further, we place a “threshold” on the degree of
similarity between features in M; and the corresponding ones in M7<. This is done by considering the top most
[ Se(Mi, MT*) + 0.5] similar features to be completely similar (i.e., FFSc(,-) = 1), and the rest to be completely
dissimilar (i.e., FFSc(-,-) = 0). Fig. 2 shows a conceptual view of M; and M after the thresholding process.
Notice that, for a pair of similar features P;; and ijf, the uncertainty region of Pj,, Re(P;x), completely lies inside
that of Pji*, Re(Pjy)-

The probability of misclassifying M; as M;‘ depends on the sizes of similar and dissimilar feature sets. A
schematic diagram of similar and dissimilar feature sets in both views is shown in Fig. 3. In this figure, the
intersection area denotes the similar features in M; (My;) or Mj¢ (M7:), while the other ones denote dissimilar
features in M; (M;;; = M; — M), and M (/\/1;7z = M3 — M;). Note that, according to our assumption of
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Figure 3. A schematic diagram of views M; and Mie.

one-to-one correspondence between similar features, M;; is of the same size as Mj;. In our vote-based scheme, M;
gets misclassified as M7¢, if M receives more votes (i.e., has more consistent features) than M;.

The effects of scene and model factors on the vote count for both views can be outlined as follows:

o Initially, without any kind of distortion, M; and M get | M | and So(M;, M7°) votes, respectively. Notice
that So(M;, M7°) is simply the number of coincident features in M, and MZ2°.

e As features in M; get “blurred” due to data uncertainty, the similarity between M; and M* increases (refer to
equations (4) and (5)), thus increasing the expected number of votes for M7, while, obviously, keeping the same
number of votes for M;. Notice that the expected number of votes for M7 becomes | Mij |= Se (M, M)
when the uncertainty bound reaches e.

e The effect of occlusion depends on the number of occluded features in each of M;/; and M;;. Occlusion of
features in M,,;, which distinguish M; from M<, will reduce the vote difference between the two views. On
the other hand, occlusion of features in M; will reduce the number of votes for both of them, and so, using
our vote-based selection criterion, it does not have an effect on the misclassification probability.

e Clutter features can accidently increase the number of votes for either of the two views. The probability that
each view gets accidental votes is proportional to both the number of unmatched features, and the area of
the uncertainty region associated with each feature. For M;, the unmatched features are the occluded ones,
whereas for M]T-‘, the unmatched ones are M;L in addition to those features in M;-'; that correspond to the
occluded ones in M;;. The uncertainty regions corresponding to M* are four-times larger than those of M;,
and so M¢ is likely to get more accidental votes than M;, even if it has less unmatched features. Notice that
the area of the uncertainty region is re® and 4re? for features of M; and Mj*, respectively. Another important
point is concerning occluded features in M;j. A clutter feature that is consistent with one in M;; will always

be similar to the corresponding feature in ;t , but not vice versa. This is because, as mentioned, for similar

pairs of features P;; and Pjy, the uncertainty region of P;; lies inside that of Py, which has a larger area (refer

to Fig. 2).

The above trends are quantified in the next section in order to determine the misclassification probability.
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Figure 4. Schematic diagrams showing various regions: (a) occluded region in M;, (b) regions in Mi, (c) regions
in Mj* and (d) all regions.

4. MISCLASSIFICATION PROBABILITY

In this section, we first derive the probability of misclassifying M, considering only a single similar instance, M;‘,
and then we determine the misclassification probability in the general case.

4.1. Single-Instance Case

Given scene view S;(€, 0, ), a distorted version of M; (see Section 3.2), we would like to determine Pr(M]T-‘ [Mi,o0,c),
the probability of misclassifying M; as M assuming that there are o and ¢ occluded and clutter features, respec-
tively. Let V (M, 0,c) be the number of consistent features in M and S;(€, 0,¢), i.e.,

VMg = KX EMIY ESleo0st XEVI| M=o
10,6) =1 | {X:X € M,IY €Si(e,0,0)st. XNY #8}| M= Mg

Recall that views S;(e,0,c) and MJ* consist of uncertainty regions, while M; consists of point features. Since our
selection criterion is based on the number of votes, the misclassification probability can be simply written as follows:

PI‘(M;—I“M,‘,,O, ¢ = PI‘(V(M;‘,O, c) > V(Mi,o, c)) +0.5 x PI‘(V(M;‘,O, c) = V(M;,o, c))- (6)

Notice that, in the above equation, ties are broken randomly, and accordingly, the probability of misclassification in
case of a tie is 0.5.

Now, we derive an expression for the right hand side of (6). Using the notation Mgy = Mz N My and Mgy =
Mg — My, we define the following sets:

e M,,: set of occluded features in M; (Fig. 4(a)),
o M;/j, and M;j/o: subsets of unoccluded features in M;/; and Mj, respectively (Fig. 4.(b)),
o M;,/; and Mijo: subsets of occluded features in M;/; and Mij, respectively (Fig. 4(b)), and



o MJ;, and M;’; /o* subsets of features in M7; that are similar to those in Mjjo, and M,;j/,, respectively (Fig.

4(c)).

The above regions are shown together in Fig. 4(d). From the discussion in Section 3.5, it can be shown that the
misclassification probability depends on the following random variables:

1. The number of unoccluded features in M;/; (U =| Mi/jo | ), and
9. The number of clutter features that are consistent with those in Mio/; (V), Mijo (Wh), M35, (W2), and M,
but not Mija (W3)

Notice that the last case (corresponding to W3) is possible since the uncertainty region of each feature in Mjj, is
assumed to lie inside its similar one in M7, (vefer to Fig. 2). Ignoring the possibility that a feature in M;-;a gets
more than one clutter feature, which has a very small probability, we can write the number of votes for each view as
follows:

V(Mi,0,¢) = U+ V+| Mij/o | +W1 (7
V(M;‘,O, c) ~ | Mij/o l +Wi + Wa + Ws. (8)

Accordingly, the misclassification probability is
Pr(M}:|Mi,o, )~ Pr(W>U+V)+05xPr(W =U+ V)
where W = W, + W3. The above equation can be rewritten as follows:
Pr(M;<| M, o, c) = ZPr(U = uo0) Z Z 1- é—(ﬂ——;;u—))Pr(V =v,W = wl|u,0,¢) 9)
u v w2utv
where §(z) is an impulse function that returns 1if z = 0, and 0 otherwise. Note that

u € [max(0,| Mi/; | —0),min(| Mi; | —o+ | Mij || Miy; D)

We begin by determining the first component of the right hand side in (9), Pr(U = ulo). Since we are assuming
that all feature subsets of M; of size o are equally likely to be occluded, the probability that u features in M;; will
remain unoccluded follows a hypergeometric distribution. In particular,

Pr(U = ulo) = Hy(u; | Mi | —o,| My || Mij 1) (10)
where

Hx(z;n,a,b) = Pr(X= z|n,a,b)
C(a,z)C(b,n — x)
C(a+b,n)

and Clo1) = =i
The second component of the right hand side in 9), Pr(V = v, W = wlu,0,0), is determined as follows. We are
interested in two non-connected sub-regions of the clutter area I (which is assumed to cover both M; and M3):

1. Iy: union of R(P) for all the (| M/; | —u) occluded features P € M;/;, and
9. Iyy: union of R(P™) for all P™ € M35, U Mj;, minus union of Re(P) for all occluded features P € Mijo.



Let K.(R) be the number of clutter features that fall in region R out of ¢ features. Under the assumption of uniform
clutter and small data uncertainty e (refer to Section 3.2), we ignore the probability that more than one clutter feature
is consistent with the same model feature, which is very small. Accordingly, we make the following approximation:

Pr(V =v,W = wlu,0,c) = Pr(K.(Iv) = v, Kc(Iw) = w). (11)
It is easy to show that Pr(K.(Iv) = v, Kc (Iw) = w) follows a multinomial distribution. That is,
Pr(K.(Iy) = v, Ke(Iw) = w) = My,w (v, w; ¢,pv,Pw) . (12)

where py = —LUA(I}') » Pw = J—HA% , and

n! —z—
Mx,y (%, Y37 Pz, Py) = 7 R pEpY(1—pz —py)" Y

The areas of regions Iy and Iy are

Aly) =~ (| My | —u)me?, and
A(Iw) =~ (| M;Z |+ M, ) *4me?— | Mijo | *TE>.

The above estimates are approximate because they assume that the uncertainty regions are non-overlapping.

Substituting from (10), (11), and (12) into (9), we get the misclassification probability:
Pr(Mj:|Mi,0,¢) =

Sw—v—
S s M o, Mg LMD S Y (=220t 0w v, ow) (13

v w2vtu

4.2. General Case

In this section, we consider the general classification problem. That is, given a model database D, we would like to
determine the probability of misclassifying a distorted version of view M; € D as any other view, M; € D, such that
TARGET(M;) # TARGET(M;). We define D; to be the set of view instances that are similar to M;. As discussed
in Section 3.4, the size of D; is of order o] D | -1) | M; | M), where M is the average size of target views in
D. The probability of misclassifying M; as any instance M;"‘ € D;, expressed as Pr(D;| M, 0,¢), can be written as
follows:

Pr(D;|Mi,0,¢) = Y Pr(M*| M, 0,¢)—
J

SO Y Pr(MG A MM, 0,0) + - = (~1)PIPr (A2 MF | Mi, 0,¢) (14)
i k#j

where Pr(A; M;" ¢| M, 0,c) is the probability that every instance M;" ¢ gets a higher ranking than M, when evaluated
by the vote-based criterion. Initially, at low occlusion and clutter levels, all the terms in (14) are almost equal to
zero, and the probability of correctly identifying the target view is almost one. Then, as these levels increase, the
probability of misclassification becomes non-negligible and the value of the first term in (14) increases. However,
at this point and for a certain occlusion/clutter range, the values of the remaining terms stay almost zero. This
can be explained as follows. In the majority of cases, we can expect little or no overlapping between each pair of
instances, M;"‘ and Mp*<. Accordingly, there is a “competition” between these instances to: 1) get more votes
which can be provided by a finite number of clutter features, and 2) avoid losing votes, which can take place if
some of the finite number of occluded features happen to be consistent with either of the two instances. These
factors result in a negative correlation between the events, Pr(./’\/l;"e |M;,0,¢) and Pr(Mp*| M, o0, c). For a certain
occlusion/clutter range, this negative correlation is strong enough to result in 3, D ket Pr(M;" * AMF|M;,0,c) as
well as the higher-order terms to be almost zero. Beyond this range, the value of this term becomes non-negligible,
while the higher-order ones remain of negligible values, and so on. :



For our purposes, we use only the first-order approximation of (14), i.e.,

Pr(D;| Mi,0,¢) & Y Pr(M[*| M, 0,¢). (15)
J

Interestingly, as will be shown in the next section, we have found that the first-order approximation can yield accurate
estimates up to relatively high occlusion and clutter levels. Beyond these levels, equation (15) can be interpreted as
an upper bound on the misclassification probability.

5. EXPERIMENTAL RESULTS

In this section, we validate the proposed performance modeling method by comparing predicted PCI plots with ones
that are determined experimentally. Our recognition system is based on the concept of geometric hashing. A hash
table is constructed which maps every pair of scattering centers in a model view to a tuple, which consists of target
type, azimuth, and location of the reference scattering center. This tuple is stored in the entry that corresponds
to the relative locations between the scattering centers, which are translation-invariant. In the recognition phase,
hash-table keys are formed by determining the relative distances between scattering center pairs in the scene view.
Data uncertainty is accommodated by considering the four neighbors of the scattering centers in the key formation
process. The hash table is accessed using these keys to retrieve a number of tuples. These tuples are used to generate
votes about the target type, azimuth and 2-D location in the scene data, which are accumulated in a 4-D vote
table. The target corresponding to the entry with the highest number of votes is selected. Assuming the 4-neighbor
uncertainty region, this algorithm examines nearly all the target, azimuth, and discrete location space, and so its
performance is almost optimal. ‘

The PCI plot is predicted as follows:

1. For each pair of model views M; and M;, TARGET(M;) # TARGET(M;), we determine the similarity
between them as explained in Sections 3.3 and 3.4. The statistics of the similarity between considered pairs
of views is stored in a 3-D similarity histogram. Each entry in this histogram corresponds to the number of
occurrences of the triple (| M; |,| Mj* |, Se(Mi, M5*)). In general, the size of this histogram is of the order
O(V2W), where V is the range of model view sizes (number of features), and W is the maximum size of a
model view. In our experiments, we choose a fixed number of the strongest scattering centers per view, N.
Accordingly, the similarity histogram in our case, which is 1-D, is of size N.

2. For given occlusion and clutter rates, the average probability of misclassification is determined as follows. For
each non-zero entry in the similarity histogram, we compute the view-instance misclassification probability,
defined in equation (13), assuming the parameters corresponding to that entry. The resulting probabilities
are then weighted by the values of the corresponding entries, added, and then divided by the total number of
views in the database. Notice that this is equivalent to computing the general-case misclassification probability,
defined in equation (15), for all model views and then taking the average.

3. The process in the previous step is repeated for various occlusion and clutter rates to construct the PCI plot.

5.1. Experiments Using XPATCH Data

We use the XPATCH data to test the performance of recognition under occlusion and clutter; without taking data
uncertainty into consideration. These data are generated using XPATCH3 radar signature prediction code (six inch
resolution, 15° depression angle, 90° squint angle).

Model Data: A model database is selected which consists of four targets: T72, T80, and M1al tanks, and a SCUD
missile launcher. Fig. 5 shows these targets, along with sample views and extracted scattering centers. Each target
is represented by 360 views in steps of 1° azimuth, and so the total size of the model database is 1440 views.

Test Data: Two view sizes are selected for our experiments: N = 20 and 40. For each view size, we generate test
data by introducing varying amounts of clutter and occlusion to the model views. A view is occluded by randomly
selecting a feature and eliminating it, along with a number of its nearest neighbors depending upon the occlusion
rate. Clutter is simulated by adding a number of random features, depending upon the clutter rate, within the
bounding box of the target. This process is repeated four times for each model view, and so the size of a test data



(a) T72 tank (30°) (b) M1al tank (90°) (c) T80 tank (150°) (d) SCUD Launcher (45°)

Figure 5. Examples of model targets, corresponding XPATCH SAR images and extracted scattering centers,
superimposed on 8-bit SAR images.

set for specific occlusion and clutter rates is 5760 views. Test sets are generated for various occlusion and clutter
rates which are assumed to be the same in our experiments.

Results: The PCI plot is experimentally estimated by using the model data to build the hash table, and then
supplying the test data to the recognition system. The PCI plot is predicted using the method outlined above.
Both plots are shown in Figs. 6(a) and 6(b) for N = 20 and 40, respectively. From these figures, we observe
that the predicted PCI plots closely match the ones obtained experimentally. In particular, they accurately predict
the occlusion/clutter range within which recognition is almost perfect (up to 65% and 75% for N = 20 and 40,
respectively), and the sharp degradation in performance beyond this range. Further, we observe that the predictions
become conservative beyond the knee point in the plots. This is expected since, as mentioned in Section 4.2, the
expression for the misclassification probability, equation (15), is interpreted as a lower bound when the higher-order
terms in equation (14) become of non-negligible values, which is the case when the recognition performance degrades.

5.2. Experiments Using MSTAR Data

We use publicly available MSTAR data to test the performance of recognition under data uncertainty, occlusion and
clutter.

Model Data: The selected model database consists of three targets: T72, BMP2 and BTR. The model views are
taken at a depression angle of 17°. Fig. 7 shows sample SAR views of the three targets, along with the corresponding
regions of interest (ROI’s) with extracted scattering centers superimposed on them. The database consists of 697
views: 231 for the T72, and 233 for each of the BMP2 and the BTR.

Test Data: The strongest 30 scattering centers are used to represent model and test views (i.e., N = 30). Two
different types of test data are obtained:
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Figure 6. Actual and predicted PCI plots for the XPATCH experiments, considering two different view sizes (N):
(a) N =20, (b) N = 40. The horizontal axis corresponds to the occlusion and clutter rates which are assumed to be

equal.

(a) T72 (132°) (b) BMP2 (132°) (c) BTR (132°)

Figure 7. Examples of MSTAR target images, corresponding ROI’s and extracted scattering centers, superimposed
on the ROIs.
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Figure 8. Actual and predicted PCI plots for the MSTAR experiments, considering two different bounds on data
uncertainty (€): (2) € = 1.0, (b) € = 0.6. The horizontal axis corresponds to the occlusion and clutter rates which
are assumed to be equal.

o Test Set A: The model views are distorted by adding occlusion and clutter as explained above, and injecting
data uncertainty by randomly perturbing the scattering center locations, such that the Euclidean distance
between the new location and the original one does not exceed €. Two values of € are considered: € = 0.6 and
1.0. The distortion process is repeated four times for each model view, and so the size of a test data set for
specific distortion parameters is 2788 views.

o Test Set B: MSTAR views of the same model targets at a slightly different depression angle (15°) are used.
This test data set consists of 581 views: 193 for the T72, and 194 for each of the BMP2 and the BTR. Below, we
describe the method used to estimate the distortion parameters, (0,c,€), associated with this set. Additional
test sets are obtained by adding a variety of occlusion/clutter rates to the original data set, as described above.
As in the previous cases, each view is distorted four times, and so the data size for a given occlusion/clutter
rate is 2324 views.

Estimation of Distortion Parameters for Original Test Set B: For each original test view at some azimuth
angle z, we search for the best match, in the translation space, with the three model views of the same target at
azimuth angles z, z—1 and z+1. In order to accommodate data uncertainty in the matching process, we consider two
scattering centers to be consistent if they are 4-adjacent under the translation transformation. The average number
of unmatched features in test and model views correspond to clutter and occlusion rates, respectively. Notice that,
in our case, these rates are the same since we are using fixed view sizes. The occlusion/clutter rate is estimated to
be approximately 49%. Under the assumption of uniform distribution for data uncertainty, it can be shown that the
expected value of the Euclidean distance between a measured location of a scattering center and the “ideal” one is
0.707¢. Equating this expression with the average Euclidean distance between consistent features in best test/model
matches, we obtain an estimate of €, which is found to be approximately 1 pixel.

Results: Figures 8(a) and 8(b) show experimentally-determined and predicted PCI plots for e = 1.0 and 0.6,
respectively. As in the XPATCH experiments, we observe that our method accurately predicts the occlusion /clutter
range within which recognition is almost perfect (up to 30% and 50% for € = 1.0 and 0.6, respectively). We also
observe that, beyond the knee point, the predictions are more conservative than in the XPATCH case. This can be
explained as follows. The increase in the data uncertainty level, represented by €, enlarges the uncertainty regions
associated with instance features. This will increase the likelihood that instances receive more clutter features, and,
subsequently, get more votes than the corresponding target view. Accordingly, the values of the higher-order terms in
equation (14) will increase, thus reducing the tightness of the first-order approximation that we are using (equation
(15)). Finally, note that our method quantifies the effect of uncertainty on recognition. It highlights the need for
accurate feature-extraction methods that can estimate scattering-center locations at sub-pixel accuracy.



6. CONCLUSIONS

A statistical framework has been presented for estimating the probability of target misclassification in the presence
of data uncertainty, occlusion and clutter. The method is based on capturing the structural similarity between each
pair of model views that do not belong to the same target, assuming a fixed data uncertainty bound. Then, using
the computed similarity information, the probability of misclassification is derived assuming statistical models for
occlusion and clutter. Validity of the method has been demonstrated by comparing predicted PCI plots with those
that are obtained experimentally using both XPATCH and MSTAR data. We are currently extending this method
to estimate the probability of misclassifying clutter as target, and vice versa.
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