Table 2: Results on various SAR databases

Model/Test || Total no. | Total no. | % of total vari- No. of Avg. no. of | No. of cases
Data of model of test ance explained by | random test retrievals with correct
Differences objects objects first 2 factors queries after indexing ID
Depr. angle
differences
(Database 1) 1621 1351 85.31 200 84 (5.18%) | 185 (92.5%)
Configuration
differences
(Database 2) 694 1621 70.84 200 64 (9.22%) 170 (85%)
Articulation
differences
(Database 3) 606 239 78.29 200 96 (15.84%) 139 (69.5%)

target database, whereas, the mode, wdia and hdia
fall distant to any other feature and hence form in-
dependent descriptors of the database. The other
features look smeared in the factor space and so
we do not use them in clustering. Thus, we form
four independent feature-groups: the first consists
of (mean, std, maz and median), and the rest con-
sist of just one feature each (mode, wdia and hdia,
respectively). Figure 3 (right) shows the projections
of both objects and the feature-groups in the fac-
tor space spanned by the first two dominant fac-
tors for the same databases. The centroids of the
four feature-groups are used as the seeds for nearest-
neighbor clustering of the objects. The results of
using our approach are summarized in Table 2.

5 Conclusions y

‘We have presented a database-retrieval oriented ap-
proach to model-based object recognition, for large
model databases. We have presented detailed results
on several real SAR target databases to demonstrate
our approach. These are difficult databases since
feature invariance may be small (20% to 50% [1]).
The technique is general and has other interactive
object recognition applications involving large model
databases. It also helps interactive discovery and ac-
quisition of new models to update database.

Currently, mutual information based ranking takes
more than 99% of the time during recognition (re-
trieval) phase. The performance of our approach
could be further improved by: (a) efficient compu-
tation of mutual information between a query and a
candidate model object using a coarse-to-fine strat-
egy, (b) overlapped boundaries in nearest-neighbor
clustering method, and (c) efficient methods to
adapt factors to dynamically changing databases.
We are currently investigating along these direc-
tions.
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Abstract

Performance prediction is a crucial step for trans-
forming the field of object recognition from an art
to a science. In this paper, we address this prob-
lem in the context of a vote-based approach for ob-
ject recognition using 2-D point features. A method
is presented for predicting tight lower and upper
bounds on fundamental performance of the selected
recognition approach. Performance bounds are pre-
dicted by considering data-distortion factors, which
are uncertainty, occlusion and clutter, in addition
to model structural similarity. Given a statistical
model of data uncertainty, the structural similar-

ity between every pair of model objects is com-

puted as a function of the relative transformation
between them. Model-similarity information is then
used along with statistical data-distortion models to
predict bounds on the probability of correct recog-
nition. Validity of the method is experimentally
demonstrated using MSTAR public SAR data.

1 Introduction

The problem of object recognition is concerned with
identifying and localizing model objects from scene
data. It involves searching for a consistent corre-
spondence between scene features, and those of a
model object. Performance of such a process de-
pends on a large number of factors, which are associ-
ated with either scene data (e.g., sensor noise, miss-
ing and spurious features), or model objects (e.g.,
size of model database, similarity of model objects,
articulation of model parts). Predicting the perfor-

*This work was supported in part by DARPA/AFOSR
grant F49620-97-1-0184; the contents and information do not
reflect positions or policies of the U.S. Government.
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mance of object recognition as a function of these
factors is a challenging task.

In this paper, we address the problem of perfor-
mance prediction in the context of an approach for
object recognition using 2-D point features. Such
an approach uses a vote-based matching criterion,
which ranks object/pose hypotheses based on the
number of model features (votes) that are consis-
tent with scene features. We predict recognition
performance of this approach, by considering the
following factors: 1) Scene-Data Factors: uncer-
tainty (due to sensor noise and imperfections of the
feature-extraction process), occlusion (missing fea-
tures), and clutter (extraneous features), 2) Model-
Object Factors: similarity (degree of structural over-
lap between pairs of model objects), and number of
model objects (this factor is implicitly considered in
our handling of object similarity).

Problem Definition: Our performance-prediction
problem can be defined as follows. We are given:
a) a set of model objects, M = {M;}, where each
object M; is represented by a set of 2-D point fea-
tures, {F;}, that are discretized at some resolution,
b) statistical models for data distortion (uncertainty,
occlusion, and clutter), and c) a class of applicable
transformations, 7 (e.g., translation, rigid, affine).
Our objective is to predict tight lower and up-
per bounds on the probability-of-correct-recognition
(PCR) plot, as a function of occlusion and clutter
rates (assuming a fixed uncertainty model). The
performance predicted by our method is fundamen-
tal, since it is obtained by analyzing the amount of
information provided by both scene data and model
objects, independent of the vote-based recognition
algorithm used. Thus, it sets an upper bound on
performance that is achievable by any recognition
algorithm that uses the same matching criterion.




Relevant Research and Our Contributions:
Performance analysis of object recognition has not
received much attention in the literature. Some re-
search efforts analyze the problem of discriminat-
ing objects from random clutter, or clutter-to-object
misclassification (e.g., [2, 3, 6]). The problem of
object-to-object misclassification has been analyzed
by considering either data uncertainty and model
similarity (with partial handling of occlusion) [4],
or data uncertainty, model similarity and random
clutter [5]. The main contribution of this paper is
the development of a method for predicting tight
bounds on fundamental performance of object-to-
object misclassification, using a vote-based criterion,
by simultaneously considering data uncertainty, oc-
clusion, clutter and model similarity. Previous ap-
proaches consider only a subset of these factors.
We present experimental results to validate the pro-
posed method using MSTAR public SAR data.

2 Overview of Our Method

In this section, we first present a qualitative descrip-
tion of the effects of data distortion and model sim-

ilarity on PCR, and then we outline the proposed

method.

2.1 Effects of Data Distortion and
Model Similarity on Performance

Figure 1 shows a schematic diagram of M; and M7,
which is an instance of object M; at pose 7 € T
relative to M;. In this figure, the intersection re-
gion denotes “similar” features in M; and M7, while
the other two regions denote “dissimilar” features in
both objects. The size of the intersection region, de-
noted by S(M;, M7), represents the degree of simi-
larity between M; and M. Let us assume that we
are given a scene of object M;. Initially, without any
kind of distortion, objects M; and M] get | M; |,
and S(M;, M) votes, respectively. The vote dif-
ference AV (M;, M}) =| M; | —S(Mi, M]) repre-
sents the “cushion” which protects M; from being
misclagsified as M7 in the presence of data distor-
tion. Accordingly, the likelihood of misclassifying
M; as M is directly proportional to the degree of
similarity between them. This supports the intuitive
observation that distinct objects are less likely to be
misclassified than those which are similar.

The qualitative effects of data-distortion factors on
AV (M;, M7) can be outlined as follows. 1) Un-
certainty: intuitively, uncertainty “blurs” the struc-
ture (features) of object M;, thus making it look
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Figure 1: A schematic diagram of M; and M7 show-
ing similar and dissimilar features. The intersection
region denotes the similar features in M; (M;;) or
M7 (M), while the other two regions denote dis-
similar features in M; (M,/;), and M} (M7 ;).

more similar to Mj. This is manifested in in-
creasing S(M;, M]), and, accordingly, decreasing
AV (M;, M]). 2) Occlusion: occlusion of features
which distinguish M; from M7 (region M;; in Fig-
ure 1) decreases AV (M;, M7). On the other hand,
occlusion of features in M; which are similar to
those in M7 (region M;; in Figure 1) tends to keep
AV (M;, M]) fixed, since both objects would lose
the same number of votes. 8) Clutter: clutter de-
creases AV (M;, M7) by increasing the number of
votes for M7, while keeping that for M; fixed. We

note that the ambiguous case of a clutter feature

that happens to coincide with an occluded feature
in M; is interpreted as no-occlusion/no-clutter in
this paper. The effect of clutter is magnified in the
presence of high data uncertainty, since this would
increase the chances of a clutter feature to be con-
sidered as “consistent” with an unmatched feature
in M7.

The above qualitative analysis is quantified in our
proposed method, outlined in the next section, in or-
der to determine tight bounds on PCR performance.

2.2 Outline of the Method

A block diagram of the proposed method is shown in
Figure 2. Its major components are described below.

Data-Distortion Models: We model data distor-
tion as follows: 1) Uncertainty: since we are deal-
ing with discretized features, the actual location of
a scene feature is described by a probability mass
function (PMF). In this paper, we assume that this
distribution is uniform for the sake of simplicity. Ex-
tension of the proposed method to handle arbitrary
uncertainty PMF’s is possible. Further, we assume
that the uncertainty PMF’s associated with scene
features are independent. 2) Occlusion: we assume
that each subset of features is equally likely to be oc-
cluded as any other subset that is of the same size.

{
f
{
|
;

: Transformation Class
Data-Distortion Models  Model Objects -
Occlusion  Clutter Uncertainty

-'--—"-“—"-r-- -

Computgaﬁon
Object gimilarlty

Computation of Performance Bounds

Figure 2: Our performance-prediction method.

3) Clutter: clutter features are assumed to be uni-
formly distributed within some area surrounding the
object.

Computation of Object Similarity: This stage
computes similarity between all pairs of model ob-
jects. The structural similarity between M; and
M?7 can be defined as the number of votes that
M7 would get, given an “uncertain” version of M;.
Thus, in addition to the degree of structural overlap,
our notion of object similarity is dependent upon the
amount of uncertainty in the data as well. Similar-
ity between every pair of model objects is computed
for all possible relative poses, as determined by the
applicable transformation class 7, and then accu-
mulated in similarity histograms.

Computation of Performance Bounds: This
stage utilizes object similarity information and data-
distortion models, within a statistical framework,
in order to calculate PCR bounds of an object, for
given occlusion and clutter rates. Averaging the re-
sults for all model objects, and repeating the process
for a variety of occlusion and clutter rates, we can
predict bounds on the PCR plot.

3 Computing Object Similarity

In this section, we formally define a similarity mea-
sure between model objects, and outline how simi-
larity histograms are constructed.

3.1 Definition of Object Similarity

We introduce a sequence of definitions that lead to
formally defining a similarity measure between a pair
of objects.
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Figure 3:  An illustration of feature/feature similar-
ity.

Feature Consistency: A feature, F;, is said to be
consistent with another feature, Fj, if F; can be in-
terpreted as an uncertain measurement of Fj. Since
we are assuming uniform data uncertainty, the un-
certainty PMF associated with feature F; can be
represented by an wuncertainty region, R(F;). In
such a case, F; is considered consistent with Fj, if
F; € R(Fy).

Feature/Feature Similarity: The similarity be-
tween features F; and Fj, Sys(F;, Fj), is defined as
the probability that an uncertain measurement of
F; is consistent with Fj. It is easy to show that
Sy7(Fi, F;) is proportional to the area of the region
corresponding to the intersection of R(F;) and R(F})
(see Figure 3). In particular,

A(R(F:) N R(F}))
A(R(Fy))

where A(R) is the area of region R.

Sy (Fi, Fy) =

Feature/Object Similarity: The similarity be-
tween a model object, M;, and a feature, Fj
Sof(Mi, F}), is defined as the probability that an
uncertain measurement of any feature in M; is con-
sistent with F;. Formally,

Sor(Mi, Fj) = 1= [[(1 - Sy1(Fix, Fy)).-
k

Object/Object Similarity: The similarity be-
tween objects M; and M7, Soo(M;, M]) or simply
S(M;, M7), can be defined as the number of fea-
tures in M7 that have a consistent uncertain mea-
surement of a feature in M;. It can be easily seen
that S(M;, M7) is a random variable (see Figure 4).
We approximate the distribution of such a variable
by a binomial distribution that is defined as follows:

Ps(S;Mi,M;) = PI[S(MHM;) = 3]
= Bs(s;N(Mi,M;))P(M‘)M;»

where

NMi, M7) = | {Fjy : Sos(Mi, Fji) > 0} |,
n 2k Ses(Mi, Fy)

PMoM) = ZNGa M)

Bx(z;n,p) = C(n,z)p"(1-p)"~ %,
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Figure 4: An illustration of object/object similarity.
In the example shown, S(M;, M7) € [0,2].

and C(a,b) = za—_‘,‘,',w- Note that, in the special no-
uncertainty case, S(M;, M) is a constant number,
which is equal to N(M;, MT)P(M;, M7).

3.2 Constructing Similarity Histograms

Figure 5 shows the algorithm used to compute simi-
larity information. In that algorithm, each model

-object is compared with all model objects in the

database, including itself, to compute the similarity
information. The output of this process is -accumu-

lated in a pair of similarity histograms. One of them,

all-similarity histogram, accumulates similarity in-
formation for all object pairs. The other one, peak-
similarity histogram, accumulates similarity infor-
mation for only object/instance pairs (M;, M7) cor-
responding to peaks of the expected-s1m11a.nty func-
tion, N(M;, M])P(M;, M7), in the space of appli-
cable tranSformations T. As will be shown in Sec-

‘tion 5.2, we use all- and peak-similarity histograms

to predict lower and upper bounds on the PCR plot,
respectively.

A similarity histogram is of three dimensions, corre-
sponding to object size, instance size, and degree of
similarity. The value of an entry, (m;,m;, s;;), in all-
(peak-) similarity histogram represents the expected
total number of all (peak) instances of size m; that
have ezactly s;; consistent features with objects of
size m;. Note that, unless there are identical or very
similar model objects, entry (m,m,m) in either all-
or peak-similarity histogram will contain the num-
ber of model objects with size m. This is simply
because computing the similarity of an object, M;,
with a copy of itself (i.e., computing S(M;, M;))
will result in a deterministic similarity distribution
Bs(s;| M; |,1), which will increment the value of
entry (| M; |,| M; |,| M; |) by one. Diagonal en-
tries are set to 0, for the purpose of performance
prediction.
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Initialize all-/peak-Similarity hlstograms (AS/PS)
for each model object M; do .
for each model object M; do
for each 7 € T do
Calculate N(M;, M]) and P(M;, M]).
for each possible similarity value s do
Set ps = Bs(s; N(M;, M]), P(M;, M])).
Increment AS(| M; |,| M] |,s) by ps.
if M7 is a peak instance
Increment PS(| M; |,| M] |,s) by ps.
end
end
-end
-end

Figure 5: Similarity-computation algorithm.
4 Vote Analysis

In this section, we determine the number of votes

for M;, and M7, for given levels of data-distortion

factors. The results obtained in this section form
the basis for determining PCR bounds, which are
derived in the next section.

Let D; be a distorted image of M; that is obtained
by

1. Occluding a subset of features, O Cc M;,

2. Perturbing each unoccluded feature in M;, uni-
formly, within uncertainty region R(-), such
that no perturbed feature is consistent with any
feature in O, and

3. Adding a set of clutter features, C, none of them
are consistent with any feature in O.

The number of votes for M;, given scene D;, is
ViMuDy) = M| -]0]. (1)

On the other hand, the number of votes for M7,
V(M7;D;), is a random variable, which is descrlbed
as follows

Pr[V(M};D;) = v] =
Y Ps(s; Mi, M})PH{V (M5; D, 5) = v] (2)

where V(M7;D;, s) is the number of votes for Mj
given scene D,, and assuming that S(M;, M) =s.
Votes for M7 are obtained from two sources: obJect
M (due to similarity), and clutter features C (due to
random coincidence). Accordingly, we can express

i

Figure 6: Components of the votes for M7 due to
similarity (X) and clutter (Y), given a distorted
scene, D;, of object M;.

V(M7;D;, s) and its associated PMF as
V(M];Ds,8) = X +Y, and
Pr[V(M]; Di,8) =v] = Y Pr[X = z]Pr[Y = v —z](3)

where X and Y are random variables that corre-
spond to similarity and clutter votes for M7, re-
spectively (see Figure 6).

The PMF’s of X and Y are determined based on
the statistical data-distortion models mentioned in
Section 2.2. Since we are assuming a uniform occlu-
sion model, it can be shown that X is described by
a hypergeometric distribution,

Pr[X = z] = Hx(z;s,| Mi | - | O|,| O]) (4)
where Hy(u;n,a,b) = C“é,“ac_;_,f,’:"“ Next, let
us determine the PMF of Y. It can be shown
that, given m model features and n clutter fea-
tures, the probability that u model features are
consistent with clutter features is bounded by
[Gu(u;m,n,0),Gy(u;m,n,1)] where
GU("; m,n, b) = C(m1 u)P(n, u)pu (1 - (m - bu)p)n—u )
P(a,b) = (aj;’)! ,P= A‘S’(‘}‘))), and I is the clutter re-
gion. Mapping this PMF to our case, we can bound
the PMF of Y:

PrlY = y;b] = Gy (y;| Mj | —s,| C|,b) (5)

where b = 0 or 1 denotes lower or upper bounds,
respectively (henceforth, this notation will be used
to denote lower and upper bounds). From (3), (4)
and (5), we can bound the PMF of V(M7]; D, s):

PV('U;M;’Di’ 8,b) = Pr[V(M;; Di, s) = v; b]
= > (Hx(z;s,| Mi| - | O],] O)

Gy (v —=z;| M] | —s,| C|,b)).
From (2), we can bound the PMF of V(M7;D;):

Py(v; M7, D;,b) = Pr[V(M];D;) =v;b]

= Z(PS(S;Miv M;)
8
PV(U; M;’ Di’ 8, b))'
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5 Computing Performance Bounds

In this section, we derive bounds on the PCR of
object M;, given distorted scene D;, and determine
average PCR bounds.

5.1 Performance Bounds for an Object

Let N; be the set of object instances associated with
M;. That is,

M={M; :YMj; e M,and Vr e T} - M;.
The PCR of M; can be expressed as

Pr[M;; D;] =
PrVM] € Ni: VIMEDi) < (| Mi | - | O |)].

Attempting to estimate Pr[M;;D;] appears to be
an extremely difficult task, due to the correlation
of the random variables V(M7;D;), especially be-
tween those corresponding to adjacent instances.
This is the reason that we are resorting to de-
termining lower and upper bounds on Pr[M;;D;],
[Pr[M;; Di‘, 0], Pr[M;; D;, 1]].

We start by determining lower bound Pr[M;; D;, 0].
We can bound the probability that M7 gets same
or larger number of votes than M; as

QWM},Dib) = Y Py(u; M}, Dy,b).
v2|M;:|-|O]

It can be shown that the sum of Q(M7,D;,1), for
all M; € N;, forms an upper bound on the prob-
ability of misclassifying D; as any instance in M.

Accordingly, we obtain the following lower bound
on Pr{M;; D;]:

PrM;;D;,0=1- > Q(M;],D;,1). (6)
M;.'GN.'

Next, we estimate upper bound Pr[M;; D;,1]. Our
approach is to consider a subset of the instances
of N;, P; C N;, which correspond to peaks of the
expected-similarity function (refer to Section 3.2),
and assume that the votes for peak instances are in-
dependent. The rationale behind this approach can
be stated as follows: 1) An object is more likely to
be misclassified as a peak instance, MJT-, than as a

neighboring off-peak instance, MJ’.""’, since M7 is
expected to have more similarity votes than MJ+e.
2) Peaks are generally not too close to each other
and so the vote-independence assumption among

peak instances, which belong to the same object, is
reasonable. 8) The vote-independence assumption




among peak instances that belong to different ob-
jects is arguably reasonable in most practical appli-
cations. Under the vote-independence assumption,
the consequence of considering only a subset of all
possible instances is the estimation of the following
upper bound on Pr[M;; D;]:

PI‘[M.'; Di, 1] = H 1- Q(M;,Di,())). (7)

MJTE'P.'
5.2 Average Performance Bounds

In order to compute average PCR bounds, it is pos-
sible to evaluate equations (6) and (7), for every ob-
ject, and then taking the average. However, this
approach involves unnecessary waste of space, since
it would require storing the similarity information
associated with each object separately (a pair of 2-
D similarity histograms per object). It also involves
unnecessary waste of computational time, since PCR
bounds would have to be computed for each object
separately. We can overcome these problems as fol-
lows. From Section 4, it can be observed that the
probability of misclassifying one object, M;, as an
instance, M7, depends on the sizes of these objects
as well as the similarity between them. Let

W( M;|,| M] |,8,b) =Y Py(v; M],D;,s,b).
v2|M:|-|O)|

It can be shown that the average PCii bounds,
[PCR(M;0), PCR(M;1)], can be expressed as

PCR(M;0) =
1 ,
1 ‘_. m Zz Zw(mi:mj: 8,1)AS(mi,m;, s)

m; m; s

PCR(M;1) = V
Z ]Iv.(/:in]) (H H(l - W(mi, mj, s, 0))75('"-'"":'-8))

(1 - 'IV(IH,')' mz za: APS('”H,‘IHJ', S)W(mi,mj: 3)0))

where AS and PS are all- and peak-similarity his-
tograms (see the algorithm in Fig. . 5), N(m;)
is the number of objects of size m; in model
database M, PS(mi,mj,s) = Pst::w-,s , and
APS(m;, mj,s) = PS(m;, mj, s) — PS(m;,mj,s).

6 Experimental Results

In this section, we validate our performance-
prediction method in the context of a target recog-
nition task using Synthetic Aperture Radar (SAR)
images. -
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(a) T72 (b) BMP2 (c) BTR

Figure 7: Examples of SAR images from MSTAR
public data.

The selected model database consists of three mili-
tary targets: T72, BMP2 and BTR. Each model tar-
get is represented by a number of SAR views, which
sample its signature at a variety of azimuth angles,
at a specific depression angle. Targets T72, BMP2
and BTR are represented by 231, 233, and 233 views,
respectively, at depression angle 17°. Examples of
these views, which are obtained from MSTAR pub-
lic data, are shown in Figure 7. For our purposes,
we treat each model view as an independent object.

‘Scattering centers, peaks in the image, are the point

features used for recognition. They are extracted
by comparing the value of each pixel with its eight
neighbors. We have chosen the strongest 30 scatter-
ing centers to represent both model and scene data.
Since we are considering a fixed number of scattering
centers, the occlusion and clutter rates in an image
are always the same. The space of applicable trans-
formations is 2-D translation in the image plane [1].

Table 1: Description of test data sets A and B.

Set A Set B
Uncertainty || none 4-neighbor region
Test Views 4+/model view | 1+/model view
Occlusion/ 70%, 73.3%, ..., | 56.7%, 60% ...,
Clutter Rate || 86.7%, 90% 73.3%, 76.7%

The test data are obtained by introducing distor-
tion to the model views, according to the distortion
models described in Section 2.2, and the restrictions
outlined at the beginning of Section 4 (when describ-
ing distorted scene D;). The selected clutter region
is a rectangular box that is obtained by dilating the
bounding box of the given target view, such that
the area of the clutter region is nine times that of
the target bounding box. Two test data sets, A and
B, are generated, assuming no uncertainty, and four-
neighbor uncertainty region, respectively. These sets
are described in Table 1.

Figures 8 and 9 show experimentally-determined
PCR plots, along with predicted lower and upper
bounds, for test sets A and B, respectively. The ac-
tual PCR plots are determined using an uncertainty-
accommodating recognition system, which is based

100

80 |
60
a0}
20T Actual —
Predicted -
0 .
0 20 40 60 100
Occlusion/Clutter Rate

Figure 8: Actual PCR plot and predicted lower and
upper PCR bounds for test set A (notice that the
predicted upper bound for test set A is almost coin-
ciding with the actual plot).

on geometric hashing. This system examines almost
all of the 4-D problem space (target, azimuth, and
translations along the two principal axes), and so its
performance is almost optimal. From the results ob-
tained, we observe the following. 1) The proposed
method succeeds in predicting tight lower and upper
bounds on PCR performance. The mazimum hori-
zontal distance between predicted PCR-plot bounds
is 3% and 7% for sets A and B, respectively. 2)
The predicted lower bound determines the “break-
point” in performance very accurately. 8) The per-
formance in this set of experiments tends to be opti-
mistic, with perfect recognition up to relatively high
occlusion/clutter rates. The main reason for such
an optimism is our choice of a relatively large clutter
area. 4)In Fig. 9, the predicted lower bound slightly
overestimates PCR (by about 1%) at the knee of the
plot. This minor discrepancy and its statistical sig-
nificance is currently under investigation. It appears
to be due to approximating the distribution of the
similarity function, S(-,-), by a binomial PMF (refer
to Section 3.1). Use of a more complicated function
which approximates the distribution of S(:,-) more
closely would be expected to eliminate this slight
overestimation.

The experimental results presented in this section
clearly demonstrate the validity of our proposed
method.

7 Conclusions

A novel method has been presented for predicting
tight lower and upper bounds on the performance of
a vote-based approach for object recognition. Per-
formance is predicted by considering data uncer-
tainty, occlusion, clutter and model similarity. Va-
lidity of the method has been demonstrated by com-
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Figure 9: Actual PCR plot and predicted lower and
upper PCR bounds for test set B.

paring experimentally-determined PCR plots with
predicted bounds. Future work involves develop-
ing appropriate data-distortion models for predict-
ing performance of SAR target recognition, under
depression-angle changes, configuration differences,
and articulation. We also plan to extend this work to
predict other performance metrics such as the con-
fusion matrix, and the ROC curve.
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