there are total 640 images in the database. Also, the
number of images in each class varies from 16 to 80.
The images in this database are represented by 16 di-
mensional feature vectors. We use 16 Gabor filters
[7] (2 scales and 4 orientations) for feature extraction.
The mean and the standard deviation of the magni-
tude of the transform coefficients are used as feature
components after being normalized by the standard
deviations of the respective features over the entire
images in the database.

5.2 Results

For both problems, each image in the database is
selected as a query and top 20 nearest neighbors are re-
turned that provide necessary relevance feedback. The
average retrieval precision is summarized in Table 2.
There are two rows under each problem in the table.
The first row indicates the performance of the method
under the condition that the features are normalized
so0 as to have zero mean and unit variance. The second
row shows the results obtained by the method, condi-
tioned on the features being scaled to lie between 0
and 1.

Table 2: Average retrieval precision for real data.

i

UCI Database
Method 0 (cf) [ 1 (xf) | Improvement
PFRL (01) |92.10 | 95.64 6.82
PFRL (scale) | 92.08 | 96.05 7.66
MIT Database
‘Method 0 (xf) | 1 (zf) | Improvement
PFRL (01) | 77.05 | 84.02 14.37
PFRL (scale) | 78.27 | 84.44 12.70

The second column in Table 2 shows the average
retrieval precision obtained by the method without
any relevance feedback (rf). The third column shows
the average retrieval precision computed after learn-
ing has taken place. That is, relevance feedback ob-
tained from the previous retrieval is used to estimate
local feature relevance, hence a new weighting. The
last column shows relative performance improvement
by the method. It can be seen from Table 2 that our
method demonstrate significant performance improve-

- ment across the tasks. Furthermore, various normal-

ization techniques do not seem to have a significant
impact on the overall ability of each- method. Note
that the procedural parameters (T (9) and C (13)) in-
put to our method were determined empirically, and
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they were set to 15 and 16, respectively, in all the
experiments reported in this section.

6 Conclusions

This paper presents a novel probabilistic feature rel-
evance learning technique for efficient content-based
image retrieval. The experimental results using both
simulated and real data show convincingly that learn-
ing feature relevance based on user’s feedback can
indeed improve retrieval performance of an image
database system. Furthermore, since the relevance
estimate is local in nature the resulting retrieval, in
terms of the shape of the neighborhood, is highly
adaptive and customized to the query location.

Our retrieval technique learns local feature rele-
vance for each given query. However, it is possi-
ble that the knowledge acquired during one retrieval
can be gradually collected and it can become part of
the database itself through continuous learning. This
knowledge can be used in conjunction with case-based
learning to achieve generalization in future retrievals
in order to further optimize the performance of the
system.
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Abstract

This paper focuses on using reinforcement learning
to improve the performance of a SAR recognition
engine. We develop a learning algorithm which can
direct the SAR recognition engine to perform at or
close to a particular user prespecified performance
point (PCI,,Pf,) on the ROC curve of the engine.
Experimental results with the current learning algo-
rithm are presented using MSTAR public data.

1 Introduction

In this paper, we are concerned with using learn-
ing to improve the performance of a SAR recogni-
tion engine. The goal of our research is to integrate
learning with the SAR engine and make the engine
more reliable and robust to handle images acquired
under dynamically changing conditions.The features
used by the SAR engine for recognizing an object
are the locations and magnitudes of the scattering
centers. Our SAR engine is model based with the
models built off-line. The most important SAR en-
gine parameters are the number of scattering centers
(N) and vote threshold (T). Given an input SAR
image, the SAR engine can recognize the identity
of the object or return “unknown” if the number
of votes is less than T. After the SAR engine runs
over the iuput images, we can use an evaluation pro-
gram to calculate its performance (PCLPf) if we
know the true object (Ground Truth) in each image.
(For details, see [1], [2].) In order to get acceptable
(PCLPf), the N and T must be chosen appropri-
ately. If the input images change or the conditions
under which the images are acquired change, N and
T may also be changed in order to maintain accept-
able (PCIL,Pf).

We use a reinforcement learning algorithm to select

This work is supported in part by grants F49620-97-
1-0184. The contents and information do not necessarily
reflect the position or the policy of the U.S. Government.
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good values of N and T. We embed the SAR engine
and evaluation program into the learning .system,
as shown in Figure 1 and 2. The learning system
selects the parameters N and T for the SAR engine
and the evaluation program reports the performance
(PCLPf) of the SAR engine to the learning system.
The learning system calculates the reinforcement of
the selected pair of parameters by comparing the
(PCI, Pf) with the (PCI,,Pf,) and uses the rein-
forcement to change the Q-Value of the selected pair
of parameters. After the learning stops, the Q-Value
represents the goodness of the parameters. Good pa-
rameters can be chosen according to Q-Values.

(PCL Pf)

Ground Reinforcement

Truth Evaluation Learning
Reinforcement
& Q-Value

Recognition Lo
Engine

Figure 1: Learning integrated recognition

At the current stage, our learning algorithm works,
but needs further improvement. Section 2 gives the
learning algorithm. Experimental results are shown
in section 3. Section 4 provides the conclusions and
some suggestions about future work.

2 Learning Algorithm

Figure 2 shows the flowchart of the learning algo-
rithm. Further details are given in [3].

Initial Conditions: When the algorithm starts
to run, it asks the user to input the performance
point (PCI,, Pf,). Each pair of parameters (N, T)
of SAR engine is associated with a value Q(N,T),
which measures the goodness of this pair of param-
eters. The larger the Q Value, the better the pair of




Start

Set goal (PCIu, Pfu) for the
Leaming Algorithm

Select Parameters (N, T)
For the SAR engine using
e—greedy policy

Run the SAR Engine with
ters over
input images
Ground
Evaluate Performance (PCL, PD)|

| Compute Reinforment: Rl

Yes No

Increase Q-Value QN, T) | | Decrease Q-Vatue Q@Y, T)
I T

Yes
[ Leaming Succeed One Time]

No

Yes
Stop

Figure 2: Flowchart of the Learning Algorithm

parameters. All the initial Q values are 0. All pairs
of parameters (N, T) are marked SELECTABLE.

Select Parameters for the SAR Engine: Only
those pairs of parameters marked SELECTABLE
and with nonnegative Q Value can be selected by the
learning algorithm. If no pair of parameters meets
this requirement, the learning algorithm stops au-
tomatically. The parameter is selected using an e-
greedy policy.

1. Select the pair of parameters (N,T) whose cor-
responding Q Value is the maximum among all
the Q-Values with probability 1 - €. If sev-
eral pairs of parameters have the maximum Q-
Value, choose one of them randomly.

2. Select parameters (N, T) randomly with piob-
ability e.

The value of € determines the probability the learn-
ing algorithm searches the parameter space of the
SAR engine. Parameter € has an initial value ¢y (we
used 0.9), which means the algorithm searches the
space with higher probability. Each time when the
learning succeeds, the ¢ decreases by Ae (we used
0.1). So, as the learning algorithm runs and the
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learning succeeds again and again, the probability
of searching decreases and the learning algorithm
gradually focuses on good parameters. The value
of e must be at least €,,;, = 0.1.

Compute Reinforcement: The learning algo-
rithm compares the performance point (PCI, Pf)
returned by the SAR engine with the performance
point (PCI,, Pf,) pre-specified by the user and cal-
culates the distance D between them. Then it com-
putes the reinforcement R using

=(1- xS 1
(1-=) o
where S is a distance scale factor (we used S = 1.0).

Update Q-Value: If the reinforcement R > R,in
(we used Rpyin = 0.9), the algorithm increases Q(N,
T) using the following formula:

QWN,T)=QN,T)+ax[R-QN,T)]  (2)

where o was set to 0.1. Then the algorithm com-

pares the new Q(N,T) with the old Q(N,T). If the -

difference between them is smaller than QA (we used
Qa = 0.001), the parameter (N,T) is marked UN-
SELECTABLE, and the € is set to its initial value
€0, which means that the learning algorithm should
explore the parameter space more actively.

By mathematical induction, it is easy to prove that if
the same parameter (N,T) is selected infinite times,
its Q-Value Q(N,T) converges to R in equation (2).

If reinforcement R < Ry, the algorithm decreases
the Q(N,T) using

QN,T) = QN,T)+ax
[R— Rmin — Q(N,T)]  (3)

Then the pair of parameters (N,T) is marked UNS-
ELECTABLE, which means that the pair of param-
eters (N,T) is not good and will not be selected any
more.

Learning Succeed One Time: If the learning suc-
ceeds, that is, the reinforcement received is greater
than R, (we used R, = 0.95), the value of ¢ is
decreased by Ae, which means the probability of
searching is decreased.

Termination Condition: If the learning succeeds
more than L times, the learning algorithm stops.
Otherwise the learning algorithm tries another pair

PCI vs N, T Pf vs N, T

i A
';";l"l‘"/' /',' { e j " "’ il '
ot
l'/' Il

/ ;/'I’ s
N i ol I H I
"' "ll/""/'/"I'f,l’llI,"I;l[l "' ’, "'”
' ' ’Il‘/"l/"l, ”','I,' ’ ' ' /I,l' "'
“ " ‘;, W; W: ’o",,'l,,/;/l, ',0' "/,o,r,",",'i,','» il /
["/ I'I' I'// ////l///// X 1[,» ,

(@) (b)

A
' I

l
0 ) l/" "(ﬂ,"&,’l,"l

7"”' i
'I "I",’I ," '/”I;"/
' "I "" o"/'o "’;

’l, I,’l, ’i"'/ i /l" o "'/' il
i ', it ,/l/, i

'/,I /

(c) (d)

Figure 3 Adapting parameters for articulated objects

of parameters (N,T) and the loop runs again. It is
worth noting that the algorithm will stop eventually
(In the worst case after an exhaustive search). The
searching strategy used in learning is critical to the
efficiency of the learning algorithm. If the searching
stratégy is good, the learning algorithm can find the
good parameters and converge quickly.

3 Experimental Results

We conducted three sets of experiments based on ar-
ticulated targets, depression angle changes and tar-
get configuration variants. In all these three exper-
iment, the test data (input images) and model are
real SAR images from the MSTAR public data.

3.1 Articulated Object Results:

In this experiment, the input images (test
data) are articulated versions of T72(#a64) and
ZSU23/4(7#+d08) at 30° depression angle, using the
non-articulated versions of these same serial num-
ber objects as the model. BRDM2(#e71) is also
included in test data, used as “unknown” confuser
vehicle. Figure 3(a) shows the affect of N and T on
PCI, and Figure 3(b) shows the affect of N and T on
Pf, where N ranges from 10 to 50 and T from 1000
to 3500. We can see that as the N increases, the
PCI and Pf increase, as T increases, the PCI and
Pf decrease. The best results are high PCI and low
Pf value. Figure 3(c) shows the goodness of the pa-
rameters expressed as the reinforcement R obtained
from each pair of parameters when user specified
performance point is the best point (1.0, 0.0). The
larger the reinforcement, the better the pair of pa-
rameters. The pair of parameters (34, 2050) are the

best parameters. Figure 3(d) shows the Q-value of
each pair of parameters after the learning algorithm
stops. In this experiment, L is 1000 and the user
specified performance point is (1.0, 0.0). The Q-
Value measures the goodness of the pair of param-
eters. They are consistent with the reinforcement
shown in Figure 3(c). Parameters (34,2050) has the
maximum Q-Value.

3.2 Depression Angle Change Results:

The input images (test data) are versions of
T72(#132) and BMP2(#C21) at 17° depression an-
gle, using these same serial number objects at 15°
as the model. BTR70(#C71) at 15° is also included
in test data as “unknown” confuser. The results are
shown in Figure 4. In this experiment, L is 2500 and
the user specified performance point is (0.89, 0.16),
which is the performance point when the best pair
of parameters (36,3100) in Figure 4(c) is selected.
Parameter (36,3100) has the maximum Q-Value in
Figure 4(d).

3.3 Configuration Variant Results:

In this experiment, a single configuration of the ve-
hicle (BMP2#C21 and T72#132) is used as model
and test data are two other variants of each vehicle
type. BTR70(#C71) is also included in test data,
used as “unknown” confuser. Both the model and
data are acquired at 15° depression angle. The re-
sults are shown in Figure 5. In this experiment, L
is 1500 and the user specified performance point is
(0.72, 0.15), which is the performance point when
the best pair of parameters (35,2750) in Figure 5(c)
is selected. Parameter (35,2750) has the maximum
Q-Value in Figure 5(d).
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Figure 5 Adapting parameters for configuration changes

4 Conclusion and Future Work

In this paper, we integrate the reinforcement learn-
ing and a SAR recognition engine, and the learning
algorithm directs the SAR engine to perform at or
around the performance point prespecified by the
user. The learning algorithm improves the robust-
ness and adaptability of the SAR engine. Our ex-
periments show that the learning algorithm works,
but needs further improvement so that it is time ef-
ficient. We need to develop a search strategy which
searches only a small part of the parameter space to
find the best parameters. Also, in order to compute
the reinforcement, the learning algorithm requires

that an evaluation program report the SAR engine

performance, which means the ground truth of the
input images must be known. If the ground truth
is unavailable, how the learning algorithm can esti-
mate the performance of the SAR engine and its in-
tegration with image segmentation [5] based on prior
experience will be another area for future research.
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Abstract

3-D models of complex environments, known as
site models, are used in many different applications
ranging from city planning, urban design, fire and
police planning, military applications, virtual real-
ity modeling and others. Site models are typically
created by hand in a painstaking and error prone
process. This paper focuses on two important prob-
lems in site modeling. The first is how to create a
geometric and topologically correct 3-D solid from
noisy data. The second problem is how to plan the
next view to alleviate occlusions, reduce data set
sizes, and provide full coverage of the scene. To
acquire accurate CAD models of the scene we are
using an incremental volumetric method based on
set intersection that can recover multiple objects in
a scene and merge models from different views of
the scene. These models can serve as input to a
planner that can reduce the number of views needed
to fully acquire a scene. The planner can incorpo-
rate different constraints including visibility, field-
of-view and sensor placement constraints to find
correct view points that will reduce the model’s un-
certainty. Results are presented for acquiring a geo-
metric model of a simulated city scene and planning
viewpoints for targets in a cluttered urban scene.

1 Introduction

Realistic 3-D computer models are fast becoming a
staple of our everyday life. These models are found
on TV, in the movies, video games, architectural
and design programs and a host of other areas. One

*This work was supported in part by an ONR/DARPA
MURI award ONR N00014-95-1-0601, DARPA AASERT
awards DAAHO4-93-G-0245 and DAAHO04-95-1-0492, and
NSF grants CDA-96-25374 and IRI-93-11877.

of the more challenging applications is in build-
ing geometrically accurate and photometrically cor-
rect 3-D models of complex outdoor urban environ-
ments. These environments are typified by large
structures (i.e. buildings) that encompass a wide
range of geometric shapes and a very large scope of
photometric properties. 3-D models of such envi-
ronments, known as site models, are used in many
different applications ranging from city planning,
urban design, fire and police planning, military ap-
plications, virtual reality modeling and others. This
modeling is done primarily by hand, and owing to
the complexity of these environments, is extremely
painstaking. Researchers wanting to use these mod-
els have to either build their own limited, inaccurate
models, or rely on expensive commercial databases
that are themselves inaccurate and lacking in full
feature functionality that high resolution modeling
demands. For example, many of the urban models
currently available are a mix of graphics and CAD
primitives that visually may look correct, but upon
further inspection are found to be geometrically and
topologically lacking. Buildings may have unsup-
ported structures, holes, dangling edges and faces,
and other common problems associated with graph-
ics vs. topologically correct CAD modeling. Fur-
ther, photometric properties of the buildings are ei-
ther missing entirely or are overlaid from a few
aerial views that fail to see many surfaces and hence
cannot add the appropriate texture and visual prop-
erties of the environment. Our goal is to have a mo-
bile system that will autonomously move around a
site and create an accurate and complete model of
that environment with limited human interaction.

There are a number of fundamental scientific issues
involved in automated site modeling. The first is
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