
  

Chapter 6 

HUMAN EAR DETECTION FROM 3D SIDE 
FACE RANGE IMAGES 

H. Chen and B. Bhanu   

Abstract: Ear is a new class of relatively stable biometrics which is not affected by facial 
expressions, cosmetics and eye glasses. To use ear biometrics for human 
identification, ear detection is the first part of an ear recognition system. In this 
chapter we propose two approaches for locating human ears in side face range 
images: (a) template matching based ear detection and (b) ear shape model 
based detection. For the first approach, the model template is represented by 
an averaged histogram of shape index that can be computed from principal 
curvatures. The ear detection is a four-step process: step edge detection and 
thresholding, image dilation, connect-component labeling and template 
matching. For the second approach, the ear shape model is represented by a set 
of discrete 3D vertices corresponding to ear helix and anti-helix parts. Given a 
side face range image, step edges are extracted and then the edge segments are 
dilated, thinned and grouped into different clusters which are the potential 
regions containing an ear. For each cluster, we register the ear shape model 
with the edges. The region with the minimum mean registration error is 
declared as the detected ear region; during this process the ear helix and anti-
helix parts are identified. Experiments are performed with a large number of 
real side face range images to demonstrate the effectiveness of the proposed 
approaches.  
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1. INTRODUCTION 

Center for Research in Intelligent Systems,  University of California, Riverside, CA 92521, 
USA, {hui, bhanu}@cris.ucr.edu  

 

Ear is a viable new class of biometrics since ears have desirable properties 
such as universality, uniqueness and permanence1, 2. The ear has certain 
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The current research has used intensity images and, therefore, the 
performance of the recognition systems is greatly affected by imaging 
problems such as lighting and shadows3,4,5. Range sensors that are 
insensitive to above imaging problems can directly provide us 3D geometric 
information9,10. Therefore it is desirable to design a human ear recognition 
system from 3D side face range images obtained at a distance. Human ear 
detection is the first task of a human ear recognition system and its 
performance significantly affects the overall quality of the system.  

In this chapter, we propose two techniques for locating human ears in 
side face range images: template matching based ear detection11 and ear 
shape model based detection12. The first approach has two stages: off-line 
model template building and on-line ear detection. Ear can be thought of as a 
rigid object with much concave and convex areas. As compared to other 
approaches for object detection in range images13,14,15,16,17, we use the 
averaged histogram of shape index to represent the ear model template since 
shape index is a quantitative measure of the shape of a surface20,21. During 
the on-line detection, we first perform the step edge computation and 
thresholding since there is a sharp step edge around the ear boundary, and 
then we do image dilation and connected-component analysis to find the 
potential regions containing an ear. Next for every potential region, we grow 
the region and compute the dissimilarity between each region’s histogram of 
shape indexes and the model template. Finally among all of the regions, we 
choose the one with the minimum dissimilarity as the detected region that 
contains ear.  

For the second approach, the ear shape model is represented by a set of 
discrete 3D vertices corresponding to ear helix and anti-helix parts. Since the 
two curves formed by ear helix and anti-helix parts are similar for different 
people, we do not take into account the small deformation of two curves 
between different persons, which greatly simplifies our ear shape model. 
Given side face range images, step edges are extracted; then the edge 
segments are dilated, thinned and grouped into different clusters which are 
the potential regions containing an ear. For each cluster, we register the ear 
shape model with the edges. The region with the minimum mean registration 
error is declared as the detected ear region; the ear helix and anti-helix parts 
are identified in this process. 

advantages over other biometrics. For example, ear is rich in features; it is a 
stable structure which does not change with the age. It does not change its 
shape with facial expressions. Furthermore, the ear is larger in size 
compared to fingerprints and can be easily captured although sometimes it 
can be hidden with hair and earrings. Although it has certain advantages 
over other biometrics, it has received little attention compared to other 
popular biometrics such as face, fingerprint and gait3,4,5,6,7,8.  
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The rest of chapter is organized as follows. Section 2 introduces the 
related work, motivation and contributions. Section 3 describes our first 
approach to detect ears using template matching based method. Section 4 
describes our second approach to build the ear shape model and detect 
human ears in side face range images. Section 5 gives the experimental 
results to demonstrate the effectiveness of two approaches. Finally, Section 6 
provides the conclusions. 

2. RELATED WORK, MOTIVATION 

2.1 Related work 

Keller et al.13 introduced a fuzzy logic system for automatic target 
detection from LADAR images. They used two fuzzy logic detection filters 
and one statistical filter to create pixel-based target confidence values which 
are fused by the fuzzy integral to generate potential target windows.  
Features extracted from these windows are fed to a neural network post-
processor to make a final decision. 

Meier and Ade14 proposed an approach to separate image features into 
ground and road obstacles by assuming the road was flat. They distinguished 
obstacles and road pixels using the separating plane. The plane model is 
updated by fitting a plane through all pixels marked as ground. Connected 
component analysis is used to partition detected obstacles into different 
objects. 

Sparbert et. al.15 presented a method to detect lanes and classify street 
types from range images. First they calculated the lane's width, curvature 
and relative position to the car, then compared them with a prior knowledge 
on construction rules of different street types, and finally achieved street 
type based on the mean value of lane's width. 

Garcia et. al.16 generated a unique signature of a 3D object by the Fourier 
transform of the phase-encoded range image at each specific rotation. The 
signature defined in a unit sphere permitted the detection of 3D objects by 
correlation techniques. 

Heisele and Ritter17 proposed a method for segmenting temporal 
sequences of range and intensity images. The fusion of range and intensity 
data for segmentation is solved by clustering 4D intensity/position features. 

AND CONTRIBUTIONS OF THE CHAPTER 

There are only a few papers dealing with object detection from range 
images. In the following we give a brief review of object detection techni-
ques from range images.  
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Kalman filters are then used to stabilize tracking by predicting dynamic 
changes in cluster positions. 

Boehnen and Russ18 proposed an algorithm to utilize the combination of 
the range and registered color images for automatically identifying facial 
features. The foreground is first segmented using the range data and then the 
skin color detection is used to identify potential skin pixels, which are 
further refined using z-based range erosion to compute the eye and mouth 
maps. Finally, the geometric-based confidence of candidates is computed to 
aid in the selection of best feature set. 

Tsalakanidou et. al.19 introduced a face localization procedure combining 
both depth and color data. First the human body is easily separated from the 
background by using the depth information and its geometric structure; and 
then the head and torso can be identified by modeling the 3D point 
distribution as a mixture model of two Gaussians; and finally the position of 
the face is further refined using the color images by exploiting the symmetric 
structure of the face. 

2.2 Motivation 

2.3 Contributions of the Chapter 

H. Chen and B. Bhanu

The contributions of the chapter are: (a) Based on the geometric char-
acteristics, we develop a template matching based approach for ear 
detection in side face range images. (b) We also propose a ear shape model 
based approach for locating 3D ears more accurately in side face range 
images. (c) We present many examples to illustrate the performance of these 
two approaches. 

The anatomical structure of the ear is shown in Figure 6-1. The ear is made 
up of standard features like the face. These include the outer rim (helix) and 
ridges (anti-helix) parallel to the helix, the lobe and the concha that is a 
hollow part of ear. From Figure 6-1, we clearly see that two curves formed 
by ear helix and anti-helix parts are easily identified. We can use these two 
curves to develop the procedures to locate the ear in side face range images. 
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Figure 6-1. The external ear and its anatomical parts. 

3. TEMPLATE MATCHING BASED EAR 
DETECTION 

3.1 Off-line model template building 

3.1.1 Shape Index 
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where )(1 pk and )(2 pk  are maximum and minimum principal curvatures 
respectively20. With this definition, all shapes can be mapped into the 
interval ]1,0[∈iS . The shape categories and corresponding shape index 
range are listed in Table 6-120,21. From Table 6-1, we can see that larger 
shape index values represent convex surfaces and smaller shape index values 
represent concave surfaces. 

 

Human Ear Detection from 3D Side Face Range Images 

Shape index iS , a quantitative measure of the shape of a surface at a point 
p , is defined by Eq. (1). 
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Table 6-1. Surface shape categories and the range of shape index values. 

Shape Category iS Range 
Spherical cup [0, 1/16) 
Trough [1/16, 3/16) 
Rut [3/16, 5/16) 
Saddle rut [5/16, 7/16) 
Saddle [7/16, 9/16) 
Saddle ridge [9/16, 11/16) 
Ridge [11/16, 13/16) 
Dome [13/16, 15/16) 
Spherical cap [15/16, 1]  

3.1.2 Curvature Estimation 

Figure 6-2. (a) Ear range image. Darker pixels are away from the camera and the lighter ones 
are closer.  (b) Its shape index image. Darker pixels correspond to concave surfaces and 

lighter ones correspond to convex surfaces. 

H. Chen and B. Bhanu

Ear has significant convex and concave areas, which gives us a hint to 
use the shape index for ear detection. The original ear range image and its 

In order to estimate curvatures, we fit a quadratic surface 
feydxcxybyax

yxf
+++++= 22

),(
to a 5×5 window centered at the surface 

point of interest and use the least squa re method to estimate the parameters 
of the quadratic surface. After we get the parameters, we use differential 
geometry to calculate the surface normal, Gaussian and mean curvatures and 
principal curvatures6,22. 

shape index image are shown in Figure 6-2. In Figure 6-2(b), the brighter 
points denote large shape index values that correspond to ridge and dome 
surfaces. We believe the ridge and valley areas form a pattern for ear 
detection. We use the distribution of shape index as a robust and compact 
descriptor since 2D shape index image is much too detailed. The histogram 
h  can be calculated by =)(kh # of points with shape index )(kbin∈ . The 
histogram is normalized during the implementation. 



139
 

 

3.1.3 Building Model Template  

3.2 Step Edge Detection, Thresholding and Dilation 
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In Eq. (2) w  is the width of the window and ),( jiz is the z coordinate of 
the point ),( ji . To get the step edge magnitude image, a ww× window is 
translated over the original side face range image and the maximum distance 
calculated from Eq. (2) replaces the pixel value of the pixel covered by the 
center of the window. The original side face range image and its step edge 

 

Figure 6-3. Model template (discretized into 50 bins). 

Human Ear Detection from 3D Side Face Range Images 

Given a set of training side face range images, first we extract ears manually, 
and then calculate its shape index image and histogram the shape index 
image. After we get the histograms for each training image, we average the 
histograms and use the averaged histogram as our model template. Figure 6-3 
shows the model template, obtained using 20 training images, in which the 
two peaks correspond to the convex and concave regions of the ear. 

magnitude image are shown in Figure 6-4 (a) and (b).  

The step edge magnitude, denoted by stepM , is calculated as the maximum 
distance in depth between the center point and its neighbors in a small 
window23. stepM  can be written as Eq. (2): 



140

 

Figure 6-4. (a) Original side face range image. (b) Its step edge magnitude image. (c) 
Thresholded binary image. (d) Dilated image. 
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3.3 Connected Component Labeling 

After we get regions, we need to know the geometric properties such as 
the position and orientation. The position of a region may be defined using 
the center of the region. The center of area in binary images is the same as 
the center of the mass and it is computed by Eq. (4) 
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Using the above result, we proceed to determine which regions can possibly 
contain human ears. To do so, we need to determine the number of potential 
regions in the image. By running connected component labeling algorithm, 
we can determine the number of regions. We used an 8-connected 
neighborhood to label a pixel.  We remove smaller components whose areas 
are less than since the ear region is not small. The labeling result is shown in

From Figure 6-4(b), we clearly see that there is a sharp step edge around 
the ear boundary since brighter points denote large step edge magnitude. The 
step edge image is thresholded to get a binary image that is shown in 
Figure 6-4(c). The threshold is set based on the maximum of stepM . 
Therefore, we can get a binary image by using Eq. (3). There are some holes 
in the thresholded binary image and we want to get the potential regions 
containing ears. We dilate the binary image to fill the holes using a 3×3 
structure element. The dilated image is shown in Figure 6-4(d). 

Figure 6-5(a) and the result after removing smaller components is shown 
in Figure 6-5(b). 



141
 

 

Figure 6-5. (a) Labeled image (12 components). (b) Labeled image after removing smaller 
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where B  is mn×  matrix representation of the region and A  is the size of 
the region.  

For the orientation, we find the axis of elongation of the region. Along 
this axis the moment of the inertia will be the minimum. The axis is 
computed by finding the line for which the sum of the squared distances 
between region points and the line is minimum. The angle of θ  is given by 
Eq. (5). 
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The parameters a, b and c  are given by Eq. (6), Eq. (7) and Eq. (8) res- 
pectively. 
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components (6 components). (See also Plate 22 in the Colour Plate Section) 
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where xxx −=' and yyy −=' . θ  gives us the hint about the direction 
along which region growing must take place. 

3.4 Template Matching 

divergence−2χ  function Eq. (9)24. 
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where Q and V are normalized histograms. From Eq. (9), we know the 
dissimilarity is between 0 and 2. If the two histograms are exactly the same, 
the dissimilarity will be zero. If the two histograms do not overlap with each 
other, it will achieve the maximum value 2. 

From Section 3.3, we get the potential regions which may contain the 
ears. For each region, we find a minimum rectangular box to include the 
region, then we grow this region based on the angle θ . If 2/0 πθ ≤≤ , we 
grow the rectangle by moving the top-right vertex right, up and anti-diagonal 
and moving the bottom-left vertex left, down and anti-diagonal. If 

πθπ ≤≤2/ , we grow the rectangle by moving the top-left vertex left, up 
and diagonal and moving the bottom-right vertex right, down and diagonal. 
For every region, we choose the grown rectangular box with the minimum 
dissimilarity as the candidate ear region. Finally over all of the candidate 
regions, we select the one with the minimum dissimilarity as the detected 
region. We set a threshold γ  for region growing, which controls the size of 
the region. 

4. SHAPE MODEL BASED EAR DETECTION 

4.1 Shape Model Building 

one person only. We plan to work on building a generic ear model from 
multi persons. We extract ear helix and anti-helix parts by running a step 
edge detector with different thresholds and choose the best edge extraction 
result which detects ear helix and anti-helix parts. We define the ear shape 

H. Chen and B. Bhanu

As mentioned in Section 3.1.1, the model template is represented by an 
averaged histogram of shape index. Since histogram can be thought of as an 
approximation of probability density function, it is natural to use the 

Considering the fact that the curves formed by ear helix and anti-helix 
parts are similar for different people, we construct the ear shape model from 
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model s  as 3D coordinates },,{ zyx  of n  vertices that lie on the ear helix 
and anti-helix parts. The shape mode s  is represented by a 13 ×n  vector 

},,,,,,,,,{ 222111 nnn zyxzyxzyx K . Figure 6-6 shows the 3D side face range 
image with textured appearance, in which the ear shape model s  marked by 
yellow vertices is overlaid. 

4.2 Step Edge Detection and Thresholding 

 

Human Ear Detection from 3D Side Face Range Images 

Figure 6-6. The textured 3D face and overlaid ear shape model (The units of X, Y and Z are mm). 

Given the step face range image, the step edge magnitude, denoted by stepM , 
can be calculated as described in Section 3.2. One example of step edge 
magnitude image is shown in Figure 6-7(b). In Figure 6-7(b), larger magni-
tudes are displayed as brighter pixels. We can clearly see that most of the 
step edge magnitudes are small values. To get edges, the step edge magni-
tude image can be segmented using a threshold operator. The selection of 
threshold value is based on the cumulative histogram of the step edge 
magnitude image which is different from Section 3.2. Since we are 
interested in larger magnitudes, in our approach the top  ( %5.3= ) pixels 
with the largest magnitudes are selected as edge points. We can easily 
determine the threshold by investigating the cumulative histogram.  The 
thresholded binary image is shown in Figure 6-7(c), while the original side 
face range image is shown in Figure 6-7(a). 

α α
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Figure 6-7. (a) Original side face range image. (b) Its step edge magnitude image. (c) Its step 
edge image. 

4.3 Edge Thinning and Connected Component Labeling 

4.4 Clustering Edge Segments 

Figure 6-8. (a) Dilated edge image. (b) Thinned edge image. (c) Edge segments left after 
removal of small segments. 

H. Chen and B. Bhanu

Since the ear region contains several edge segments, we group edge 
segments which are close to each other into different clusters. The clustering 
procedure works as follows: 

Since some step edge segments are broken, we dilate the binary image to fill 
the gaps using a 3×3 structure element. The dilated image is shown in 
Figure 6-8(a). We proceed to do edge thinning and the resulting image is 
shown in Figure 6-8(b). The edge segments are labeled by running connected 
component labeling algorithm and some small edge segments (less than 15 
pixels) are removed. The edge segments that are left are shown in Figure 6-8(c). 
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1. For each edge segment ie  
2. Initialize ie into a cluster iC , calculate its centroid },{ yixi µµ  
3. For each edge segment je  while ji ≠  

• (a) calculate its centroid },{ yjxj µµ  
• (b) if 1|}||,max{| εµµµµ ≤−− yjyixjxi , put je  into cluster iC , 

remove je  and update the centroid of iC  
 
In the implementation, 1ε =36 pixels since we want to put ear helix and 

anti-helix parts into a cluster. Three examples of clustering results are shown 
in the second row of Figure 6-9, in which each cluster is bounded by a red 
rectangular box. The first row of Figure 6-9 shows side face range images. 

4.5 Locating Ears by Use of the Ear Shape Model 

 

Figure 6-9. Examples of edge clustering results. 

Human Ear Detection from 3D Side Face Range Images 

For each cluster obtained in the previous step, we extract step edges around 
ear helix and anti-helix parts. We use a threshold 2 = 1.9 mm since the step 
edge magnitudes of vertices in ear anti-helix are at least 1.9 mm and the 
magnitude of vertices in anti-helix part is smaller than that of vertices in the 
helix part for the collected data. The problem of locating ears is to minimize 
the mean square error between ear shape model vertices and their 
corresponding edge vertices in the bounded rectangular box. 

ε
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where rT  is the rigid transformation and )( isI  is vertex in the 3D side 
face image closest to the )( ir sT . Iterative Closest Point (ICP) algorithm 
developed by Besl and Mckay25 is well-known method to align 3D shapes. 
However, ICP requires that every point in one set have a corresponding 
point on the other set, we can't guarantee that edge vertices in the potential 
regions satisfy this requirement. Therefore, we use a modified ICP algorithm 
presented by Turk26 to register the ear shape model with the edge vertices. 
The steps of modified ICP algorithm to register a test shape Y  to a model 
shape X  are: 

 
• 1) Initialize the rotation matrix 0R  and translation vector 0T . 
• 2) Given each point in Y , find the closest point in X . 
• 3) Discard pairs of points that are too far apart. 
• 4) Find the rigid transformation ( R ,T ) such that E  is minimized. 
• 5) Apply the transformation ( R ,T ) to Y . 
• 6) Goto step 2) until the difference || 1−− kk EE  in two successive steps 

falls below a threshold or the maximum number of iterations is reached.  
 
By initializing the rotation matrix 0R  and translation vector 0T  to the 

identity matrix and difference of centroids of two vertex sets respectively, 
we run ICP iteratively and finally get the rotation matrix R  and translation 
vector T , which brings the ear shape model vertices and edge vertices into 
alignment. The cluster with minimum mean square error is declared as the 
detected ear region; the ear helix and anti-helix parts are identified in this 
process. 

 

5. EXPERIMENTAL RESULTS 

5.1 Data Acquisition 

H. Chen and B. Bhanu

 

We use real range data acquired by Minolta Vivid 300. During the 
acquisition, 52 subjects sit on the chair about 0.55 ~ 0.75m from the camera. 
The first shot is taken when subject’s left side face was approximately 
parallel to the image plane; two shots are taken when the subject was asked 
to rotate his/her head to left and right side within 35 degrees with respect to 
his/her torso. The same acquisition procedure was repeated once for another 
three shots. Six images per subject are recorded. Therefore, we have 312 
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images in total. Each range image contains 200×200 grid points and each 
grid point has a 3D coordinate },,{ zyx . The ear shape model is built from a 
side face range image described in Section 4.1. Examples of side face range 
images are shown in Figure 6.10. 

5.2 Results for the Template Matching Approach 

range images. The parameters are w = 5 pixels, η = 0.35, β = 99 pixels and 
γ = 35 pixels. Figure 6-11 shows examples of positive detection in which the 
detected ears are bounded by rectangular boxes. If the detected region 
contains part of ear, we think it is a positive detection; otherwise it is a false 
detection. From Figure 6-11, we observe that the ear region is correctly 
detected.  

 
 

Figure 6-10. Examples of side face range images. 

Human Ear Detection from 3D Side Face Range Images 

We test the template matching based detection method on 312 side face 
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Figure 6-11. Examples of the positive detection using the template matching approach. 

However, we may obtain a part of an ear; we may obtain parts that do not 
belong to an ear. Figure 6-12 shows examples of false detection. Each 

5.3 Results for the Shape Model-Based Approach 

H. Chen and B. Bhanu

We test the ear shape model based detection method on 312 side face range 
images. If the ear shape model is aligned with the ear helix and anti-helix 
parts, we classify it as a positive detection; otherwise false detection.  

 

column in Figure 6-12 shows the step edge magnitude image, the dilated binary 
edge map and the detection result respectively. Since the ear helix part 
cannot be extracted, we made false detections. The average time to detect an 
ear from a side face range image is 5.2 seconds with Matlab implementation 
on a 2.4G Celeron CPU. We achieve 92.4% detection rate. 
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Figure 6-12. Examples of false detection using the template matching approach. Each column 
shows the step edge magnitude image, the dilated binary edge map and the detection result 

respectively. 

Human Ear Detection from 3D Side Face Range Images 

 

In our experiments, the number of vertices of the ear shape model is 113; 
the average number of edge segments is 6 and the average number of 
clusters is 4. The average time to detect an ear from a side face range image 
is 6.5 seconds with Matlab implementation on a 2.4G Celeron CPU.  
Examples of positive detection results are shown in Figure 6-13. In Figure 6-13, 
the transformed ear shape model marked by yellow points is superimposed 
on the corresponding textured 3D face. From Figure 6-13, we can observe 
that the ear is correctly detected and the ear helix and anti-helix parts are 
identified from side face range images. The distribution of mean square error 
defined in Eq. (10) for positive detection is shown in Figure 6-14. The mean 
of mean square error is 1.79 mm. We achieve 92.6% detection rate. After we 
locate the ear helix and anti-helix parts in a side face range image, we put a 
minimum rectangular bounding box that contains the detected ear.  
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Figure 6-13. Examples of positive detection results using the shape model-based approach 
(The 3D axes and units are the same as in Figure 6-6). 

 
Figure 6-15 shows the examples of detected ears with a red bounding 

side face range images. For the failed cases, we notice that there are some 
edge segments around the ear region caused by hair, which bring more false 
edge segments or results in the cluster that cannot include the ear helix and 
anti-helix parts.  

H. Chen and B. Bhanu

box. From Figure 6-15, we observe that the ears are accurately located from 
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Figure 6-14. Distribution of the mean square error for positive detection using the shape 
model-based approach. 

 

Figure 6-15. Examples of positive ear detection using the shape model-based approach. 

Human Ear Detection from 3D Side Face Range Images 
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5.4 Comparison of the Two Approaches 

detection rate and average detection time. From this table, we observe that 
the second approach performs slightly better than the first approach and it is 
a little bit slower. Note that for the template matching approach, if the ear 
region is roughly detected, it is a positive detection; while for the ear shape 
model based approach, if the ear helix and anti-helix parts are aligned with 

 
 

Figure 6-16. Examples of failed cases using the shape model-based approach. Each column 
shows the range image and the edge clustering result respectively. 

H. Chen and B. Bhanu

Table 6-2 lists the comparison of two approaches in terms of positive 

the shape model, it is a positive detection. If we compare Figure 6-11 and 
Figure 6-15, we see that we can locate ears more accurately by using the 

de us more helpful cues for ear 
recognition.  

Since ICP algorithm cannot converge due to the existence of outliers, the 
false detection happens; these cases are shown in Figure 6-16 and Figure 6-17. 
The original face range images and corresponding edge clusters are shown in 
Figure 6-16. In this figure, the first row shows face images; the second row 
shows edge clustering results. The textured 3D faces with overlaid detected 
ear helix and anti-helix are shown in Figure 6-17. 

shape model-based approach, which can provi
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Figure 6-17. Examples of false detection results using the shape model-based approach. 

Table 6-2. Comparion of two approaches. 
 Detection Rate Detection Time 
Template matching  92.4% 5.2sec 
Ear shape model 92.6% 6.5sec 

6. CONCLUSIONS 

extracted, dilated, thinned and grouped into different clusters which are 
potential regions containing ears. For each cluster, we register the ear shape 
model with the edges. Our method not only detects the ear region, but also 

Human Ear Detection from 3D Side Face Range Images 

We have proposed two techniques; template matching based detection and 
ear shape model based detection, to locate ears from side face range images. 
The success of the first approach relies on two facts: 1) there is a sharp step 
edge around the ear helix that can be easily extracted; 2) shape index is a 
good measurement to capture the geometric characteristics of ears since the 
ear has much ridge and valley areas. The first approach is also simple, 
effective and easy to implement. For the second approach, the ear shape 
model is represented by a set of discrete 3D vertices corresponding to ear 
helix and anti-helix parts. Given side face range images, step edges are 
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identifies the ear helix and anti-helix parts. Experimental results on real side 
face range images demonstrate the effectiveness of our proposed approaches. 
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