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Abstract
The high dimensionality of visual features is one of
the major challenges for content-based image retrieval
(CBIR) systems, and a variety of dimensionality reduc-
tion approaches have been proposed to find the discrim-
inant features. In this paper, we investigate the effec-
tiveness of coevolutionary genetic programming (CGP)
in synthesizing feature vectors for image databases from
traditional features that are commonly used. The trans-
formation for feature dimensionality reduction by CGP
has two unique characteristics for image retrieval: 1)
nonlinearlity: CGP does not assume any class distri-
bution in the original visual feature space; 2) explicit-
ness: unlike kernel trick, CGP yields explicit transfor-
mation for dimensionality reduction so that the images
can be searched in the low-dimensional feature space.
The experimental results on multiple databases show
that (a) CGP approach has distinct advantage over the
linear transformation approach of Multiple Discrimi-
nant Analysis (MDA) in the sense of the discrimination
ability of the low-dimensional features, and (b) the clas-
sification performance using the features synthesized by
our CGP approach is comparable to or even superior to
that of support vector machine (SVM) approach using
the original visual features.

1 Introduction
Content-based image retrieval (CBIR) systems are de-
signed to automatically extract various visual features
from images, such as color, texture, shape, structure,
and use them to represent images in the computer. The
collection of such visual features usually yields the high-
dimensionality of the feature space, which deteriorates
retrieval performances due to the well-known ”curse of
dimensionality”. Thus, a key task in CBIR is to find
the most discriminant features from the original feature
collection, so that both retrieval precision and search
speed is improved.

Fisher discriminant analysis (also called Multiple
discriminant analysis (MDA) for multiple-class case)
[1] is a widely-used approach to find discriminating fea-

tures due to its straight-forward idea of making linear
data projection by maximizing the ratio of the between
scatter matrix and the within scatter matrix. The ker-
nel trick [2] can be combined with Fisher discriminant
analysis (e.g., [3]), so that the nonlinear generalization
of MDA is achieved with classification improvement.

Swets and Weng [4] propose a self-organizing hier-
archical optimal subspace learning and inference frame-
work (SHOSLIF) for image retrieval. Such hierarchical
linear analysis is a nonlinear approach in nature. Hastie
and Tibshirani [5] present the approach of discriminant
adaptive nearest neighbor (DANN) for classification.
Based on the analysis of local dimension information,
they also propose a global dimensionality method by
pooling local discriminant information. Wu et al. [6]
reduce the feature dimensionality for image databases
using the approach of weighted multi-dimensional scal-
ing (WMDS), whose main characteristic is preserving
the local topology of the high dimensional space. Su et
al. [7] exploit principle component analysis (PCA) for
dimensionality reduction by using relevance feedback.

In this paper, we investigate the effectiveness of co-
evolutionary genetic programming (CGP) [8] in gener-
ating composite operator vectors for image databases,
so that feature dimensionality is reduced to improve
retrieval performances. Genetic programming (GP) is
an evolutionary computational paradigm [1] that is an
extension of genetic algorithm and works with a pop-
ulation of individuals. An individual in a population
can be any complicated data structure such as linked
lists, trees and graphs, etc. CGP is an extension of
GP in which several populations are maintained and
employed to evolve solutions cooperatively. A popula-
tion maintained by CGP is called a sub-population and
it is responsible for evolving a part of a solution. A
complete solution is obtained by combining the partial
solutions from all the sub-populations. For the task of
object recognition in [9], individuals in sub-populations
are composite operators, which are the elements of a
composite operator vector. A composite operator is
represented by a binary tree whose internal nodes are
the pre-specified domain-independent primitive opera-
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tors and leaf nodes are original features. It is a way
of combining original features. The CGP approach in
this paper follows the algorithm proposed in [9].

The advantage of using a tree structure is that it
is powerful in expressing the ways of combining origi-
nal features. The original features are visual features
(e.g., color, texture, structure) extracted from the im-
ages. With each element evolved by a sub-population
of CGP, a composite operator vector is cooperatively
evolved by all the sub-populations. By applying com-
posite operators to the original features extracted from
images, composite feature vectors are obtained. These
composite feature vectors are fed into a classifier for
recognition.

The transformation for feature dimensionality re-
duction by CGP has two unique characteristics that
are suitable for image retrieval: 1) nonlinearlity : CGP
does not assume any class distribution in the original
visual feature space; 2) explicitness: unlike kernel trick,
CGP yields explicit transformation for dimensionality
reduction so that the images can be searched the low-
dimensional feature space.

The contributions of this paper are: 1) The coevolu-
tionary genetic programming (CGP) approach in gen-
erating composite operator vectors for feature dimen-
sionality reduction and retrieval performance improve-
ment in image databases (Section 2); 2) the compar-
isons of the experimental results by CGP, MDA and
SVM on multiple image databases, so that the advan-
tage of the CGP approach is demonstrated (Section 3).

2 Technical Approach

In this paper, with the purpose of demonstrating the ef-
fectiveness of coevolutionary genetic programming ap-
proach for image databases, we simply adopt the sce-
nario of training the system by directly providing la-
belled images in advance.

2.1 Image distribution
By intuition the images belonging to the same class
should be close in some sense in the feature space of
the image database, i.e., these images form a cluster
with a specific shape, which reflects the relevances of
the various visual features for the corresponding class.
However, we cannot ignore the possibility that the im-
ages in the same class (as perceived by the user) may
form multiple clusters, i.e., the images with different
visual features may belong to the same class.

Based on the above observations, some researchers
have proposed the Gaussian mixture model for the
image distribution in the feature space of the image
databases [10], with each class corresponding to a sin-
gle mixture component or a variety of mixture compo-
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Figure 1: An illustrative example for feature reduc-
tion (from 2D to 1D) using composite operation. The
original 2D feature space: three classes have different
distributions, and Class 1 and Class 2 consists of mul-
tiple clusters. The transformed 1D feature space: each
of the three classes corresponds to a single Gaussian
distribution.

nents. Sometimes, mixture model assumption for the
image distribution of a database may be too strict. In
this paper, we do not have to make any model assump-
tion for the image distribution.

Figure 1 provides an example which illustrates the
characteristics of our CGP approach for reducing the
feature dimensionality of image databases. The origi-
nal 2D data belong to three classes, two of which (Class
1 and Class 2) form multiple clusters. Different clus-
ters have different distributions (represented by differ-
ent shapes in Figure 1). The transformation by the
CGP approach yield 1D feature space, in which each
of the three classes corresponds to a single Gaussian
distribution.

2.2 CGP
In CGP approach, each synthesized feature is derived
by implementing a series of operators on the original
visual features. Such operators are called composite
operators, which are represented by binary trees with
primitive operators as internal nodes and original fea-
tures as leaf nodes. The goal of these composite oper-
ators is to map the original visual feature space to the
low-dimensional synthesized feature space, in which the
images belonging to the same class form a Gaussian
component no matter how these images are distributed
in the original visual space.

The search space of all possible composite operators
is so large that it is difficult to find good composite op-
erators unless one has a smart search strategy. How to
design such a smart search strategy is the task for CGP
algorithm. We follow the CGP algorithm proposed in
[9], which attempts to improve the performance of ob-
ject recognition. Figure 2 shows the training and test-
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Figure 2: System diagram for object recognition using
co-evolutionary genetic programming.

ing modules of the system. During training, CGP runs
on training images and evolves composite operators to
obtain composite features. Since a Bayesian classifier
is derived from the feature vectors obtained from train-
ing images, both the composite operator vector and the
classifier are learned by CGP.
2.2.1 The set of primitive operators: A primitive
operator takes one or two real numbers, performs a
simple operation on them and outputs the result. Table
1 shows the 12 primitive operators being used, where a
and b are two real numbers as the inputs to an operator
and c is a constant real number stored in an operator.
2.2.2 Fitness measure: the fitness of a composite op-
erator vector is computed in the following way: apply
each composite operator of the composite operator vec-
tor on the original features of training images to obtain
composite feature vectors of training images and feed
them to a Bayesian classifier. Note that not all the orig-
inal features are necessarily used in feature synthesis.
Only the original features that appear in the leaf nodes
of the composite operator are used to generate compos-
ite features. The recognition rate of the classifier is the
fitness of the composite operator vector. To evaluate
a composite operator evolved in a sub-population, the
composite operator is combined with the current best
composite operators in other sub-populations to form
a complete composite operator vector where compos-
ite operator from the ith sub-population occupies the
ith position in the vector and the fitness of the vector
is defined as the fitness of the composite operator un-
der evaluation. The fitness values of other composite
operators in the vector are not affected. When sub-

Table 1: Twelve primitive operators.
Primitive Operator Description

ADD (a, b) Add a and b.

ADDC (a, c) Add constant value c to a.

SUB (a, b) Subtract b from a.

SUBC (a, c) Subtract constant value c from a.

MUL (a, b) Multiply a and b.

MULC (a, c) Multiply a with constant value c.

DIV (a, b) Divide a by b.

DIVC (a, c) Divide a by constant value c.

MAX2 (a, b) Get the larger of a and b.

MIN2 (a, b) Get the smaller of a and b.

SQRT (a) Return
√

a if a≥0;

otherwise, return −√−a.

LOG (a) Return log(a) if a≥0;

Rotherwise, return −log(−a).

populations are initially generated, the composite oper-
ators in each sub-population are evaluated individually
without being combined with composite operators from
other sub-populations. In each generation, the compos-
ite operators in the first sub-population are evaluated
first, then the composite operators in the second sub-
population and so on.
2.2.3 Parameters and termination: The key pa-
rameters are the number of sub-populations N , the
population size M , the number of generations G, the
crossover and mutation rates, and the fitness thresh-
old. GP stops whenever it finishes the specified num-
ber of generations or the performance of the Bayesian
classifier is above the fitness threshold. After termina-
tion, CGP selects the best composite operator of each
sub-population to form the learned composite operator
vector to be used in testing.
2.2.4 Selection, crossover and mutation: The
CGP searches through the space of composite opera-
tor vectors to generate new composite operator vec-
tors. The search is performed by selection, crossover
and mutation operations. The initial sub-populations
are randomly generated. Although sub-populations are
cooperatively evolved (the fitness of a composite oper-
ator in a sub-population is not solely determined by it-
self, but affected by the composite operators from other
sub-populations), selection is performed only on com-
posite operators within a sub-population and crossover
is not allowed between two composite operators from
different sub-populations.
Selection: The selection operation involves selecting
composite operators from the current sub-population.
We use tournament selection with size = 5. The higher
the fitness value, the more likely the composite operator
is selected to survive.

3



Crossover: Two composite operators, called parents,
are selected on the basis of their fitness values. The
higher the fitness value, the more likely the composite
operator is selected for crossover. One internal node in
each of these two parents is randomly selected, and the
two subtrees rooted at these two nodes are exchanged
between the parents to generate two new composite op-
erators, called offspring. It is easy to see that the size of
one offspring (i.e., the number of nodes in the binary
tree representing the offspring) may be greater than
both parents if crossover is implemented in such a sim-
ple way. To prevent code bloat, we specify a maximum
size of a composite operator (called max-operator-size).
If the size of one offspring exceeds the max-operator-
size, the crossover is performed again. If the size of an
offspring still exceeds the max-operator-size after the
crossover is performed 10 times, GP selects two sub-
trees of same size (i.e., the same number nodes) from
two parents and swaps the subtrees between the par-
ents. These two subtrees can always be found, since a
leaf node can be viewed as a subtree of size 1.
Mutation: To avoid premature convergence, mutation
is introduced to randomly change the structure of some
composite operators to maintain the diversity of sub-
populations. Candidates for mutation are randomly
selected and the mutated composite operators replace
the old ones in the sub-populations. There are three
mutations invoked with equal probability:
1) Randomly select a node of the composite operator
and replace the subtree rooted at this node by another
randomly generated binary tree.
2) Randomly select a node of the composite opera-
tor and replace the primitive operator stored in the
node with another primitive operator randomly se-
lected from the primitive operators of the same number
of input as the replaced one.
3) Randomly select two subtrees of the composite op-
erator and swap them.

The CGP algorithm is shown in Algorithm 1, and
more details can be found in [9].

2.3 Indexing structure
For each class Ci, a Bayesian classifier is generated
based on GP-learned composite features. In the low-
dimensional feature space, each class is corresponding
to a single Gaussian component, which is represented
by the mean feature vector and the covariance matrix
of feature vectors of this class.

We construct the indexing structure based on the
Gaussian components obtained by CGP approach.
When a query image comes, the system computes the
probabilities that it belongs to those components using
the components’ parameters (means and covariances),

Algorithm 1 Coevolutionary genetic programming.
1. Randomly generate N sub-populations of size M and eval-
uate each composite operator in each sub-population individ-
ually.
for gen = 1 to generation num do

for i =1 to N do
1) Implement standard EM algorithm on X .
2) Keep the best composite operator in sub-population Pi.
3) Perform crossover on the composite operators in Pi un-
til the crossover rate is satisfied and keep all the offspring
from crossover.
4) Perform mutation on the composite operators in Pi

and the offspring from crossover with the probability of
mutation rate.
5) Perform selection on Pi to select some composite op-
erators and combine them with the composite operators
from crossover to get a new sub-population P ′i of the same
size as Pi.
6) Evaluate each composite operator Cj in P ′i .
7) Perform elitism replacement.
8) Form the current best composite operator vector con-
sisting of the best composite operators from corresponding
sub-populations and evaluate it. If its fitness is above the
fitness threshold, goto 2.

end for
end for
2. Select the best composite operator from each sub-
population to form the learned composite operator vector and
output it.

and executes the search within the component with the
highest probability. The indexing structure implies two
advantages for image retrieval: 1) the search is car-
ried on only in the subset of the whole image database;
2) the search is carried on in the low-dimensional fea-
ture space. Both of these make the search faster; fur-
thermore, our CGP approach guarantees that the re-
trieval precision is high since the Bayesian classification
is good in the low-dimensional feature space.

3 Experiments
To evaluate the effectiveness of the CGP approach for
reducing the feature dimensionality of image databases,
we implement the CGP algorithm on three different
image databases with the purpose to evaluate its effec-
tiveness for different kinds of class distribution. All the
images in these three databases are selected from Corel
Stock Photo Library.We also compare the results of the
CGP approach with other approaches including MDA
and SVM.

3.1 Image Databases
1) DB1200: We select 1200 images belonging to 12
classes, and the images in each class have similar vi-
sual features, i.e., each class in the feature space forms
a cluster. These 12 classes are corresponding to the
CDs (series number) in the library including Mayan
& Aztec Ruins (33000), horses (113000), owls (75000),
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(1) CD owls (2) CD hawks and falcons

Class Bird Class Bird

(1) CD tulips (2) CD wildflowers

Class Flower Class Flower

(1) CD tigers (2) CD lions

Class Beast Class Beast

Figure 3: DB1500: sample images from the three
classes containing multiple CDs.

sunrises & sunsets (1000), North American wildflowers
(127000), ski scenes (61000, 62000), coasts (5000), auto
racing (21000), firework photography (73000), divers &
diving (156000), land of the Pyramids (161000) and li-
ons (105000).
2) DB1500: We add other 300 images (from other
three CDs in the Library) into DB1200 to obtain
DB1500. The three new CDs (series number) are
hawks and falcons (70000), tigers (108000) and tulips
(258000). Each of these three CDs is merged to one ex-
isting CDs in DB1200 to form a class, so that DB1500
still has 12 classes. In these 12 classes, there are three
classes each of which consists of two clusters in visual
feature space: the CD of Hawks and Falcons and the
CD of owls form the class of bird, the class of tulips and
the class of North American wildflowers form the class
of flowers, and the class of tigers and the class of lions
form the concept of wild beasts. Figure 3 shows the
sample images of these three classes containing mul-
tiple CDs. Obviously, DB1500 is challenging for the
linear transformation approach such as MDA, as we
will show later in the experiments.
3) DB6600: The 6,600 images are obtained from 66
CDs, which are assigned to 50 classes , i.e., each class
may consist of a single CD or multiple CDs. For in-
stance, the CDs Arabian horses and horses are assigned
to the same class since they are both for the same con-
cept of horse. On the other hand, even the images
within the same CD may form multiple clusters in sense
of visual features. For example, the CD of city of Italy
consists of images for different objects such as building,
road, people. For most of the classes, there are many
outlier images, each of whose visual features is far away
from the cluster(s) its corresponding class contains.

ADD

F5 F20

ADD

ADD

SQRT SQRT

SQRT

ADDC

SQRT

F12

F1F12

(a) (b)

Figure 4: Sample composite operator vectors in
DB6600 (the leaf nodes are original visual features):
(a) a simple composite operator vector, (b) a complex
composite operator vector.

Original visual features: Images are represented by
texture features, color features and structure features.
The texture features are derived from 16 Gabor filters
[11]. We also extract means and standard deviations
from the three channels in HSV color space. For struc-
ture features, we use the water-filling approach [12] to
extract 18 features from each image. Thus, each image
is represented by 40 visual features.

3.2 Experiments results

Experimental parameters: For each of the three
image databases, we randomly select half of the images
as training data and another half as testing data. We
implement CGP algorithm on the training images, and
the parameters values are: (a) sub-population size: 50;
(b) crossover rate: 0.6; (c) number of generation: 50;
(d) mutation rate: 0.05; (e) fitness threshold: 1.0; (f)
tournament size: 5. For both CGP approach and MDA
approach, we reduce the feature dimensionality from 40
to 10, so that it is fair to compare these two approaches.

Figure 4 gives two sample composite operator vec-
tors in DB6600. The complex case in (b) illustrates
that the unconventional combinations of the operators
exists in CGP, which may help to achieve good classi-
fication performance.
Classification performance: Table 2 shows the
classification performances of the approaches of CGP,
MDA, and SVM. The first two attempt to reduce the
feature dimensionality in the explicit ways, so that the
data in the same class form a single Gaussian compo-
nent in the lower-dimensional feature space. Thus, we
present their Bayesian classification errors in the lower-
dimensional (10D) feature space. Since SVM exploits
kernel trick instead of providing explicit transforma-
tion, we present its classification error in the original
visual feature space (40D).

From Table 2, we observe that the classification per-
formance of CGP is better than that of MDA on all
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Table 2: Classification errors: the comparison of the
three different approaches on different databases.

Database CGP (10D) MDA (10D) SVM (40D)

DB1200 14.8% 25.5% 12.6%

DB1500 16.5% 31.7% 29.6%

DB6600 51.8% 73.3% 52.6%

of the three databases. It is easy to understand the
significant advantage of CGP over MDA on DB1500
and DB6600, both of which contain some classes con-
sists of multiple clusters in the original visual feature
space. Therefore, the linear approach of MDA can-
not deal with them well. Although each of the class in
DB1200 only corresponds to a single cluster in the orig-
inal visual feature space, CGP still outperforms MDA
(14.8% versus 12.6%) due to the reason that the dis-
tribution of these clusters may not be Gaussian while
MDA assumes the cluster distribution as Gaussian and
CGP does not make such assumption.

We now compare CGP and SVM, which have similar
classification errors on DB1200 and DB6600. However,
the error (16.5%) by CGP is significantly superior to
that (29.6%) by SVM on DB1500, which implies that
CGP is more suitable to deal with the class consisted
of multiple clusters in the original feature space. With
many outliers in DB6600, such advantage of CGP is not
so obvious as in the case of DB1500 (CGP: 51.8% versus
MDA: 52.6%), and neither CGP nor SVM can yield
classification performance which is as good as those on
DB1500.
Retrieval performance: After reducing the feature
space, we construct the indexing structure based on the
Gaussian components obtained by CGP approach or
MDA approach. We use each of the image the database
as query, and obtain average retrieval precisions. Fig-
ure 5 shows the retrieval-precision curves on DB6600
by CGP and MDA. We observe that CGP yields better
retrieval results than MDA.

From above experiments, we conclude that (a) the
feature synthesizing by CGP has obvious advantage
over that by MDA in the sense of both classification
and retrieval. (b) The classification performance in the
synthesized feature space by CGP is comparable to or
even superior to that in the original feature space by
SVM.

4 Conclusions
This paper presents a coevolutionary genetic program-
ming (CGP) for feature dimensionality reduction. The
two characteristics of the transformation by CGP, i.e.,
nonlinearity and explicitness, make it suitable for im-
age retrieval: (a) the nonlinearity yields good classifica-
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Figure 5: DB6600: precision-recall curves: CGP versus
MDA.
tion performance without any class distribution model
assumption, and (b) the explicitness achieves the im-
age search in the low-dimensional feature space. Ex-
perimental results on multiple image databases with
different types of distributions have demonstrated the
effectiveness of improving image retrieval performance
by the CGP approach.
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