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Abstract—Deep learning models have been shown to be vulnerable to adversarial attacks. Adversarial attacks are imperceptible
perturbations added to an image such that the deep learning model misclassifies the image with a high confidence. Existing
adversarial defenses validate their performance using only the classification accuracy. However, classification accuracy by itself is not a
reliable metric to determine if the resulting image is “adversarial-free”. This is a foundational problem for online image recognition
applications where the ground-truth of the incoming image is not known and hence we cannot compute the accuracy of the classifier or
validate if the image is “adversarial-free” or not. This paper proposes a novel privacy preserving framework for defending Black box
classifiers from adversarial attacks using an ensemble of iterative adversarial image purifiers whose performance is continuously
validated in a loop using Bayesian uncertainties. The proposed approach can convert a single-step black box adversarial defense into
an iterative defense and proposes three novel privacy preserving Knowledge Distillation (KD) approaches that use prior
meta-information from various datasets to mimic the performance of the Black box classifier. Additionally, this paper proves the
existence of an optimal distribution for the purified images that can reach a theoretical lower bound, beyond which the image can no
longer be purified. Experimental results on six public benchmark datasets namely: 1) Fashion-MNIST, 2) CIFAR-10, 3) GTSRB, 4)
MIO-TCD, 5) Tiny-ImageNet, and 6) MS-Celeb show that the proposed approach can consistently detect adversarial examples and
purify or reject them against a variety of adversarial attacks.

Index Terms—Adversarial Defense, Bayesian uncertainties, Black box defense, Ensemble of defenses, Image purifiers, Knowledge
distillation, Privacy preserving defense.

F

1 INTRODUCTION

A LTHOUGH deep learning has had astounding success
on several image classification tasks, it has been shown

to be vulnerable to adversarial attacks [1] - [3]. Adversarial
attacks to an image are carefully crafted perturbations that
are so subtle that a human observer does not even notice
the modification at all, but can cause deep learning models
to misclassify the input. Adversarial attacks can broadly
classified into two categories namely: 1) white box, and
2) black box attacks. White box adversarial attacks assume
that the adversary has partial/full knowledge about the tar-
get model’s architecture, parameters, and training data [4],
whereas in the black box attack, the adversary lacks this
information [5]. In this paper we focus on defending against
black box adversarial attacks.

Current defenses against adversarial attacks can be clas-
sified into four approaches: 1) modifying the training data,
2) modifying the model, 3) using auxiliary tools, and 4)
detecting and rejecting adversarial examples. Modifying the
training data involves augmenting the training dataset with
adversarial examples and re-training the classifier [6] - [8]
or performing N number of pre-selected image transforma-
tions in a random order [9] - [12]. Modifying the model
involves pruning the architecture of the classifier [14] - [16]
or adding pre/post-processing layers to it [21] - [23]. The
category 1) and 2) approaches are not compatible to be
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used for defending Black box models because they require
information about the target model’s architecture/training
data which are not known.

Using auxiliary tools involves having an independent
module that is able to process the input before it is passed to
the classifier [26] - [28]. Detecting and rejecting adversarial
examples involve using domain adaptation techniques and
carrying out statistical analysis [30] - [33] to detect adversar-
ial examples. The approaches in the latter two categories
are the most suitable for defending Black box classifiers
as they do not require any information about the target
model’s architecture/training data. However, a drawback
of these approaches is that they do not quantify how much
adversarial component is left in the resulting purified image.
Further, these approaches are single-step defenses which
means that the defense can purify the image only once
and the defense assumes that the purified image is void of
all adversarial components. These defenses are trained on
annotated datasets and after achieving a reasonable perfor-
mance, they are deployed to defend real-world applications.
Once deployed it is assumed that all of the purified images
are no longer adversarial, but in reality this is not the case.

A foundational problem for online and safety-critical
applications [35] - [39] is that it is not possible to know
the annotations of all of the incoming input images,
and these single-step defenses do not have the ability to
determine by themselves whether the purified image is
adversarial or not which could further cause disastrous
results. To address this problem, this paper proposes a
general framework for defending black box classifiers
from adversarial attacks using an ensemble of iterative
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TABLE 1: Summary of related work for white box adversarial defense

Approach Authors Methods and Comments
Adversarial

training
Goodfellow et al. [3], Huang et al. [6]

Tramèr et al. [7], Zhang et al. [8]
Adversarial examples are introduced into the dataset to improve the robustness
of the training model with the legalized adversarial examples.

Gradient hiding Tramèr et al. [7] Hides the information about the gradient from adversaries. However, learning a
Substitute model through knowledge distillation can penetrate this defense.

Data
compression

Das et al. [9], Dziugaite et al. [10]
Xu et al. [23]

Used JPEG compression on input images and color scale normalization as a
pre-processing step to defend classifiers.

Data
randomization Xie et al. [24], Wang et al. [25] Performed random resizing and addition of random noise to reduce the effect

of the adversarial perturbations.
Image

transformation Guo et al. [11], Raff et al. [12] Used hand-crafted image transformations in a random order to remove the
effect of adversarial perturbations.

Blocking the
transferability Hosseini et al. [13] Performed three step null labeling method that classifies adversarial examples

into a ”null” class.
Defensive
distillation Papernot et al. [15] Defensive distillation is done by converting the softmax output logit probabilities

to create soft labels.
Thermometer

encoding Buckman et al. [21] Discretized the input by replacing pixel values with thermometer encoding.

Feature
denoising

Liao et al. [14], Xie et al. [16]
Mustafa et al. [17] Used feature disentanglement to defend against adversarial attacks.

Architecture
pruning

Liu et al. [18], Dhillon et al. [19]
Ye et al. [20]

Reduced the effect of the adversarial perturbation by pruning the architecture and
weights of the original classifier.

TABLE 2: Summary of related work for black box adversarial defense

Approach Authors Methods and Comments
Defense-GAN Samangouei et al. [101] Used Generative Adversarial Networks (GAN) to minimize the reconstruction error.
PixelDefend Song et al. [27] Used a PixelCNN to purify adversarial examples.
ShieldNets Theagarajan et al. [28] Used Probabilistic Adversarial Robustness (PAR).

MagNet Meng et al. [26] Used the reconstruction loss of an autoencoder to detect and purify adversarial attack.
SafetyNet Lu et al. [29] Detected if an image is adversarial using RGBD images.

Statistical testing Grosse et al. [31] Used kernel based two sample test to distinguish adversarial examples from the dataset.
Policy based

detection Lin et al. [32] Compared action distributions from previous replays to detect policy targeting attacks.

Bayesian
uncertainty

Rawat et al. [73]
Gal and Ghahramani [74] Distinguished between adversarial and original images using Bayesian uncertainties.

Ensemble of
iterative adversarial

defenses

Theagarajan and Bhanu
[94]

Used an ensemble of adversarial defenses to defend black box facial recognition
classifiers against adversarial attacks.

Theagarajan and Bhanu
(This paper)

1) Proposed a novel model agnostic defense framework that uses an ensemble of
adversarial defenses to iteratively purify adversarial images for various black box
applications, 2) showed the relationship between the adversarial image and its
corresponding purified image and, 3) proved the existence of a theoretical lower
bound in the input space beyond which the image cannot be further purified.

adversarial defenses whose performance is continuously
validated in a loop using Bayesian uncertainties. The paper
proposes three novel knowledge distillation approaches
for transferring the functionality of the black box classifier
into our defense. The experimental results on six different
datasets shows that our defense can be applied to defend
various black box applications ranging from the general
Fashion-MNIST [78] and CIFAR-10 [79] datasets to face
biometrics and classification of vehicles and traffic signs for
autonomous driving. In summary, the contributions of this
paper are as follows:

• To the best of our knowledge, this is the first approach
that defends against adversarial attacks using an ensemble
of iterative adversarial defenses and can convert any
single-step defense into an iterative adversarial defense.
• We prove theoretically and demonstrate empirically that
there exists a lower bound in the input space on the amount
of purification carried out on an image beyond which it can
no longer be purified.
• The paper proposes three novel privacy preserving
knowledge distillation approaches that exploit prior meta-
information of the training dataset in order to transfer the

functionality of the black box classifier into our defense
and it does not require any information such as the logits
probabilities [55], [56] or Teacher model architecture [63], [64].
• To the best of our knowledge there is no other work that
defends black box models from adversarial attacks without
any information of the model’s trained parameters or the
dataset that are used for training the model prior to our
work in [94].
• Exhaustive evaluation on six public benchmark datasets
shows that are approach is able to consistently purify/reject
adversarial examples. Various ablation studies show that it
is computationally expensive to break the defense of our
framework compared to stand-alone defenses.

2 RELATED WORK

In this section we describe state-of-the-art black box
adversarial defenses and knowledge distillation approaches
and contrast them with our approach. Tables 1 - 3 show
a summary of the related work done for white box,
black box adversarial defense, and knowledge distillation,
respectively. In contrast to the related work, our work is
significantly different in the following aspects:
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TABLE 3: Summary of the related work for knowledge distillation

Authors Comments
Orekondy et al. [56] Used the softmax logit probability scores and cross dataset images to distill knowledge.
Furlanello et al. [55] Decomposed the predictions of the white box model into incorrect prediction and ground-truth information.

Frosst and Hinton [63] Distilled deep networks to decision trees in order to explain the predictions.
Ba and Caruana [64] Distilled knowledge using the L2 norm between the logits of the white box Teacher and Student model.

Shin et al. [65] Used knowledge distillation for the purpose of minimizing forgetting in continuous learning
Tan et al. [66] Performed distillation using the difference in prediction between a white box Student and Teacher classifier.

Wang et al. [67] Explained the behavior of white box deep neural networks by transferring the functionality to a smaller model.

Song et al. [68] Used a dual branch student neural network to learn the latent space which is guided by a white box teacher
using Attentive Knowledge Distillation (AKD).

Tessler et al. [69] Proposed a hierarchical learning framework that consists of multiple Deep Skill Networks (DSN) to perform
knowledge transfer and life long learning.

Crowley et al. [70] Proposed structural model distillation to reduce the memory cost using block convolutions that produces a
student architecture that is a simple transformation of the white box teacher architecture.

Theagarajan and Bhanu
[94] Used publicly available crowd sourced images to probe and distill the knowledge of a black box classifier.

Theagarajan and Bhanu
(This paper)

Proposed three knowledge distillation approaches that exploit the prior meta-information of the training
datasets and showed that knowledge distillation can still be performed even when we do not have any
knowledge such as the logit probabilities [58], [59] or architecture about the black box classifier [63], [64]

Fig. 1: Overall framework of our approach. Faces are masked to hide the identity of individuals.

• Ensemble of Iterative Adversarial Attacks: To the
best of our knowledge, there is no other work that can
convert single-step adversarial defenses into an iterative
defense and also quantify the amount of adversarial
component in the output of the defense after each iteration.
• Relationship between Adversarial and Non-adversarial
images: This paper proves the existence of a lower bound
in the input space beyond which an image can no longer
be purified. We empirically verify this by showing the
convergence of all the individual defenses across multiple
iterations of purification.
• Knowledge Distillation using Meta-information: This is
the first approach that exploits only the meta-information of
a dataset to perform knowledge distillation on strict black
box classifiers. Unlike the related work shown in Table 6 we
assume we know neither the architecture of the classifier,
the output logit probabilities, nor the data distribution used
for training.

3 TECHNICAL APPROACH

Fig. 1 shows the overall framework of our approach. The
input image (X) first passes through the Bayesian Convolu-
tional Neural Network (CNN) and if the image is classified
as an adversarial image, it is purified by the ensemble of

independently trained iterative adversarial defenses. The
purified image from each defense algorithm is averaged
resulting in the average purified image (X ′i), where i refers
to the current iteration number. Next, X ′i is passed as
input back to the Bayesian CNN. If X ′i is not adversarial,
it is passed as input to the Black box classifier for final
classification, else, it is passed again as input to the ensemble
of adversarial defenses and this continues for M iterations.
After M iterations, if X ′M is still adversarial then the image
is rejected.

In Fig. 1, we chose to take the average of the purified
image of each individual defense as this further helps in
removing the high frequency adversarial perturbations [40],
[41] that may have not been purified by some of the in-
dividual defenses. Additionally, the number of iterations
for purification, M, is chosen empirically depending on the
training dataset used (see Section 3.4.1) and we prove the
existence of a theoretical lower bound beyond which an
image cannot be further purified (see Section 3.4.2).

3.1 Assumptions and Target Applications of our De-
fense

• Assumptions of our Defense: 1) The output of the Black box
model is the top predicted class without any probabilities.
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2) The architecture, parameters and entire training dataset of
the Black box are not known to both the adversary and the
defense algorithm. 3) The outputs of the Bayesian frame-
work and ensemble of adversarial image purifiers are not
shared with the adversary (i.e., the adversary can only see
the final classification of the Black box). Although this is a
strong assumption, we perform ablation studies to estimate
the computational burden required to break the defense,
when the adversary knows partial information about our
defense strategy (see Section 4.6).
• Reasons for our Assumptions: When black box classifiers
are made publicly available, they must neither reveal the
sensitive details of their training data nor the features
encoded within the classifier, but they must still be accu-
rate and solve the underlying learning task. This kind of
protection is also known as Security through Obscurity [42]
and it is important that these models preserve the privacy
of their sensitive training data. Advances in the field of
Differential Privacy Learning have shown that it is possible to
train black box classifiers without compromising the privacy
and personnel information contained within the training
dataset [43] - [46]. On the contrary, recent works have also
shown that it is possible for an adversary to create adver-
sarial attacks to determine if a specific data point was used
to train the model and thus causing a leak in sensitive infor-
mation [47] - [50]. There have also been similar news articles
such as the ban on facial recognition technology in the state
of California, USA [51] due to the misuse of information and
privacy concerns. Once personally identifiable information
is leaked, it is impossible to reverse it, hence it is imperative
that adversarial defenses protect black box classifiers against
adversarial attacks while at the same time maintain privacy.
For these reasons we assume that our defense has little to no
knowledge of the training data as well as the information on
the learned features of the black box classifier. Our proposed
defense approach is suited for black box applications that
require security against adversarial attacks and preserve
user privacy without giving away any sensitive informa-
tion. These include a wide variety of machine intelligence
applications such as human biometrics [94], [115], remote
surveillance [52], autonomous driving [53], etc.

3.2 Functionality Transfer via Knowledge Distillation

According to the assumptions described in Section 3.1,
we do not have any information about the target black
box model’s architecture, parameters, and training dataset,
hence we cannot directly use our defense algorithms. To
overcome this problem, we transfer the functionality of the
black box model to a substitute model using knowledge
distillation [54] - [56]. In this paper we assume that the target
black box classifier is deterministic (weights are fixed after
training) and ignore approaches that continuously update
the weights of the CNN (e.g., by using incremental [57] and
reinforcement learning [58]). Based on the above discus-
sion, we propose three novel Knowledge Distillation (KD)
approaches namely: KD-1, KD-2, and KD-3 that exploit the
meta-information related to the training datasets. Unlike the
approaches proposed in Table 3, our knowledge distillation
method is different because the approaches in Table 3 as-
sume that they have prior knowledge about the training

(a) Illustration of KD-1

(b) Illustration of KD-2

(c) Illustration of KD-3

Fig. 2: Illustration of (a) KD-1 using the Fashion MNIST
dataset, (b) KD-2 using the MIO-TCD dataset, and (c) KD-3
using the MS-Celeb dataset.
dataset or the logit probability of outputs and/or archi-
tecture of the target black box classifier. In our approach,
we assume a strict black box classifier where we have no
knowledge about the architecture or logit probabilities of
the black box classifier and the only observable output is
the single top predicted class. Fig. 2 shows illustrations of
our three knowledge distillation approaches.
Assumptions of our KD approaches:
• KD-1: We know the total number of classes, the names of
all the classes in the training dataset and Z% of images from
each class.
•KD-2: We know only the total number of classes, the names
of all the classes in the training dataset and the domain the
dataset belongs to.
• KD-3: We know only the total number of classes in the
training dataset and the domain the dataset belongs to.

In KD-2 and KD-3, domain refers to the application of
the black box classifier, e.g., classifiers trained on the MS-
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Celeb [59] and MIO-TCD [60] datasets generally belong to
the domain of face recognition and vehicle classification,
respectively.

3.2.1 Knowledge Distillation-1 (KD-1)

For this case we assume that we have access to Z% of images
of each class from the training dataset used to train the
black box classifier as shown in Fig. 2(a). For simplicity we
refer to the black box classifier as the Teacher model and our
substitute classifier as the Student model. Next, we randomly
select Z% of images from each class of the dataset and
use these images to train a Deep Convolutional Generative
Adversarial Network (DCGAN) [72]. After training the DC-
GAN, we probe the Teacher model with the images generated
using DCGAN and label them as the predicted class. We
then augment these labeled images to the Z% amount of
original images to create a pseudo-labeled dataset. In order
to have an equal data distribution between the original and
pseudo-labeled dataset, we made the number of images per
class in the pseudo-labeled dataset to be the same as the
original dataset used for training the Teacher model. Finally,
the pseudo-labeled dataset is used for training the Student
model (i.e., our substitute classifier).

In KD-1, since we randomly select Z% of images from
each class to train the DCGAN and create the pseudo-
labeled dataset, there is no guarantee that the selected
images will statistically represent an accurate distribution
of each class. To address this issue we perform k-fold cross
validation by selecting different Z% amount of images (see
Section 4.5). In our approach we set the value of Z to be 25%
and 50% and use the Fashion-MNIST [78], CIFAR-10 [79],
and GTSRB [80] datasets to evaluate KD-1.

3.2.2 Knowledge Distillation-2 (KD-2)

In KD-2, we do not have any knowledge about the images
or their data distribution, but we know the names of all
the classes and the total number of classes in the dataset as
shown in Fig. 2(b). Hence, we search for images belonging
to those classes from publicly available datasets. First, we
create a pseudo-labeled dataset by probing the Teacher model
with the images from the public domain and label these
images with the predicted class. It should be noted that since
we already know the names of the class the image belongs
to, we do not need to further probe the Teacher model and re-
label the images, but prior work done by [81] - [83] shows
that when we train the Student model with images that were
manually annotated by humans, the classification accuracy
with respect to the Teacher model is lower compared to
training the Student model with images that were annotated
entirely by the Teacher model. The reason for this is that
images that are misclassified by the Teacher model add a
regularizing effect while training the Student model, thus,
resulting in efficient functionality transfer [83].

Finally, after creating the pseudo-labeled dataset, we use
it for training the Student model. In this paper we use the
MIO-TCD [60] and Tiny ImageNet [84] dataset to evaluate
the KD-2 approach.

3.2.3 Knowledge Distillation-3 (KD-3)
In this setting we know only the total number of classes
in the training dataset and the domain of the dataset as
shown in Fig. 2(c). We neither have any knowledge of the
images in the training dataset nor we know the names of
the classes. This scenario occurs in large scale identification
applications such as face recognition and pedestrian re-
identification. Based on this we scour for images that belong
to this domain from publicly available datasets. Similar, to
KD-2 we probe the black box classifier with these images in
order to create the pseudo-labeled dataset and then use the
pseudo-labeled dataset to train the substitute classifier. We
evaluate the KD-3 approach using the MS-Celeb dataset [59]
that consists of facial images of over 99,000 celebrities. It
should be noted that in this paper we evaluate the KD-2 and
KD-3 approaches in two different settings: i) when there is
no overlap and ii) when there is 50% overlap between the
black box training dataset and the pseudo-labeled dataset
(see Table 6).

Comments: In both KD-1 and KD-2, although the Student
model is trained on a dataset that is entirely different from
the dataset used for training the Teacher model, we are
still able to distill some of the learned features from the
Teacher model. The reason for this is that the Teacher model
is assumed to be a deterministic model meaning that, after
training, the features learned are fixed and do not change
over time. Hence, when we probe a given image X , the
resulting prediction f(X) = Y will never change and with
a considerably large and diverse pseudo-labeled dataset,
the student model is able to distill the learned features of
the Teacher model and achieve good classification accuracy.
This observation is particularly advantageous to black box
applications that have an abundance of crowd-sourced im-
ages from various publicly available datasets such as the
field of face biometrics and vehicle classification. Note that
prior to [94], this observation had not been addressed and can
effectively be used for distilling the knowledge of robust
Black box classifiers into edge devices that usually have
compressed and shallow CNN architectures [95] - [98].

3.3 Uncertainty Prediction via Bayesian Learning

In the domain of adversarial defense, it is very important
to know the amount of adversarial perturbation that still
remains in the output image after it passes through any
defense algorithm. Bayesian methods offer a principled way
to represent these uncertainties in a model and can be uti-
lized to quantify a model’s confidence in its prediction [73].
Deep learning models f(·) consists of a set of weights w that
are optimized on a labeled dataset D = {xi, yi}Ni=1, where
xi and yi are the input data and corresponding ground-
truth, respectively. Bayesian inference involves learning a
posterior distribution over the weights p(w|D) which is
used for predicting unseen observations:

p(y|x,D) =

∫
p(y|x,w) p(w|D)dw (1)

The above integral is intractable because of the sheer num-
ber of parameters in deep learning models. To overcome
this, in our approach we design the Bayesian CNN using
Bayes by Backprop [75]. Bayes by Backprop is a variational
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inference to Bayesian neural networks where the posterior
is assumed to be a diagonal Gaussian distribution which
assumes independence among the variables. The Gaussian
posterior qθ(ω|D) is defined to be as similar as possible to
the original posterior p(ω|D) when measured by the KL
divergence [76]. Based on this the optimal parameters are
defined as:

θopt = arg min
θ

KL(qθ(w|D)||p(w))

− Eq(w|θ)(log p(D|w)) + log p(D)
(2)

After learning the approximate posterior distribution we
compute two uncertainty metrics namely: 1) Aleatoric, and
2) Epistemic uncertainties [77] which are given by:

Aleatoric Uncertainty =
1

S

S∑
i=1

diag(ĝi) − ĝi ĝTi (3)

Epistemic Uncertainty =
1

S

S∑
i=1

(ĝi − g̃)(ĝi − g̃)T (4)

where, S is the number of samples drawn from the posterior
distribution, g̃ = 1

S

∑S
i=1 ĝi and ĝi = fwi(x). It should

be noted that we trained the Bayesian CNN using the
same pseudo-labeled dataset used for training the Substitute
model as described in Section 4.4 and Table 6.

Aleatoric Uncertainty: It is a measure for the variation of
data. This value increases if certain classes are heavily un-
balanced or lack data. Adversarial images have been shown
to lie in the high frequency and low probability density
regions [27], [28], which is similar to highly unbalanced and
long-tailed datasets. This is also a reason why adversarial
training [3] is an effective white box defense.

Epistemic Uncertainty: It is caused by the model itself. It
is the ability of a model to learn robust and representative
features which depends on its architecture and parameters.
This value increases in the presence of adversarial attacks.

3.3.1 When is an image adversarial?
After learning the posterior distribution qθ(ω|D), we find
the minimum uncertainty for an adversarial image. For this
we generated adversarial images with the smallest perturba-
tion (i.e. ε = 1/255) for the Substitute model using three well
known attacks: IFGSM [3], BIM [34], and PGD [100]. Next,
these adversarial images are transferred to the Bayesian
CNN and we compute the average (µ) and standard devia-
tion (σ) of the Epistemic and Aleatoric uncertainties. Finally,
we set two thresholds T1 and T2 given by:

T1 = µ(Aleatoric) − 3σ(Aleatoric) (5)

T2 = µ(Epistemic) − 3σ(Epistemic) (6)

For a given image if at least one uncertainty is greater than
its corresponding threshold, we classify it as an adversarial
image and pass it as input to our ensemble of iterative
defenses. We chose the threshold values for T1 and T2 to
be as shown in Eq. (5) and (6) because, although µ - σ is
the least amount of uncertainty corresponding to annotated
training dataset D, there could be unseen attacks in the
real-world where the uncertainty value is below µ - σ. To
accommodate these unseen adversarial images we set T1

and T2 to be two standard deviations lower than µ - σ as
shown in Eq. (5) and (6).

3.4 Ensemble of Iterative Adversarial Defenses

The adversarial defenses used in this paper are auxiliary
generative networks that can be used in conjunction with
any classifier as a pre-processing step without modifying the
structure of the classifier. These approaches do not assume
any classifier model and are model agnostic. In this paper
we chose to use MagNet [26], PixelDefend [27], Shield-
Nets [28], and Defense-GAN [101] in our ensemble because
they achieve state-of-the-art results for white and black
box defense. It should be noted that the above mentioned
defenses are all single-step defenses and cannot quantify if
a purified image is adversarial or not. However, using our
defense framework, we are able to convert these single-step
defenses into iterative defenses and quantify the amount of
adversarial component remaining after each iteration of pu-
rification. Additionally, each of these individual defenses are
trained independently and this provides flexibility to alter
the structure of the ensemble, i.e., add/remove individual
defenses without affecting the entire framework (see Section
4.5.1). Unlike the related work done for adversarial defense
as shown in Table 1 and 2, we chose to use an ensemble
of defenses for two reasons: 1) we show that an ensemble
of defenses is able to statistically defend against adversarial
attacks much better compared to individual defenses (See
Section 4.5) and, 2) the output of the ensemble (the average
purified image) acts as a momentum which helps prevent
individual deterministic defenses from getting stuck at a
local minimum [103].

3.4.1 Empirical Determination of the Number of Iterations
for Purification

In Fig. 1, M is the maximum number of iterations an image
can be purified before being (a) passed as input to the black
box CNN or (b) rejected. The reason for this is that after
each iteration, the amount of purification done decreases
and after M iterations the ensemble is not able to further
purify the image. This situation arises when the adversarial
perturbation (ε) is very high causing the adversarial noise
to dominate the image, which makes it very difficult to
purify the image. This is a potential threat that an adversary
could use to lock our defense in a state of an infinite loop
of purification, thus crashing the defense framework. To
eliminate this threat, we set a threshold (M ) on the max-
imum number of iterations of purification before rejecting
an image. In order to empirically determine the value of
M , we attacked the Substitute CNN using the IFGSM [3],
BIM [34], and PGD [100] attacks with ε = 0.05, 0.1, and
0.2. We chose the values of ε within the range of 0.05 -
0.2 because this is the range an adversarial attack is likely
to fool a human observer and adversarial images with ε
> 0.2 make the resulting images more discernible to the
human eye [28], [94]. The resulting adversarial images are
then passed as input to our ensemble of image purifiers
for six iterations of purification. From this we quantify the
amount of purification done by measuring the L2 distance
between the input and output images at every iteration. Fig.
3 shows the plots for the amount of purification, Aleatoric,
and Epistemic uncertainties Vs. the number of iterations
of purification for the GTSRB [80], MIO-TCD [60], Tiny
ImageNet [84], and MS-Celeb [59] datasets with ε = 0.05
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(a) Amount of purification on GTSRB (b) Amount of purification on Tiny-ImageNet (c) Amount of purification on MIO-TCD

(d) Amount of purification on MS-Celeb (e) Aleatoric uncertainty on GTSRB (f) Aleatoric uncertainty on Tiny-ImageNet

(g) Aleatoric uncertainty on MIO-TCD (h) Aleatoric uncertainty on MS-Celeb (i) Epistemic uncertainty on GTSRB

(j) Epistemic uncertainty on Tiny-ImageNet (k) Epistemic uncertainty on MIO-TCD (l) Epistemic uncertainty on MS-Celeb

Fig. 3: (a) - (d) show the average amount of purification Vs. the number of iterations of purification, (e) - (h) show the
average Aleatoric uncertainties and, (i) - (l) show the average Epistemic uncertainties for the GTSRB [80], MIO-TCD [60],
Tiny-ImageNet [84], and MS-Celeb [59] datasets, respectively.
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and 0.1. From Fig. 3(a) - (d) we can see that after 3 iterations,
the amount of purification does not significantly change for
the GTSRB, and Tiny ImageNet datasets. Hence, we set the
value of M = 3 for these datasets. Similarly, for the MIO-TCD
and MS-Celeb datasets we set M = 4. It is also interesting to
note that, as the dimension of the input space increases (see
Table 5), the value of M also increases.

Note: Since the Bayesian uncertainties do not significantly
change after M iterations (see Fig. 3), in order to save
computational resources, we can purify all input images
for M iterations rather than verifying after each iteration
if the given image is still adversarial or not. By doing so,
we also risk the possibility of purifying non-adversarial
images and, this could affect the final classification (refer to
Section 4.5.1). Additionally, without the adversarial detector
we further invite the possibility of brute force attacks (i.e.,
attacks with severe adversarial perturbation). Prior work
done in [94] shows that such images cannot be purified
within M iterations and cause misclassifications, which in
turn could potentially compromise safety critical automated
applications. Ideally, such adversarial images would be
rejected by the adversarial detector after M iterations of
purification (see Fig. 2b in the supplementary material).

Hence after determining the value of M for a given
dataset, applications that do not pose significant risk may
not need the adversarial detector because the damage
caused by brute force adversarial attacks and misclassifying
non-adversarial images is negligible compared to safety crit-
ical automated applications such as remote surveillance [52]
and human biometrics [115], where it is critical to have the
adversarial detector.

3.4.2 Theoretical Lower Bound for the Amount of Purifica-
tion in the Input space
For a given image X ∈ RP×Q from datasetD, where P×Q is
the number of pixels in the image, an ε-bounded adversarial
image is denoted as X + δ, where δ belongs to the lp
bounded neighborhood ∆ = {δ ∈ RP×Q | ‖δ‖p ≤ ε} to
X . The individual adversarial defenses πω(X ′|X + δ) are
expected to map the adversarial images from adversarial
regions back to a space within ∆, where ω are the trainable
parameters of the defense and X ′ is the output of the
defense. Adversarial attacks on any classification task with
a loss function of L(X ′, Y ; θ), where, θ are the parameters
of the black box classifier, can be achieved by optimizing,

arg max
δ∈∆

∫
∆
πω(X ′|X + δ) L(X ′, Y ; θ)dX ′. (7)

The loss function of the adversarial defense (LDef ) can be
expressed as the marginalized expectation:

LDef = E
(X,Y )∼D

∫
∆
EX′∼πω(X′|X+δ)

[
L(X ′, Y ; θ)

]
p(δ)dδ

(8)
where p(δ) represents the distribution of adversarial sam-
ples in ∆. The theoretical possibility of the adversarial
defense to neutralize the adversarial images is supported
by the following theorem:

Theorem 1. Assume L(X ′, Y ; θ) is continuous in X + ∆ and
πω(X ′|X + δ) is supported onX+∆, there exists a lower bound
for LDef in space ∆. If πω(X ′|X + δ) = δDirac(X

′−X−β0),
LDef reaches the lower bound, where β0 = arg minβ∈∆ L(X+
β, Y ; θ).

Proof of Theorem 1: Since L(X +β, Y ; θ) is continuous and
∆ is compact, β0 = arg minβ∈∆ L(X + β, Y ; θ), where β0

is the lower bound space within ∆ beyond which an image
cannot be further purified. Assume p(δ) is a distribution that
only supports in ∆ and πω supports in X + ∆,

LDef = E
(X,Y )∼D

∫
∆
EX′∼πω(X′|X+δ)

[
L (X ′, Y ; θ)

]
p(δ)dδ

(9)

= E
(X,Y )∼D

∫
∆
p(δ)dδ

∫
X+∆

dX ′πω(X ′ | X + δ)L (X ′, Y ; θ)

(10)

≥ E
(X,Y )∼D

∫
∆
p(δ)dδ

∫
X+∆

dX ′πω(X ′ | X + δ)(
min
X′∈∆

L (X ′, Y ; θ)

) (11)

= E
(X,Y )∼D

∫
∆
p(δ)dδ

∫
X+∆

dX ′πω(X ′ | X + δ)

L (X + β0, Y ; θ)
(12)

= E
(X,Y )∼D

∫
∆
p(δ)dδL (X + β0, Y ; θ) (13)

= E
(X,Y )∼D

L (X + β0, Y ; θ) (14)

The equality is satisfied when πω(X ′|X + δ) = δDirac(X
′ −

X−β0). Theorem 1 is further empirically supported by Fig.
3. In Fig. 3(a) - (d) it can be seen that after M iterations the
amount of purification significantly decreases and the image
can no longer be purified. This also means that after M iter-
ations, the adversarial image Xadv is transformed/purified
to X’ ∈ β0, beyond which it cannot be further purified.
Additionally, from Fig. 3 it can be seen that as the amount of
purification decreases after each iteration (Fig. 3(a) - (d)), the
aleatoric and epistemic uncertainties also gradually decrease
(Fig. 3(e) - (l)) and after M iterations they do not significantly
vary because the amount of purification does not change.
This further emphasizes that the resulting purified image X’
has been reached the lower bound within the input space
β0 ∈ ∆ and cannot be further purified.

4 EXPERIMENTAL RESULTS

4.1 CNN Architectures
Table 4 shows the architectures of the CNN used in our
approach for adversarial defense. For fair comparisons, the
CNN architectures in Table 4 are the same as those reported
in [28] and [94]. We evaluate our black box defense by
creating an adversarial Substitute CNN and transfer the
adversarial images generated for the adversary’s Substitute
as input to our defense [5], [99]. In Table 4 we used the
same CNN architecture and training data for our defense’s
Substitute as well as the adversary’s Substitute. By doing so
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TABLE 4: CNN architectures

CNN Architectures
Target Black Box CNN ResNet

Defense Substitute CNN VGG
Bayesian CNN Bayesian VGG

Adversary’s Substitute CNN VGG

we are giving the adversary an equal amount of knowl-
edge as to our defense Substitute model in order to have
a fair evaluation of our defense. Although we chose the
architecture of the black box classifier to be ResNet [105],
it should be noted that our framework in general can be
adopted to other classifier as well. In fact, our prior work
done in [94], shows results for a black box classifier with
VGG architecture [106].

4.2 Datasets

We evaluate our defense on six public benchmark datasets
namely: Fashion-MNIST [78], CIFAR-10 [79], GTSRB [80],
MIO-TCD [60], Tiny ImageNet [84], and MS-Celeb [59].
Table 5 shows a summary of all the datasets and Fig. 4 shows
examples of images from the six datasets used in this paper.
• Fashion-MNIST: Fashion MNIST was designed to be a
much more difficult and drop-in replacement for the MNIST
dataset [87]. The dataset consists of 60,000 training and
10,000 testing gray-scale images of size 28x28 distributed
evenly into 10 different classes.
• CIFAR-10: CIFAR-10 is another widely used dataset that
consists of 50,000 training and 10,000 testing RGB images of
size 32x32 distributed evenly into 10 different classes.
• GTSRB: The GTSRB dataset consists of 51,883 images of
traffic sign in Germany. The dataset is split into 43 different
classes with 39,295 training and 12,631 testing images.
• MIO-TCD: The MIO-TCD dataset consists of two sub-
datasets namely: MIO-TCD Classification and MIO-TCD
Localization. The dataset consists of images of vehicles
captured from various traffic cameras installed on the roads
all over the USA and Canada. The dataset is split into 11
classes with 519,164 training and 129,795 testing images for
the classification subset. The localization subset is split into
11 classes with 110,000 training and 27,743 testing images.
• Tiny-ImageNet: The Tiny-Imagenet consists of 200 classes
with 500 training and 50 testing images per class. The 200
classes were collected from the Synsets of the WordNet [86]
hierarchy and is similar to the ImageNet dataset [85].
•MS-Celeb: The MS-Celeb dataset consists of approximately
9.5M images for 99,892 celebrities. It has been shown that
this dataset is extremely noisy with many incorrect annota-
tions [88] - [91]. In order to reduce the noise due to incorrect
annotation, we followed the approach proposed by Jin et
al. [93] which uses the community detection algorithm [92].
Based on this, the authors provided a list of correctly an-
notated images and showed that approximately 97.3% of
images in the dataset are correctly labeled. This results in a
total of approximately 6.5M images for 94,682 celebrities.

4.3 Threat Models

In this sub-section we define the adversarial attacks that are
used for evaluating our defense. For a given test image-
label pair (X,Y ), adversarial attacks find a perturbation

(a) Fashion-MNIST (b) CIFAR-10 (c) GTSRB

(d) MIO-TCD (e) Tiny-ImageNet (f) MS-Celeb

Fig. 4: Example of images from the (a) Fashion-MNIST [78],
(b) CIFAR-10 [79], (c) GTSRB [80], (d) MIO-TCD [60], (e)
Tiny-ImageNet [84], and (f) MS-Celeb [59] datasets, respec-
tively. For ethical concerns and in order to preserve the
identities of the celebrities in the MS-Celeb dataset we have
masked the top portion of the faces.

δ with ||δ||∞ ≤ ε such that a deep learning classifier f(·)
results in f(X + δ) 6= Y . ε is a hyper-parameter that sets the
perturbation limit for each pixel in X on the color scale.

• Iterative Fast Gradient Sign Method (IFGSM) [3]: This
attack uses the sign of the gradients at every pixel to
determine the direction of perturbation.

Xadv
n+1 = Xn + ε · sign(5XL(X,Y )) (15)

• Basic Iterative Method (BIM) [34]: This attack extends the
FGSM attack [3] by iterating it multiple times with a small
step size.

Xadv
n+1 = Clipε(Xn + α · sign(5XL(Xn, Y ))) (16)

• Projected Gradient Descent [100]: This attack computes
the gradient in the direction of the highest loss and projects
it back to the lp norm around the sample.

Xadv
n+1 =

ε∏
(Xn + α · sign(5XL(Xn, y))) (17)

In eq. (15) - (17), Xadv is the resulting adversarial image,
5XL(X,Y ) is the loss function used to train the CNN, α is
the iterative step size, Clip (·) and

∏
(·) are the clipping and

projection functions, respectively.

4.4 Performance Evaluation of the Proposed KD Ap-
proaches
In this sub-section we evaluate the KD-1 approach using
the Fashion-MNIST [78], CIFAR-10 [79], and GTSRB [80]
datasets. We evaluate KD-2 using the MIO-TCD [60] and
Tiny-ImageNet [84] datasets and finally, we evaluate KD-3
using the MS-Celeb [59] dataset.

4.4.1 Knowledge Distillation on the MIO-TCD Dataset
This dataset consists of two parts: 1) classification dataset,
and 2) localization dataset. We trained the Teacher model
using the MIO-TCD classification dataset and used the
localization dataset to create our pseudo-labeled dataset
for training the Student model. It should be noted that in
the MIO-TCD classification dataset, we ignored the class
“Background” because this class does not belong in the
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TABLE 5: Summary of the datasets used in this paper.

Dataset Image size Domain Grayscale/
RGB

Number
of classes

Balanced
classes?†

Training
data

Testing
data

Fashion-MNIST 28 x 28 Fashion Grayscale 10 Yes (6,000) 60,000 10,000
CIFAR-10 32 x 32 General RGB 10 Yes (5,000) 50,000 10,000
GTSRB 64 x 64* German traffic signs RGB 43 No 39,252 12,630

Tiny ImageNet 64 x 64 General RGB 200 Yes (500) 100,000 10,000
MS-Celeb 128 x 128* Celebrity faces RGB 100 No 8,933 2,177
MIO-TCD 224 x 224** USA & Canada vehicles RGB 10 No 359,164 129,796

*images are resized to the specified size. ** shorter side of the image is resized to 256 while maintaining the aspect ratio, and then center
is cropped to the size of 224 x 224. † The Number in parentheses indicates the number of images per class.

TABLE 6: Performance evaluation and comparison of our KD approaches with respect to the Teacher (black box) classifier.

Training dataset
(Teacher classifier)

Testing dataset (Teacher
& student classifier)

Teacher
accuracy (%) KD algorithm Pseudo-labeled training

dataset (student classifier)
Student

accuracy (%)

Fashion-MNIST
training dataset

Fashion-MNIST
testing dataset 93.51

KD-1 (Z = 25%) Z 77 .16 ± 1.55
KD-1 (Z = 25%) Z + GAN 89.67 ± 1.32
KD-1 (Z = 50%) Z + GAN 91.63 ± 0.76

CIFAR-10 training
dataset

CIFAR-10 testing
dataset 95.31

KD-1 (Z = 25%) Z 58.16 ± 2.63
KD-1 (Z = 25%) Z + GAN 85.79 ± 1.78
KD-1 (Z = 50%) Z + GAN 88.42 ± 1.26

GTSRB training dataset GTSRB testing dataset 96.45
KD-1 (Z = 25%) Z 68.80 ± 3.07
KD-1 (Z = 25%) Z + GAN 90.34 ± 1.04
KD-1 (Z = 50%) Z + GAN 91.79 ± 0.68

MIO-TCD classification
training dataset

MIO-TCD classification
testing dataset 94.68

KD-2 MIO-TCD localization 84.51
KD-2 + 50%

overlap
MIO-TCD localization + 50%

MIO-TCD classification 89.04 ± 0.83

Tiny ImageNet
training dataset

Tiny ImageNet
testing dataset

Top 1: 46.79
Top 5: 72.30

KD-2 200 classes from ImageNet
training dataset

Top 1: 40.85
Top 5: 64.37

KD-2 + 50%
overlap

200 classes from ImageNet
+ 50% Tiny ImageNet

Top 1: 41.33 ± 0.57
Top 5: 65.59 ± 1.08

MS-Celeb 75% of 100
celebrities for training

25% of 100 celebrities
for testing 90.32 ± 1.56

KD-3 Every other celebrity 74.58 ± 3.72
KD-3 + 50%

overlap
Every other celebrity + 50%

of the 100 celebrities 76.40 ± 2.47

localization dataset [71]. Based on this we probed the Teacher
model and created the pseudo-labeled dataset such that each
class had at least 1,713 images.

4.4.2 Knowledge Distillation on the Tiny ImageNet Dataset
The Tiny ImageNet dataset consists of 200 classes and this
dataset is used for training the Teacher model and the pseudo-
labeled dataset is created using the ImageNet dataset [85].
It should be noted that we use only those corresponding
200 classes in the ImageNet dataset to create the pseudo-
labeled dataset. Based on this we probed the Teacher model
and created the pseudo-labeled dataset such that each class
had at least 487 images

4.4.3 Knowledge Distillation on the MS-Celeb Dataset
In order to train the Teacher model, we manually selected
100 celebrities that had at least 100 images after discarding
images that had extremely skewed poses and celebrities
wearing sunglasses. A complete list of all of the selected
facial identities used for training the Teacher model is pro-
vided in the supplementary material. We denote this dataset
as Q1:100 (Qi is the identity of the celebrity) and it is used
for training the Teacher model. In order to train the Student
model we first create a pseudo-labeled dataset by probing the
Teacher model with images of celebrities that do not belong in
Q1:100 and labeled the images with the predicted class. We
denote this pseudo-labeled dataset as Q101:∞ and it should
be noted that the dataset Q1:100 and Q101:∞ contain images
of different celebrities and their data distributions do not
overlap (ignoring the noise due to incorrect annotations).

Based on this we augmented 3,000 pseudo-labeled images
per class in the Q101:∞ dataset. In the MIO-TCD and MS-
Celeb datasets we chose the number of augmented images
in the pseudo-labeled dataset to be at least 1,713 and 487
images, per class, respectively, because this is the maximum
number of images possible for the class with the least
number of images. Table 6 shows the baseline performance
comparison between the Student model (defense substitute
classifier) and the Teacher model (black box classifier). In
Table 6 although the Teacher model outperforms the Student
model, it can be seen that as the overlap between the Teacher
model’s training dataset and the student model’s pseudo-
labeled dataset increases, the performance of the Student
model also increases. For the following experimental results
in Section 4.5, we train our defense framework to defend the
Student model in Table 6 and then deploy the trained defense
framework to defend the black box classifier.

4.5 Performance Evaluation of Adversarial Detection
using Bayesian Uncertainties

Table 7 shows the performance evaluation of our adversarial
detection using Bayesian uncertainties. For the results in
Table 7 we created adversarial images using the IFGSM at-
tack [3] with ε = 0.05 and 0.2 and passed both the adversarial
and non-adversarial images as inputs to the Bayesian CNN.
From Table 7 when ε = 0.05, we can see that our approach
achieves at least 69.05% accuracy on the Tiny-ImageNet
dataset [84] and at most 93.51% on the Fashion-MNIST
dataset [78]. The reason for this is that the Fashion-MNIST
dataset contains images with one foreground object in a
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TABLE 7: Performance evaluation of adversarial detection
using Bayesian uncertainties.

IFGSM attack with ε = 0.05

Dataset Accuracy
(%)

False Positive
(%)

False Negative
(%)

F-MNIST 93.51 3.95 2.54
CIFAR-10 79.34 15.26 5.40
GTSRB 91.06 6.36 2.58

MIO-TCD 87.74 9.77 2.49
Tiny- ImageNet 69.05 23.94 7.01

MS-Celeb 72.93 20.15 6.92
IFGSM attack with ε = 0.2

F-MNIST 98.34 1.13 0.53
CIFAR-10 95.47 3.65 0.88
GTSRB 97.61 1.38 1.01

MIO-TCD 97.03 2.16 0.81
Tiny-ImageNet 92.58 5.35 2.07

MS-Celeb 93.45 4.91 1.64

completely black background compared to Tiny-ImageNet
which has a more complex background (please refer the
supplementary material for visual comparisons on all of
the datasets). Furthermore, in Table 7 when ε = 0.05, the
false positive is significantly higher than the false negative,
meaning that more non-adversarial images were predicted
as adversarial images than vice-versa. In the context of
adversarial detection it is better to have a higher false
positive rate compared to false negative rate because the
damage caused by misclassifying an adversarial image is
more than misclassifying a non-adversarial image [112] -
[114]. Moreover, as the adversarial perturbation (ε) increases
from 0.05 to 0.2, the Signal-to-Noise ratio (SNR) of the image
starts to decrease making the adversarial noise more easily
visible to the human eye as well as easily detected using
the Bayesian CNN [94]. As shown in Fig. 3(a) - 3(i), after M
iterations of purification, these images would automatically
be rejected by the system if the predicted uncertainty values
are above the corresponding thresholds.

4.5.1 How does purifying non-adversarial images affect the
classification?
In this sub-section we perform experiments to observe how
purifying the non-adversarial images affect the final classi-
fication. Table 8 shows the total number of non-adversarial
images (i.e., images that failed to fool the black box clas-
sifier) using the IFGSM attack with ε = 0.05 and the total
number of images predicted correctly after one iteration of
purification.

TABLE 8: Performance evaluation of purifying non-
adversarial images.

Dataset Total No. of non-
adversarial images

Images correctly classified
after purification*

F-MNIST 3920 3871 (98.8%)
CIFAR-10 2617 2588 (98.9%)
GTSRB 4042 3965 (98.1%)

Tiny-
ImageNet 1276 1257 (98.5%)

MIO-TCD 26439 26305 (99.5%)
MS-Celeb 562 547 (97.4%)
*corresponds to images correctly classified with respect to the
predictions of the black box before and after purification

In Table 8, a correctly classified image is defined as: for
a given image X, the predicted label of black box f is Y, (i.e.

f(X) = y). The corresponding purified image X’ has a black
box predicted label Y’, (i.e. f(X’) = Y’). If Y = Y’ then the
image is correctly classified, but it should be noted that Y
and Y’ do not necessarily correspond to the human anno-
tated ground-truth. From Table 8 we can see that the least
possible accuracy is 97.4% which indicates that even after
one iteration of purification, the non-adversarial images are
not significantly altered to cause severe misclassification.

4.6 Performance Evaluation and Comparison of our
Defense Against Adversarial Attacks
Tables 9 - 14 show the performance and comparison of our
approach against the state-of-the-art on the GTSRB [80],
Tiny-ImageNet [84], MIO-TCD [60], and MS-Celeb [59]
datasets described in Section 4.2. Tables 1 - 4 in the supple-
mentary material show the performance and comparison of
our approach on the Fashion-MNIST [78] and CIFAR-10 [79]
datasets. Note that in Tables 9 - 14 all of the single-step
adversarial defenses (MagNet [26], PixelDefend [27], Shield-
Nets [56], and Defense-GAN [101]) have been converted into
iterative defenses using our framework. From Tables 9 - 14
it can be seen that our ensemble of defenses outperforms
all the stand-alone defenses. Although, as the perturbation
limit (ε) of the adversarial attack increases, the performance
of all the approaches in Tables 9 - 14 gradually decrease, but
there is also a gradual increase in the Bayesian uncertainty
metrics. This means that even if an adversary tries to break
our defense by significantly increasing the value of (ε), the
resulting adversarial image would still be rejected because
the uncertainty values of the image are beyond the threshold
limits T1 and T2. By increasing the value of (ε) in order to
break a defense may seem trivial, however, it is still a foun-
dational problem in online applications where there is no
human in the loop [38], [39]. In Table 10, we report the Top
5 classification accuracy for the Tiny ImageNet as this is the
metric that is used for evaluating the dataset. Additionally,
the adversarial images used in Table 10 were generated such
that the top 5 predictions for an adversarial image do not
contain the ground-truth label (Y ), i.e., Y /∈ {Y ′i=1:5}.

4.6.1 Ablation Study for Evaluating Different Combinations
of Ensembles of Iterative Defenses
In this sub-section we perform an ablation study to evaluate
different combinations of ensembles of adversarial defenses
and compare their performance. For this purpose we chose
to use the Fashion-MNIST [78] and CIFAR-10 [79] dat-
sets and the following adversarial defenses: MagNet [26],
PixelDefend [27], ShieldNets [56], and Defense-GAN [101].
Table 15 shows the comparisons of different ensembles.

From Table 15 it can be seen that using the ensemble
MPSD and MSD achieves the best classification accuracy
on the Fashion-MNIST dataset against the IFGSM and
BIM attack, respectively. Similarly, using the ensemble MPS
achieves the best classification accuracy on the CIFAR-10
dataset against the IFGSM and BIM attacks. It is also in-
teresting to note that although some of the combinations
of ensembles such as MS on the CIFAR-10 dataset and
MSD on the Fashion-MNIST dataset had lower aleatoric
and epistemic uncertainties compared to MPS and MPSD,
respectively, their classification accuracy was lower by at
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TABLE 9: Performance comparison of our Defense on the GTSRB dataset using the KD-1 approach with Z = 25% and 50%.

ε = 0.1 (26/255)
GTSRB KD 1 (Z = 25%) GTSRB KD 1 (Z = 50%)

T1 = 0.0541 T2 = 0.0583 T1 = 0.0525 T2 = 0.0570

Attack Defense Accuracy (%) Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty Accuracy (%) Avg. Aleatoric

uncertainty
Avg. Epistemic

uncertainty

IFGSM

No Defense 28.93 - - 28.93 - -
MagNet 83.50 ± 3.47 0.0527 ± 0.0093 0.0570 ± 0.0084 84.01 ± 3.12 0.0497 ± 0.0091 0.0515 ± 0.0087

ShieldNets 86.19 ± 3.20 0.0493 ± 0.0079 0.0513 ± 0.0074 86.89 ± 3.35 0.0477 ± 0.0080 0.0483 ± 0.0077
PixelDefend 76.27 ± 2.68 0.0561 ± 0.0081 0.0584 ± 0.0085 79.43 ± 2.81 0.0537 ± 0.0084 0.0534 ± 0.0088

Ensemble 89.26 ± 3.07 0.0481 ± 0.0076 0.0462 ± 0.0083 89.94 ± 2.74 0.0467 ± 0.0090 0.0471 ± 0.0081

BIM

No Defense 22.05 - - 22.05 - -
MagNet 81.79 ± 3.28 0.0533 ± 0.0080 0.0564 ± 0.0084 81.33 ± 3.76 0.0539 ± 0.0074 0.0548 ± 0.0079

ShieldNets 84.25 ± 3.79 0.0487 ± 0.0087 0.0526 ± 0.0082 86.07 ± 3.16 0.0459 ± 0.0081 0.0502 ± 0.0078
PixelDefend 79.03 ± 3.14 0.0544 ± 0.0077 0.0558 ± 0.0093 80.76 ± 2.91 0.0532 ± 0.0085 0.0537 ± 0.0081

Ensemble 86.18 ± 3.44 0.0473 ± 0.0089 0.0485 ± 0.0081 86.97 ± 3.03 0.0482 ± 0.0083 0.0460 ± 0.0095

PGD

No Defense 24.51 - - 24.51 - -
MagNet 82.83 ± 3.81 0.0511 ± 0.0086 0.0541 ± 0.0074 83.44 ± 3.17 0.0518 ± 0.0070 0.0510 ± 0.0073

ShieldNets 86.42 ± 3.28 0.0465 ± 0.0078 0.0513 ± 0.0090 86.95 ± 3.47 0.0472 ± 0.0093 0.0496 ± 0.0078
PixelDefend 80.43 ± 3.50 0.0521 ± 0.0080 0.0531 ± 0.0092 82.04 ± 2.93 0.0503 ± 0.0088 0.0508 ± 0.0080

Ensemble 88.41 ± 3.28 0.0496 ± 0.0083 0.0470 ± 0.0088 89.40 ± 3.53 0.0451 ± 0.0090 0.0457 ± 0.0074

TABLE 10: Performance comparison of our Defense on the Tiny ImageNet dataset using the KD-2 approach.

ε = 0.1 (26/255)
Black box training data = Tiny ImageNet

Defense training data = ImageNet
Black box training data = Tiny ImageNet

Def. training data = ImageNet + 50% Tiny ImageNet
T1 = 0.0635 T2 = 0.0657 T1 = 0.0598 T2 = 0.0647

Attack Defense Top 5 Accuracy
(%)

Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty

Top 5 Accuracy
(%)

Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty

IFGSM

No Defense 12.76 - - 12.76 - -
MagNet 42.66 0.0587 ± 0.0097 0.0645 ± 0.0107 44.57 ± 1.24 0.0523 ± 0.0089 0.0607 ± 0.0095

ShieldNets 45.83 0.0543 ± 0.0086 0.0600 ± 0.0095 47.17 ± 1.06 0.0527 ± 0.0082 0.0571 ± 0.0088
PixelDefend 38.29 0.0622 ± 0.0103 0.0651 ± 0.0089 40.07 ± 0.97 0.0591 ± 0.0099 0.0605 ± 0.0106

Ensemble 46.34 0.0577 ± 0.0088 0.0562 ± 0.0083 50.34 ± 1.08 0.0528 ± 0.0080 0.0526 ± 0.0078

BIM

No Defense 14.97 - - 14.97 - -
MagNet 45.29 0.0535 ± 0.0081 0.0581 ± 0.0079 45.80 ± 0.87 0.0521 ± 0.0090 0.0569 ± 0.083

ShieldNets 47.93 0.0522 ± 0.0085 0.0546 ± 0.0093 49.27 ± 1.11 0.0508 ± 0.0079 0.0518 ± 0.0086
PixelDefend 41.75 0.0570 ± 0.0097 0.0636 ± 0.0102 42.39 ± 0.72 0.0560 ± 0.0108 0.0627 ± 0.0094

Ensemble 49.02 0.0560 ± 0.0092 0.0529 ± 0.0079 50.86 ± 1.04 0.0483 ± 0.0091 0.0502 ± 0.0077

PGD

No Defense 8.24 - - 8.24 - -
MagNet 40.17 0.0609 ± 0.0108 0.0638 ± 0.0091 41.85 ± 1.37 0.0587 ± 0.0110 0.0611 ± 0.0087

ShieldNets 41.28 0.0574 ± 0.0090 0.0625 ± 0.0098 43.18 ± 1.30 0.0571 ± 0.0103 0.0604 ± 0.0093
PixelDefend 35.16 0.0641 ± 0.0105 0.0683 ± 0.0092 37.90 ± 1.45 0.0635 ± 0.0097 0.0667 ± 0.0094

Ensemble 42.86 0.0566 ± 0.0082 0.0619 ± 0.0086 44.01 ± 1.08 0.0534 ± 0.0080 0.0579 ± 0.0089

TABLE 11: Performance comparison of our Defense on the MIO-TCD classification dataset using the KD-2 approach with
no overlap between the black box and pseudo-labeled training dataset.

Black box training data = MIO-TCD Classification; Defense training data = MIO-TCD Localization
ε = 0.05 (13/255) ε = 0.1 (26/255)

T1 = 0.0604 T2 = 0.0689 T1 = 0.0604 T2 = 0.0689

Attack Defense Accuracy (%) Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty Accuracy (%) Avg. Aleatoric

uncertainty
Avg. Epistemic

uncertainty

IFGSM

No Defense 20.37 - - 13.52 - -
MagNet 83.65 0.0548 ± 0.0097 0.0609 ± 0.0094 73.28 0.0588 ± 0.0094 0.0637 ± 0.0102

ShieldNets 84.51 0.0533 ± 0.0104 0.0588 ± 0.0087 75.89 0.0579 ± 0.0089 0.0618 ± 0.0096
PixelDefend 75.06 0.0583 ± 0.0092 0.0645 ± 0.0095 69.57 0.0632 ± 0.0085 0.0683 ± 0.0094

Ensemble 85.80 0.0527 ± 0.0082 0.0568 ± 0.0096 77.04 0.0547 ± 0.0082 0.0607 ± 0.0079

BIM

No Defense 18.36 - - 14.21 - -
MagNet 82.79 0.0539 ± 0.0110 0.0575 ± 0.0093 74.01 0.0576 ± 0.0091 0.0621 ± 0.0084

ShieldNets 81.08 0.0557 ± 0.0089 0.0571 ± 0.0076 72.60 0.0589 ±0.0083 0.0635 ± 0.0105
PixelDefend 76.92 0.0569 ± 0.0087 0.0622 ± 0.0108 67.83 0.0645 ± 0.0095 0.0702 ± 0.0090

Ensemble 84.16 0.0512 ± 0.0084 0.0545 ± 0.0091 74.58 0.0559 ± 0.0084 0.0613 ± 0.097

PGD

No Defense 15.89 - - 12.76 - -
MagNet 80.55 0.0570 ± 0.0095 0.0598 ± 0.0084 73.96 0.0569 ± 0.0104 0.0602 ± 0.0094

ShieldNets 81.25 0.0549 ± 0.0078 0.0601 ± 0.0103 75.07 0.0572 ± 0.0087 0.0626 ± 0.0097
PixelDefend 73.39 0.0597 ± 0.0089 0.0640 ± 0.0097 65.72 0.0652 ± 0.0086 0.0733 ± 0.0081

Ensemble 82.48 0.0537 ± 0.0088 0.0606 ± 0.0084 75.78 0.0560 ± 0.0091 0.0623 ± 0.0084
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TABLE 12: Performance comparison of our Defense on the MIO-TCD classification dataset using the KD-2 approach with
50% overlap between the black box and pseudo-labeled training dataset.

Black box training data = MIO-TCD Classification
Defense training data = MIO-TCD Localization + 50% of the MIO-TCD classification

ε = 0.05 (13/255) ε = 0.1 (26/255)
T1 = 0.0580 T2 = 0.0656 T1 = 0.0580 T2 = 0.0656

Attack Defense Accuracy (%) Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty Accuracy (%) Avg. Aleatoric

uncertainty
Avg. Epistemic

uncertainty

IFGSM

No Defense 20.37 - - 13.52 - -
MagNet 83.25 ± 2.18 0.0520 ± 0.0081 0.0569 ± 0.0090 74.56 ± 1.35 0.0563 ± 0.0080 0.0580 ± 0.0084

ShieldNets 85.02 ± 1.43 0.0521 ± 0.0082 0.0562 ± 0.0082 77.24 ± 1.46 0.0546 ± 0.0081 0.0579 ± 0.0078
PixelDefend 76.81 ± 2.06 0.0554 ± 0.0076 0.0592 ± 0.0082 70.59 ± 1.22 0.0617 ± 0.0087 0.0633 ± 0.0091

Ensemble 86.39 ± 1.56 0.0513 ± 0.0072 0.0520 ± 0.0081 78.59 ± 1.50 0.0508 ± 0.0090 0.0577 ± 0.0073

BIM

No Defense 18.36 - - 14.21 - -
MagNet 84.58 ± 1.87 0.0501 ± 0.0082 0.0543 ± 0.0085 75.83 ± 1.93 0.0548 ± 0.0074 0.0591 ± 0.0082

ShieldNets 84.27 ± 2.05 0.0519 ± 0.0083 0.0536 ± 0.0079 74.09 ± 1.36 0.0565 ± 0.0086 0.0604 ± 0.0088
PixelDefend 77.17 ± 1.91 0.0548 ± 0.0080 0.0583 ± 0.0081 69.53 ± 1.84 0.0618 ± 0.0092 0.0648 ± 0.0083

Ensemble 86.58 ± 1.54 0.0494 ± 0.0078 0.0511 ± 0.0082 76.17 ± 1.20 0.0561 ± 0.0076 0.0585 ± 0.086

PGD

No Defense 15.89 - - 12.76 - -
MagNet 81.76 ± 1.51 0.0533 ± 0.0091 0.0556 ± 0.0077 75.15 ± 1.08 0.0552 ± 0.0084 0.0608 ± 0.0079

ShieldNets 82.67 ± 1.58 0.0530 ± 0.0072 0.0539 ± 0.0082 75.68 ± 1.27 0.0573 ± 0.0096 0.0592 ± 0.0077
PixelDefend 75.02 ± 1.76 0.0560 ± 0.0080 0.0574 ± 0.0082 68.18 ± 1.33 0.0606 ± 0.0073 0.0631 ± 0.0088

Ensemble 83.92 ± 1.51 0.0527 ± 0.0084 0.0563 ± 0.0087 78.13 ± 1.45 0.0515 ± 0.0082 0.0541 ± 0.0092

TABLE 13: Performance comparison of our Defense on the MS-Celeb dataset using the KD-3 approach with no overlap
between the black box and pseudo-labeled training dataset.

Black box training dataset = 75% of the 100 celebrities
Defense training dataset = All celebrities other than the 100 celebrities
ε = 0.05 (13/255) ε = 0.1 (26/255)

T1 = 0.0572 T2 = 0.0620 T1 = 0.0572 T2 = 0.0620

Attack Defense Accuracy (%) Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty Accuracy (%) Avg. Aleatoric

uncertainty
Avg. Epistemic

uncertainty

IFGSM

No Defense 25.81 ± 3.78 - - 18.77 ± 4.29 - -
MagNet 65.79 ± 3.57 0.0493 ± 0.0093 0.0547 ± 0.0087 61.38 ± 2.91 0.0541 ± 0.0068 0.0585 ± 0.0077

ShieldNets 66.93 ± 3.02 0.0475 ± 0.0081 0.0503 ± 0.0098 62.02 ± 2.75 0.0539 ± 0.0079 0.0546 ± 0.0087
PixelDefend 60.03 ± 3.29 0.0536 ± 0.0068 0.0579 ± 0.0074 58.15 ± 3.04 0.0551 ± 0.0080 0.0613 ± 0.0092

Ensemble 70.38 ± 2.64 0.0416 ± 0.0072 0.0472 ± 0.0064 63. 44 ± 2.70 0.0506 ± 0.0065 0.0542 ± 0.0071

BIM

No Defense 29.55 ± 4.16 - - 22.43 ± 3.97 - -
MagNet 63.84 ± 3.34 0.0507 ± 0.0075 0.0536 ± 0.0083 61.97 ± 3.24 0.0522 ± 0.0089 0.0576 ± 0.0082

ShieldNets 66.45 ± 3.59 0.0468 ± 0.0077 0.0529 ± 0.0092 60.55 ± 2.74 0.0567 ± 0.0068 0.0566 ± 0.0072
PixelDefend 62.76 ± 3.40 0.0495 ± 0.0071 0.0530 ± 0.0088 56.38 ± 3.39 0.0583 ± 0.0083 0.0637 ± 0.0090

Ensemble 68.91 ± 3.17 0.0459 ± 0.0082 0.0498 ± 0.0064 62.84 ± 2.13 0.0517 ± 0.0069 0.0528 ± 0.0074

PGD

No Defense 22.03 ± 4.55 - - 17.94 ± 4.25 - -
MagNet 61.93 ± 3.48 0.0526 ± 0.0091 0.0562 ± 0.0085 60.37 ± 2.61 0.0553 ± 0.0079 0.0557 ± 0.0082

ShieldNets 64.05 ± 2.77 0.0489 ± 0.0083 0.0510 ± 0.0094 62.58 ± 2.84 0.0534 ± 0.0082 0.0540 ± 0.0073
PixelDefend 59.10 ± 2.11 0.0544 ± 0.0089 0.0570 ± 0.0090 55.93 ± 3.07 0.0606 ± 0.0097 0.0618 ± 0.0103

Ensemble 65.78 ± 2.91 0.0491 ± 0.0073 0.0523 ± 0.0078 62.97 ± 2.71 0.0535 ± 0.0068 0.0529 ± 0.0076

TABLE 14: Performance comparison of our Defense on the MS-Celeb dataset using the KD-3 approach with 50% overlap
between the black box and pseudo-labeled training dataset.

Black box training dataset = 75% of the 100 celebrities
Def. training dataset = All other celebrities other than the 100 celebrities + 50% of black box training dataset

ε = 0.05 (13/255) ε = 0.1 (26/255)
T1 = 0.0558 T2 = 0.0594 T1 = 0.0558 T2 = 0.0594

Attack Defense Accuracy (%) Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty Accuracy (%) Avg. Aleatoric

uncertainty
Avg. Epistemic

uncertainty

IFGSM

No Defense 25.81 ± 3.78 - - 18.77 ± 4.29 - -
MagNet 67.03 ± 3.04 0.0444 ± 0.0084 0.0519 ± 0.0080 62.97 ± 2.26 0.0448 ± 0.0084 0.0549 ± 0.0094

ShieldNets 67.58± 2.80 0.0438 ± 0.0084 0.0466 ± 0.0091 65.41 ± 2.48 0.0425 ± 0.0070 0.0490 ± 0.0091
PixelDefend 63.57 ± 2.49 0.0485 ± 0.0072 0.0536 ± 0.0078 59.71 ± 3.17 0.0515 ± 0.0089 0.0533 ± 0.0096

Ensemble 71.82 ± 2.94 0.0387 ± 0.0071 0.0479 ± 0.0077 65. 73 ± 2.62 0.0437 ± 0.0081 0.0476 ± 0.0075

BIM

No Defense 29.55 ± 4.16 - - 22.43 ± 3.97 - -
MagNet 68.70 ± 2.92 0.0424 ± 0.0070 0.0507 ± 0.0085 62.74 ± 3.19 0.0497 ± 0.0085 0.0523 ± 0.0079

ShieldNets 69.71 ± 2.83 0.0402 ± 0.0082 0.0445 ± 0.0071 64.04 ± 2.80 0.0478 ± 0.0098 0.0541 ± 0.0092
PixelDefend 66.04 ± 3.12 0.0452 ± 0.0074 0.0467 ± 0.0083 61.95 ± 2.38 0.0538 ± 0.0097 0.0540 ± 0.0103

Ensemble 73.96 ± 2.18 0.0371 ± 0.0088 0.0431± 0.0072 64.37 ± 2.59 0.0458 ± 0.0086 0.0514 ± 0.0079

PGD

No Defense 22.03 ± 4.55 - - 17.94 ± 4.25 - -
MagNet 65.10 ± 2.75 0.0460 ± 0.0087 0.0511 ± 0.0079 60.06 ± 3.35 0.0544 ± 0.0093 0.0564 ± 0.0108

ShieldNets 68.37 ± 2.36 0.0434 ± 0.0081 0.0478 ± 0.0072 61.64 ± 2.53 0.0507 ± 0.0095 0.0548 ± 0.0091
PixelDefend 62.89 ± 3.14 0.0483 ± 0.0079 0.0547 ± 0.0093 57.80 ± 1.94 0.0572 ± 0.0090 0.0586 ± 0.0097

Ensemble 70.61 ± 2.70 0.0411 ± 0.0079 0.0496 ± 0.0070 62.50 ± 2.40 0.0469 ± 0.0083 0.0532 ± 0.0086
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TABLE 15: Ablation study for comparing different combinations of ensembles of iterative defenses.

IFGSM ε = 0.05 (13/255) BIM ε = 0.05 (13/255)
T1 = 0.0437 T2 = 0.0624 T1 = 0.0437 T2 = 0.0624

Dataset Ensemble* Accuracy (%) Avg. Aleatoric
uncertainty

Avg. Epistemic
uncertainty Accuracy (%) Avg. Aleatoric

uncertainty
Avg. Epistemic

uncertainty

Fashion-MNIST

MPD 84.33 ± 4.01 0.0314 ± 0.0079 0.0347 ± 0.0080 88.07 ± 3.72 0.0291 ± 0.0084 0.0340 ± 0.0076
MSD 86.83 ± 4.44 0.0276 ± 0.0085 0.0336 ± 0.0086 89.68 ± 3.44 0.0253 ± 0.0082 0.0307 ± 0.0079
PSD 85.09 ± 5.07 0.0304 ± 0.0077 0.0352 ± 0.0078 87.45 ± 4.03 0.0286 ± 0.0086 0.0348 ± 0.0089
MPS 87.35 ± 3.24 0.0309 ± 0.0083 0.0335 ± 0.0081 88.19 ± 3.95 0.0267 ± 0.0070 0.0328 ± 0.0074

MPSD 87.94 ± 4.51 0.0288 ± 0.0089 0.0324 ± 0.0091 89.32 ± 3.35 0.0247 ± 0.0079 0.0319 ± 0.0089
T1 = 0.0597 T2 = 0.0683 T1 = 0.0597 T2 = 0.0683

CIFAR-10

MP 75.08 ± 4.49 0.0513 ± 0.0078 0.0546 ± 0.0083 75.66 ± 3.57 0.0515 ± 0.0079 0.0503 ± 0.0084
MS 77.23 ± 4.05 0.0472 ± 0.0086 0.0539 ± 0.092 77.91 ± 3.11 0.0530 ± 0.0081 0.0469 ± 0.0094
PS 74.37 ± 3.64 0.0533 ± 0.0077 0.0560 ± 0.0088 78.27 ± 3.80 0.0529 ± 0.0093 0.0494 ± 0.0089

MPS 77.86 ± 3.87 0.0487 ± 0.0095 0.0521 ± 0.0081 78.91 ± 3.28 0.0501 ± 0.0087 0.0517 ± 0.0090
*M, P, S, and D refers to MagNet, PixelDefend, ShieldNets, and Defense-GAN

TABLE 16: Performance comparison of our defense against six black box adversarial attacks.

Dataset SimBA [102] NES [107] Nattack [108] SPSA [109] Boundary [110] ZOO [111]
GTSRB 22.73/83.07 27.02/80.18 16.84/74.60 23.79/85.04 17.47/78.92 25.40/80.39

MS-Celeb 17.06/62.91 16.54/60.29 11.35/55.72 19.18/59.67 15.11/58.09 18.58/63.90
CIFAR-10 20.47/64.80 24.58/66.19 15.57/58.25 21.27/61.06 18.71/56.73 23.89/64.33
Each cell is represented as x/y where x and y are the accuracy before and after applying our ensemble of defenses
(i.e., MagNet + ShieldNets + PixelDefend).

least 1%. This observation indicates that although some
purified images have slightly above average uncertainty
metrics does not necessarily mean that these images are
adversarial. A possible reason for this phenomenon is that
since the Bayesian CNN is trained independently with al-
most no knowledge of the black box classifier’s weights or
its training dataset, the features learned by these two CNNs
could be slightly different from each other. Hence, an image
that is adversarial to the Bayesian CNN may not necessarily
be adversarial to the black box classifier. It should also be
noted that this kind of situation is statistically more likely to
happen only to the images that are close to the classification
boundary in the CNN’s feature space and it is a very small
percentage of the total dataset.

4.6.2 Performance against Black box Adversarial Attacks
In this sub-section we evaluate our defense against six
black box adversarial attacks SimBA [102], NES [107],
N attack [108], SPSA [109], Boundary [110], and ZOO [111]
. NES [107] and SPSA [109] attacks use query limited
attacks where the attacker has a query budget L, within
which the adversarial attack needs to be successful. The
authors replace the gradient of the loss function with an
estimate of the gradient, which is approximated by querying
the classifier rather than computed by auto-differentiation.
SimBA [102] is similar to NES attack [107] but rather than
traversing in a specific direction of the gradient, they pick
a random direction from a pre-specified set of orthogonal
search directions, use the probability logit scores to check if
it is pointing towards or away from the decision boundary,
and perturb the image by adding the vector from the image.
ZOO [111] estimates the gradient at each coordinate by finite
differences and adopts C&W [4] for attacks based on the
estimated gradient.N attack [108] does not estimate the gra-
dient but learns a Gaussian distribution centered around the
input such that a sample drawn from it is likely adversarial.
A major difference between our defense and SimBA [102] is
that our approach does not need any probability logit output
and requires only the final class prediction, but for the sake
of comparison we provide the logit probabilities as input.

Table 16 shows the performance of our defense against
the six black box attacks on the GTSRB [80], MS-Celeb [59],
and CIFAR-10 [79] datasets. In Table 16 we set the query
limit L for all query based attacks to 1,000 queries per image
and adversarial perturbation limit ε = 0.1. We created the
black box adversarial attacks by initially attacking our black
box classifier without any defense. After creating the adver-
sarial attacks we then transfer these images to the ensemble
of adversarial defenses for a maximum of M iterations as
shown in Fig. 1 and compute the accuracy. From Table 16
we can see that without our defense the lowest possible
accuracy is 16.84%, 11.35%, and 15.57% on the GTSRB,
MS-Celeb and CIFAR-10 datasets, respectively. With our
defense we can significantly improve the performance to
at least 74.60%, 55.72%, and 56.73% accuracy on the GTSRB,
MS-Celeb and CIFAR-10 datasets, respectively which is an
improvement of at least 3.5x.

4.7 Robustness of Defense - an Adversary’s Point of
View

In Section 3.1, we assumed that the adversary has no knowl-
edge about our defense and can only see the input and final
classification output of the black box classifier. Although
this may seem to be a strong assumption, in this sub-
section we relax this assumption by allowing the adversary
to have partial amounts of information about our defense.
We evaluated the CIFAR-10 dataset against the IFGSM and
PGD attack with ε = 0.1 in order to compare our defense
with MagNet [26], PixelDefend [27] and ShieldNets [28].
We quantify the robustness of our approach by computing
the time taken for the adversary to create 50 successful
adversarial attacks against our defense using 2 TITAN X
GPUs. Table 17 shows the computational time required to
break our defense when the adversary has varying amounts
of information about our defense framework. In Table 17
we attack the defense framework by creating adversarial
attacks against the adversary’s substitute CNN and transfer
the attacks to our defense framework [5], [104]. From Table
17 we can see that when the adversary has no knowledge
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TABLE 17: Computation time required for breaking our de-
fense framework on the CIFAR-10 dataset using the IFGSM
and PGD attack with ε = 0.1.

Bayesian
CNN MagNet Pixel

Defend ShieldNets Time to create
50 attacks**

7 7 7 7 38/34 hours
7 3 7 7 19/17 hours
7 7 3 7 28/25 hours
7 7 7 3 14/14 hours
7 3 3 7 9.55/6.30 hours
7 7 3 3 8.70/8.25 hours
7 3 7 3 6.65/5.40 hours
3 7 7 7 17/10 minutes
3* 7 7 7 34/31 hours
3 3 3 3 7.5/6 minutes

3 is the part of the defense the adversary has knowledge of,
whereas 7 is the part of the defense protected from the adversary.
*We force all images to have one forced iteration of purification.
** Time to create 50 attacks is represented as x/y where x and y are
the time taken to create 50 IFGSM and PGD attacks, respectively.

about our defense framework, it takes 38 hours to create
50 successful IFGSM adversarial attacks. To put this into
perspective, it took 10 hours for Song et al. [27] to create 100
IFGSM attacks against their defense using 1 TITAN X GPU
and 27 hours for Theagarajan et al. [28] to create 50 IFGSM
attacks against their defense using 2 TITAN X GPUs.

4.7.1 Attacking the Bayesian CNN
In our defense the Bayesian CNN decides if an incoming
image is adversarial or not before (i) passing it to the
Black box classifier or (ii) rejecting the image. Hence, a
natural target for an adversary to beat our defense would
be to adversarially attack the Bayesian CNN. The optimiza-
tion function for creating adversarial examples against the
Bayesian CNN is shown in Eq. (18).

arg max ||δ|| < ε (18a)
S.T. Y ′ 6= Y (18b)

Aleatoric uncertainty < T1 (18c)
Epistemic uncertainty < T2 (18d)

As shown in Table 17 attacking the Bayesian CNN is by
far the weakest point in our defense which can be exploited
by an adversary provided the adversary has this informa-
tion. But, optimizing Eq. (18) makes the adversarial images
to be very close to the boundary of the original images
in the input space thus resulting in a weakly perturbed
adversarial image. We noticed that when we pass these
weakly perturbed adversarial images through our ensemble
of defense the resulting image is purified in just one iteration
of purification. Hence, in Table 17 when we force all input
images (regardless if they are adversarial or not) to at least
one iteration of purification, these weakly perturbed adver-
sarial examples are no longer adversarial and are correctly
classified by the black box classifier. By doing so, even if
the adversary has full knowledge about the Bayesian CNN
but no information about our ensemble of defenses, it takes
approximately 34 hours to break our defense compared to
just 17 minutes when there is no forced purification. More-
over, if the adversary has full knowledge of our defense it
takes only 6 minutes to create 50 successful PGD attacks,
but doing so would violate our assumptions described in
Section 3.1 (i.e. security through obscurity). This finding is

corroborated by the works done in Ilyas et al. [107], where it
is shown that once the adversary has information about the
defense (such as model architecture, parameters, gradients,
etc.), it is relatively easy to break the defense.

4.7.2 Attacking the Ensemble of Iterative Adversarial De-
fenses
From Table 17 we can see that when the adversary has
partial information about our ensemble of defenses, the
time taken to break the defense ranges from 28 to 6.65
hours. The reason for this is that with the inclusion of
probabilistic generative networks, such as PixelDefend [27]
and ShieldNets [28], the ensemble changes from being a
deterministic system to a probabilistic system and in order
to attack a probabilistic system, one needs to solve the
stochastic gradient descent. The convergence rate for solv-
ing this is of the order ofO(1/λ), where λ is the convergence
error and this is exponentially slower than the deterministic
case. Additionally, the individual defenses are all trained
independently and have independent parameters, hence a
perturbation in a certain direction leading to a misclassi-
fication against a particular defense does not necessarily
lead to a similar perturbation in the same direction for
the other defenses within the ensemble. Moreover, breaking
our defense requires a significant amount of probing and
querying from the adversary’s side and this can be limited
by setting a threshold beyond which the adversary cannot
probe the defense for a certain amount of time [107], hence
further increasing the computation overhead.
5 CONCLUSIONS

This paper presented a novel privacy preserving adversarial
defense framework for defending black box classifiers. The
proposed framework has the ability to convert an existing
single-step black box defense into an iterative defense and
experimental results showed that using an ensemble of
defenses outperforms the state-of-the-art. We demonstrated
the relationship between an adversarial image and its cor-
responding purified image and proved the existence of a
lower bound in the input space beyond which an image
cannot be further purified. This paper proposed three novel
knowledge distillation approaches that exploit prior meta-
information of the training datasets, while preserving the
privacy of the black box classifiers. Experimental results
showed that crowd sourced images that are available in the
public domain can be used to effectively distill the knowl-
edge of the Black box classifier and still achieve reasonable
performance in defending against adversarial attacks. Most
importantly, neither our defense required any information
about the parameters of the black box classifiers nor its
training data, thus it preserved the privacy and significantly
increased its adversarial robustness.
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with a strong adversary,” arXiv preprint arXiv:1511.03034, 2015.
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