
PHYSICAL REVIEW E 84, 016310 (2011)

Flow-induced channel formation in the cytoplasm of motile cells
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A model is presented to explain the development of flow channels within the cytoplasm of the plasmodium
of the giant amoeba Physarum polycephalum. The formation of channels is related to the development of a
self-organizing tubular network in large cells. Experiments indicate that the flow of cytoplasm is involved in
the development and organization of these networks, and the mathematical model proposed here is motivated
by recent experiments involving the observation of development of flow channel in small cells. A model of
pressure-driven flow through a polymer network is presented in which the rate of flow increases the rate of
depolymerization. Numerical solutions and asymptotic analysis of the model in one spatial dimension show that
under very general assumptions this model predicts the formation of channels in response to flow.
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I. INTRODUCTION

The true slime mold Physarum polycephalum is a single-
cell amoeboid organism reaching up to meters in size (see
Fig. 1). They can be found on the forest floor among decaying
leaves and rotten wood where it is dark, damp, and cool. The
plasmodium is the vegetative stage in its life cycle, and it has
been a standard model organism for studying cellular rhythms
and active cytoplasimc streaming for over 70 years [1].

The cell generates flows of cytoplasm with velocities up
to 1 mm/s in order to transport nutrients and communicate
chemical signals over the large distances spanned by the cell
body. The cytoplasm is made of two phases of material:
endoplasm (cytosol) and ectoplasm (cytoskeleton). The en-
doplasm includes water with dissolved ions, small proteins,
and vesicles. The ectoplasm consists of a filamentous network
of actin which forms the outer cortical gel. The fluid flow
of cytosol is driven by organized rhythmic contractions of
the gel with a period of about 2 min. The tension within the
gel is generated by actin-myosin contraction and results in
internal pressure gradients. The back and forth motion of the
sol that results is called shuttle streaming [1,2]. The rhythmic
contraction is observed everywhere within the cell and is driven
by biochemical oscillations involving Ca2+, ATP, H+, cAMP,
NAD(P)H+, phospholipid, etc. [3–9].

The cell is organized as a network of highly adaptable
tubular elements, which repeatedly bifurcate from thick tubes
to smaller tubes (see Fig. 1). The cytoplasm flows through this
tubular network, which serves as a circulation system for the
cell. The walls of these tubes are made of a thick ectoplasmic
gel. It is not known how the cytoplasm organizes into
these tubular networks, but there is substantial experimental
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evidence that the flow of cytoplasm is involved in both the
initiation and regulation of the network [10,11].

The adaptability of the tubular network endows the cell
with the ability to process spatial information. For example,
it can accomplish tasks such as identifying the shortest
path in a maze [12,13]. A number of other more general
computational abilities related to the dynamics of the network
have been reported [14–16]. Mathematical models have been
developed which demonstrate how adaptable structures can be
used to process information [17,18], but these models were
phenomenological; they do not address the mechanism of
how the tubes reorganize. In this paper, we study the early
development of tubular structures. In the frontal region of the
plasmodium, the cell is not organized into tubular structures.
This region is like a porous medium in which the cytosol
is driven through the cytoskeleton by pressures generated
from contractions of the cortical gel. Within this region, flow
channels develop in which the concentration of cytoskeleton
is low and the velocity of cytosol is much larger than in
nearby regions with higher gel concentrations. These flow
channels eventually develop into tubular structures, and so
a first step to understanding tubular development is exploring
the mechanisms involved in flow channel formation.

When the organism is small (less than 100 μm) there is
no shuttle streaming and no structural organization of the cell
body. As it gets larger, flow channels develop within the gel,
streaming begins, and the cell begins to migrate faster [19,20].
Recent experiments on these small cells show that channels
form suddenly in response to intracellular flow, thus indicating
a flow-induced instability within the sol/gel mixture [20]. In
this paper we propose and analyze a mathematical model of
the pressure-driven flow of cytoplasm including the interaction
between the sol and gel. The cytosol experiences frictional
resistance as it is driven through the networked actin gel. We
show that when the frictional force from the fluid increases the
depolymerization rate of the polymer, flow channels result. The
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FIG. 1. (Color online) Macroscopic images of Physarum plasmodium. The frontal region of the plasmodium takes the form of sheet-like
structure, and a complicated network of veins develops toward the rear. Flow channels develop within the cytoskeleton of the frontal region
as the cytosol bores though this dynamic porous medium. These channels eventually develop into mature veins. In this paper, we study the
mechanism of channel initiation. Scale bars are 1 cm (right and center panels) and 1 mm (left panel).

model predicts hysteretic behavior of the flow of cytoplasm in
response to the applied pressure. There is a critical pressure
at which channels appear, and a lower critical pressure at
which channels disappear. Using asymptotic analysis in the
phase plane, we show that the qualitative model behavior is
very generic. That is, the behavior exhibited by the numerical
solution is not sensitive to our assumptions.

The remainder of the paper is organized as follows. In
Sec. II we describe recent experiments on intracellular flow
and channeling which motivate the development of the model.
In Sec. III we present the mathematical model and the
results of numerical explorations. In Sec. IV we present
asymptotic analysis to explain the behavior of the model
observed numerically, and we give general conditions that lead
to channeling. Finally, in Sec. V we argue that the qualitative
behavior of the model is generic, and we comment on the
significance of the results.

II. EXPERIMENTAL OBSERVATION
OF CHANNEL FORMATION

We performed experiments on small plasmodia to observe
the initiation of flow channels, shuttle streaming, and locomo-
tion. We processed video images of the cells to tract the motion
of intrinsic vesicles. Using particle image velocity (PIV), we
calculated the velocity of cytoplasmic streaming inside the
cell and the deformation of the cell shape. The details of the
experiments are given in [20].

In Fig. 2(a) we show typical unprocessed image of the
cell before streaming begins, and in Fig. 2(b) we show
the processed image which is created by the superposition

of the positive part of the enhanced image over several
seconds. The moving vesicles appear as elongated dark spots.
Before streaming there is no organized flow pattern within
the cell. In Fig. 2(c) we show the processed image after
streaming has been initiated. The dark region running through
the middle of the cell indicates the presence of a flow
channel.

After streaming begins, the cell body becomes elongated
in the direction of the flow channel, and it begins to migrate.
It takes on a tadpole-like shape with a flow channel running
along the tail, connected to a head which is initially devoid
of channeled structures. This is illustrated in Fig. 3(d), in
which the intracellular velocity field and boundary velocity
have been overlaid on the image. The sol flows much more
slowly through the porous, gel-filled head region than through
the channel in the tail, as can be seen in Fig. 3(b), where
the lighter pixels correspond to faster flows. In Figs. 3(c) and
3(e) the same cell is shown one period later (100 s). A new
flow channel has appeared in the head region. This sudden
rather than gradual development of the new channel indicates
that channel formation involves a critical phenomenon or a
bifurcation.

In Fig. 3(a) we show the magnitude of the velocity field
along the dashed lines in Figs. 3(b) and 3(c) which is
perpendicular to the direction of flow. The velocity is shown at
five equally spaced time points 50 s apart (every 1/2 period).
At time points 1–3 the speed of the flow is relatively uniform
across the cell, but at time points 4 and 5 the velocity is about
four times larger in the middle portion of the cell compared to
the edges. Between the measurements at times 3 and 4, a flow
channel appeared.

100 μm 

(a) (b) (c)

FIG. 2. (Color online) (a) Unprocessed image of a small plasmodium before the onset of shuttle streaming. (b) Processed image to show
the magnitude of the velocity. Dark pixels correspond to faster flow. (c) The onset of streaming is accompanied by the formation of a flow
channel, which corresponds to the dark region in the middle of the cell. Scale bar is 100 μm.
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FIG. 3. (Color online) (a) Magnitude of velocity along a line normal to the direction of migration in the frontal part of the migrating cell
shown at five 50 s time intervals (every half period of the oscillation). At time points 1–3 the velocity is relatively uniform across the cell, and
at times 4 and 5 the velocity is about four times larger in the center compared to the edges. This indicates the appearance of a new flow channel.
(b) and (c) Grayscale of velocity magnitude (light is higher velocity) before and after the appearance of the new channel. Velocity in (a) is
along dashed line near the front of the cell. (d) and (e) Images of the whole cell at the same times with black arrows are for boundary velocity
and white arrows are for cytoplasm velocity.

III. FLOW-INDUCED CHANNEL FORMATION

Though the rheology of actin networks is very complex,
it is generally accepted that they are shear thinning, which
means that the effective viscosity is a decreasing function of the
shear rate. In Physarum it is observed that when the pressure
gradient is low, there is little flow of the cytoplasm, but above
a certain pressure, the cytoplasm begins to flow [2,19,21–25].
This suggests that the cytoplasm of Physarum can be described
as a yield stress fluid. That is, for low stresses the cytoplasm
behaves as a solid, but above a critical stress it behaves
like a fluid. Such a transition is likely related to the rupture of
the cytoskeleton in response to stress. As the material flows,
these crosslinks between filaments and the filaments them-
selves are ruptured, allowing the mixture to flow more easily.

The simple description of the cytoplasm as a yield stress
fluid is inadequate to explain flow channel formation. The
reasoning is as follows: consider the pressure-driven steady
flow between two parallel plates (analogue to Poiseuille flow)
of a yield stress fluid. The shear stresses are largest near the
walls of the channel, and so the material near the wall liquefies
and the middle flows as a solid core [26], which is the exact
opposite of what is observed in flow channels of Physarum
(solid near the walls and liquid in the center).

To describe channel formation in shear thinning actin
networks, we must take a different approach than describing
the rheology of the material with a single effective stress tensor.
We must explicitly account for the dynamics of the networked
actin. The two-fluid model [27,28] has been used successfully
in the past to describe channel formation in gels [29,30]. In
these models the sol and gel are described as separate but
interacting fluids, each moving with their own velocity. The
local composition of the mixture of sol and gel is described in
terms of volume fractions.

In [30] the two-fluid models was applied to describe the
internal flow and cytoskeletal organization in Amoeba Proteus,
which like Physarum, is a giant amoeboid cell that migrates
using cytoplasmic streaming. In this model the flow channel

resulted from chemically elevated contractile stresses near the
cell membrane. The flow itself was not involved in signaling
the development of channels. In a two-fluid model of channel
formation in biofilms [29], the flow was involved in signaling
channel formation, but the driving force of channeling was
osmotic pressure not fluid stresses. It was assumed that for a
range of polymer concentrations, the polymer/solvent mixture
was unstable and thus a phase separation instability drove
spatial pattern formation. Neither of these previous models
provides a satisfactory explanation for the formation flow
channels observed in Physarum.

In this paper, we propose a model that is similar in spirit
to the two-phase flow models, in that we model the cytosol
and actin network separately. However, we assume that the
network forms and breaks, but does not flow. This reduction
is reasonable for stiff networks, and it significantly simplifies
the analysis of the model. Below we present the model and
show that under very simple assumptions this provides a new
explanation for the formation of channels in response to flow.

A. Model

We assume that the actin network is rigid so that it does not
move in space. To describe the fluid flow through the network
we use the Brinkman equation [31]

μ�u − ξu − ∇p = 0, (1)

∇ · u = 0, (2)

where u is the fluid velocity, p is the pressure, μ is the
fluid viscosity, and ξ is the drag coefficient. The first term
in (1) represents the viscous stress in the fluid, and the second
term represents the drag force that the network exerts on the
fluid. The permeability of the network is the ratio of the drag
coefficient to the viscosity μ/ξ . In the absence of viscous
stress this model reduces to Darcy’s law for flow through a
porous medium. Brinkman proposed including the viscous
term [31] so that in the limit that ξ goes to zero Stokes
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flow is recovered. This model is an appropriate description of
viscous flow through low volume fraction suspensions of fibers
or particles which have small diameters relative to the pore
size [32]; the validity of this model is still under debate at high
solid volume fractions [33]. We use the Brinkman equation
instead of Darcy’s law because within the flow channel the
volume fraction of polymer is very low, and the viscous
stresses are relevant. As described below, the drag coefficient
is a function of polymer concentration. In regions of space
where the polymer concentration is not small, the drag term
dominates the viscous term, and the model effectively reduces
to Darcy’s law.

Let θ denote the concentration of networked actin gel,
which evolves according to

θt = k+ − k−(|u|)θ. (3)

It is assumed that the network forms at a constant rate, but
it ruptures at a rate that depends on the local fluid velocity.
This is because flow through the polymer network stresses
the polymers and crosslinks, which leads to an increase in
the degradation rate. We assume that the breaking rate is an
exponentially increasing function of the force [34,35]:

k−(|u|) = k0
− exp(b|u|), (4)

where b is a constant which characterizes how sensitive the
breaking rate is to the applied force. In Sec. IV D we show that
any function which increases sufficiently rapidly will lead to
similar qualitative results. We assume that the drag coefficient
is proportional to the concentration of networked actin gel:

ξ = ξ0θ, (5)

where ξ0 is a proportionality constant.
To investigate channeling we explore the flow profile

that develops in a pressure-driven flow between two parallel
plates at y = 0 and y = h. In this situation, the velocity is
unidirectional and the velocity profile is only a function of y

(see Fig. 4). The velocity profile satisfies the equation

μuyy − ξ0θu + f = 0, (6)

where u is the velocity in the direction perpendicular to the
y axis and f is the negative of the pressure gradient, which
we refer to as the applied pressure gradient. We assume the
no-slip boundary condition on the walls of the plates:

u(0) = u(h) = 0. (7)

x

y

y=h

y=

u(y)

0

FIG. 4. To investigate channeling we consider the flow between
two infinitely long parallel plates located at y = 0 and y = h driven
by an applied pressure gradient. The flow is unidirectional and the
flow profile u(y) is a function of only the height between the two
plates.

For a given applied pressure gradient, Eqs. (3)–(7) determine
the velocity profile and the concentration of network.

To facilitate the analysis of the model when the network
concentration depends on the applied pressure gradient, we
nondimensionalize the equations. We scale the velocity by
b−1, the network concentration by k+/k0

−, time by 1/k0
−,

and length by h. This gives the dimensionless system of
equations

εuyy − θu + f = 0, (8)

θt = 1 − exp(|u|)θ, (9)

u(0) = u(1) = 0. (10)

The single dimensionless parameter

ε = μ

h2ξ0
(11)

characterizes the ratio of viscous forces to drag forces and is
assumed to be small (ε � 1). At low flow rates exp(|u|) =
O(1), and the force on the fluid is dominated by the drag
term. The parameter ε may be interpreted as the ratio of
the permeability of the cytoskeleton to the squared height
of the channel. The permeability of the cytoskeleton within
the lamellipodium of crawling keratocytes has been estimated
as 10−3 μm2 [36], and the thickness of the microplasmodia
considered in this paper are on the scale of 10 μm. These
values give an estimate of ε = 10−5.

We analyze how the velocity profile changes as a function
of the applied pressure gradient f . We treat f as a given
constant and solve for the steady state velocity profile. In this
case, Eqs. (8)–(10) reduce to

εuyy − exp(−|u|)u + f = 0, (12)

with boundary conditions (10). Before proceeding, we
comment on the biological relevance of investigating a
flow driven by a constant pressure gradient. During shuttle
streaming in Physarum the pressure gradient oscillates in time.
The time scale of this oscillation is faster than the time scale of
the turnover of the cytoskeleton [2]. In the Appendix we use
averaging to show that Eq. (12) describes the steady state
spatially dependent amplitude of the velocity oscillation and
that the constant f is related to the amplitude of the pressure
oscillation.

B. Numerical results

Depending on the values of ε and f , Eq. (12) may have
multiple solutions. We find the solutions by advancing the
time dependent problem (8)–(10) to steady state. To generate
the solutions for the interval f ∈ [0,fmax], we begin at f = 0
for which the solution is u = 0. We update f incrementally
and solve to steady state using the solution at the previous
value of f as an initial condition. When fmax is reached, we
repeat this process by decreasing f back to 0 to find a possible
second set of solutions. This gives a set of dynamically stable
solutions. When there are multiple solutions, we use Newton’s
method to solve for the unstable solutions by taking initial
guesses in between the two stable solutions. This method
fails to converge when ε is very small. We use ε = 5 × 10−4
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FIG. 5. (Color online) Flux as a function of applied pressure
gradient where the velocity profile satisfies Eq. (12). The value of
ε is 5 × 10−4. The unstable solution is represented by a dashed line.

to facilitate the numerical computations, and the effect of
changing ε is considered later.

In Fig. 5 we show the flux as a function of the applied
pressure gradient for ε = 5 × 10−4. The flux through a cross
section of the domain is

Q =
∫ 1

0
u dy. (13)

For low and high pressure gradients there is one solution,
but for a range of pressure gradients in between there are
three solutions. The upper and lower branches correspond
to the dynamically stable solutions, and the middle branch
corresponds to the unstable solution. Beginning at a low
pressure gradient, there is little flow through the domain,
but once the gradient exceeds a critical value the flux jumps
suddenly by about a factor of 70. This solution will stay in
this high-flux state until the pressure gradient drops below a
critical value. Although quantitatively different, the solutions
for other small values of ε have similar characteristics.

In Fig. 6 we show the three velocity profiles and network
concentration profiles for f = 0.20. We refer to these three

solutions as the lower, middle, and upper branch solutions
corresponding to the sizes of their respective fluxes. The three
solutions have very different characters. The lower branch
solution is a plug flow, which means that the drag dominates
through most of the domain except near the boundary. This
solution resembles flow through a porous medium. The upper
branch solution resembles a Poiseuille flow. Comparing with
the gel profiles, we see that for this fast flow there is almost no
gel throughout the domain, and so the drag term is negligible.
The middle branch solution is the most interesting. There is a
flow channel in the middle of the domain where there is little
gel and the flow is much faster than near the edges. Unlike the
upper branch solution, there remains a significant amount of
gel in a nonvanishing region near the walls.

This simple model of a network which ruptures in response
to flow reproduces the phenomenon of a critical pressure
below which there is little flow. When the critical pressure is
reached the gel does not produce a flow channel in the middle
of the domain. Instead the gel is broken up throughout the
entire domain. Although there are channeled solutions, they
are unstable and would thus not be observable.

C. Relieving the pressure

In Physarum, the pressure gradient driving the flow is
generated by a spatial gradient in the cortical contraction stress.
If the internal gel rearranges or ruptures, this provides less
resistance to flow and should reduce the pressure applied to
the remaining internal gel. This effect is not captured by the
model described in the previous sections. The assumption of
the previous model is that the domain is infinitely long and the
flow is driven by a constant pressure gradient. In this section
we adapt the previous model so that when the flux through the
domain increases, the pressure applied is reduced.

We again consider pressure-driven flow through parallel
plates, but we do not treat the domain as infinitely long. The
domain is divided into three segments: an upstream region,
a downstream region, and a middle region. In this model we
describe the flow through the middle region. Suppose that
the middle region is sufficiently long that the flow is fully
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FIG. 6. (Color online) Solutions to Eq. (12) for ε = 5 × 10−4 at f = 0.20. The unstable solution is represented by a dashed line.
(a) Velocity profiles. (b) Normalized network concentration.
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Δ P = constant
total

middle downstreamupstream

FIG. 7. The pressure drop across the entire physical domain is
a given constant, but the effective pressure drop across the middle
segment depends on the flow.

developed, and so that it can be described by a one-dimensional
model. The pressure drop across the whole domain is a given
constant. This pressure, for example, is generated by the
contraction of the organism at one end and relaxation at the
other. The pressure drop over the middle region is no longer
constant, but it can be computed from the total pressure drop
and the flow (see Fig. 7).

Suppose that in each segment the flux through and pressure
drop across the segment indexed by i are related by

�Pi = RiQi, (14)

where �Pi is the pressure drop, Ri characterizes the resistance,
and Qi is the flux. The total pressure drop across the entire
domain is just the sum of the pressure drops across each
segment

�Ptotal = �Pup + �Pmid + �Pdown. (15)

Because the fluid is incompressible, the flux through each
segment is equal, Q = Qi . Putting these equations together,
the pressure drop across the middle of the domain is

�Pmid = �Ptotal − (Rup + Rdown)Q. (16)

We assume that the resistances in the upstream and down-
stream regions are constant. Therefore the effective pressure
drop across the middle segment is a linear function of the total
applied pressure drop and the flux. This simple description has
the desired property that if the resistance to flow in the middle
segment goes down, the flux will go up, which will relieve
some pressure and cause a decrease in the effective pressure
gradient.

To adapt the model from the previous section, we modify
(12) so that the effective pressure gradient decreases linearly
as the flux increases. The equation we study is

εuyy − exp(−|u|)u + f − δQ = 0, (17)

where the flux Q is defined by Eq. (13). The parameter δ

characterizes the total resistance to flow of the upstream and
downstream regions. The value of f is related to the size of the
pressure gradient applied to the entire domain, and f − δQ is
the effective pressure gradient on the region being modeled
(i.e., the middle region).

We repeat the computations of the previous section for this
new model which incorporates pressure relief. In Fig. 8 we
show the flux as a function of the applied pressure gradient
for δ = 0.1 and again ε = 5 × 10−4. As before there is one
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FIG. 8. (Color online) Flux as a function of applied pressure
gradient, where the velocity profile satisfies Eq. (17) which includes
the effect of pressure relief. The value of ε is 5 × 10−4 and the value
of δ is 0.1. The unstable solution is represented by a dashed line.

solution at low and high pressure gradients, and there is a
range for which there are three solutions. The solutions on the
upper and lower branches are stable, and the solution on the
middle branch is unstable.

In Fig. 9 we show the three velocity profiles and network
concentration profiles for f = 0.40. As before, the lower
branch solution is a plug flow and the gel is uniform across the
middle of the domain. The other two solutions both correspond
to flow channels. There is a region in the middle of the domain
in which the gel concentration is much smaller than near the
edges. This feature is more pronounced on the upper branch
solution in which there is almost no gel in the middle of
the domain. The velocity profile is almost parabolic in the
flow channel and relatively flat in the region of high gel
concentration. Unlike the model on the infinite domain, this
finite domain model which includes the effect of pressure relief
produces dynamically stable channeled solutions.

D. PARAMETERS

There are only two parameters to this model problem: ε is
the ratio to viscous force to drag force and δ is the parameter
which characterizes the resistance to flow in the upstream and
downstream regions. In this section we explore the effects
to these two parameters on the observations in the previous
sections.

In the previous section we only showed the flux versus
pressure gradient curve for a single value of δ. Here we show
that solutions for any value of δ can be obtained from the
solutions for δ = 0. Let u(y; f,δ) be a solution to (17) for
given values of δ and f . The solution for any value of δ is
related to the solution for δ = 0 by

u(y; f,0) = u(y; f + δQ,δ). (18)

Thus the solutions for δ = 0 can be mapped to the solutions
for any value of δ. This is illustrated in Fig. 10. Increasing δ

has two effects. First, the range of pressure gradients where
there are stable channeled solutions increases, and second the
range of pressure gradients where there are multiple solutions
decreases.
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FIG. 9. (Color online) Solutions to Eq. (17) for ε = 5 × 10−4 and δ = 0.1 at f = 0.40. The unstable solution is represented by a dashed
line. (a) Velocity profiles. (b) Normalized network concentration.

Next we consider the effect of changing ε. We have assumed
that the drag forces dominate over the viscous forces when
the internal gel is intact, which means that ε � 1. In Fig. 11
we plot the flux versus applied pressure gradient for different
values of ε for δ = 0. This graph shows that for ε large enough
the curve becomes single valued, which means there is only one
velocity profile for a given pressure gradient. With δ = 0 the
channeled solutions correspond to the unstable middle branch
of solutions. Thus we conclude that ε must be small for the
model to show channeling.

IV. ASYMPTOTIC ANALYSIS

In this section we explore the solutions to (12) further using
asymptotic analysis in order to explain some of the features
of the solutions which were demonstrated numerically. As
we showed in the previous section, the solutions for δ = 0
can be mapped to give solutions for nonzero δ. Therefore
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FIG. 10. (Color online) Flux vs applied pressure gradient for ε =
5 × 10−4 for δ = 0 and δ = 0.05. The curve for nonzero values of
δ can be obtained from the curve for δ = 0. As δ increases more
channeled solutions become stable and the range of pressure gradients
where there are multiple solutions decreases.

it is sufficient to analyze the case δ = 0 to understand
the nature of the solutions. By examining the limit of ε → 0,
we give expressions for the two stable solutions, we calculate
the critical values of f at the bifurcation points, and we com-
pute the maximum value of the velocity in the channeled solu-
tions. This analysis leads to general conditions on the breaking
rate which are sufficient to exhibit channeled solutions.

A. Plug flow: lower branch

For small values of f the only solution is a plug flow. This
solution resembles that of flow through a porous medium, in
which the velocity is proportional to the pressure gradient.
In our model problem, this corresponds to the case when the
drag forces dominate the viscous forces. The value of the fluid
velocity away from the boundary is found by taking the limit
as ε → 0 in (12) which gives

−u exp(−u) + f = 0, (19)
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FIG. 11. (Color online) Flux vs pressure gradient for different
values of ε with δ = 0. For large enough ε there are no channeled
solutions.
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FIG. 12. (Color online) For f < fc = exp(−1) Eq. (19) has two
solutions, and for f > fc there is no solution.

where it is assumed that f > 0 and so u > 0. From this simple
equation we can compute the maximum value of f for which
a plug flow exists. That is, the value of f above which only
the upper branch solution exists.

The function f = u exp(−u) is plotted as a function of
u in Fig. 12. For small values of f (19) has two solutions,
and for large values of f there is no solution. The boundary
between these two regions occurs at the critical value of fc =
exp(−1), which corresponds to u = 1. Notice that in Fig. 5 the
lower branch ends at approximately fc = exp(−1) ≈ 0.368.
Therefore to leading order in ε the value fc represents the
critical applied pressure gradient, above which the gel falls
apart and the plug flow solution disappears.

For f < fc there are two solutions to Eq. (19). The smaller
of the two solutions goes to 0 as f goes to zero, while the larger
one goes off to infinity. Thus we observed the smaller solution
in the numerical simulation. We will show in Sec. IV C that
only the smaller plug flow solution is possible because of the
boundary conditions. To find an asymptotic expression for the

velocity, we exploit that there are two small parameters ε and
f . The solution to (19) for small f is

u = f + f 2 + O(f 3). (20)

This solution is a valid approximation to the solution of (12)
away from the boundaries, but near the boundary the viscous
term cannot be ignored.

There is a boundary layer of thickness O(ε1/2) in which the
velocity transitions sharply to satisfy the boundary conditions.
We rescale the spatial variable by Y = ε−1/2y, and define
U (Y ) = u(y) to get the equation in the boundary layer at y = 0
as

UYY − U exp(−U ) + f = 0, (21)

U (0) = 0. (22)

We find solutions to this equation by again exploiting that f

is small and expanding the drag term in powers of f . The
two-term expansion that satisfies the boundary condition and
the matching condition

lim
Y→∞

U (Y ) = lim
y→0+

u(y) (23)

is

U (Y ) = [(1 − exp(−Y )] + [3 − (2 + 3Y ) exp(−Y )

+ exp(−2Y )]
f 2

3
+ O(f 3). (24)

There is a similar boundary layer at y = 1. In Fig. 13(a) we
show the numerical solution to (12) compared with the two-
term (in f ) asymptotic solution for f = 0.1 and ε = 5 × 10−4.
We see that this is a uniform approximation to the solution
throughout the domain. We compute the maximum error in
this approximation to be less than 2%.

B. Parabolic flow: upper branch

On the upper branch the gel has essentially fallen apart and
the solution appears to be parabolic. When the velocity is large
the drag term is exponentially small, and so there is effectively
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FIG. 13. (Color online) Comparison of the numerical solution to Eq. (12) and the asymptotic solution (a) on the lower branch in the plug
flow regime and (b) on the upper branch in the parabolic flow regime for f = 0.1 and ε = 5 × 10−4. The error in the asymptotic approximation
is around 2% in both cases.
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no drag in the middle of the domain. Near the boundaries the
velocity is not large but the drag term is still small in this region
because the velocity is small.

Ignoring the drag throughout the domain, the leading order
solution to (12) is

u = f

2ε
y(1 − y). (25)

In Fig. 13(b) we compare this asymptotic solution with
the numerical solution for f = 0.1 and ε = 5 × 10−4. The
approximation is uniformly valid throughout the domain, and
for these parameters the error is less than 2.3% everywhere.

We have explained the form of the solution on the upper
and lower branches and estimated the value of the pressure
gradient at which the lower branch disappears. It is not obvious
what happens when the upper branch disappears and what
determines the shape of the channeled solution. These are
explained in the next section.

C. Phase plane

Equation (12) is equivalent to the first-order system

uy = v, (26)

εvy = u exp(−u) − f, (27)

where we have assumed that u > 0. For f < exp(−1), there
are two equilibrium points which are the roots of Eq. (19).
Denote these two roots by u− and u+, where u− < 1 < u+. It
is straightforward to show than u− is a saddle point and u+ is
a center.

After multiplying Eq. (12) by uy we obtain

d

dy

[
ε

2
(uy)2 + (u + 1) exp(−u) + uf

]
= 0. (28)

Thus the “energy” function

E = ε

2
v2 + (u + 1) exp(−u) + uf (29)
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FIG. 14. (Color online) Level sets (not equally spaced) of the
energy function (29) which correspond to solutions of the system
(26) and (27). The two equilibrium points are marked with dots.
The stable and unstable manifolds of the smaller equilibrium point
are plotted by the dashed curve. There is a homoclinic orbit which
encircles the larger equilibrium point. The parameters are f = 0.30
and ε = 5 × 10−4.

is constant on the trajectories of (26) and (27), or equivalently
the level sets of E are the trajectories in the phase plane. In
Fig. 14 we show the location of the two equilibrium points and
some sample trajectories for f = 0.30 and ε = 5 × 10−4. Note
this is in the parameter range where there are three solutions
to the boundary value problem (12). The stable and unstable
manifolds of the saddle point are plotted with a dashed curve.
There is a homoclinic orbit encircling the other equilibrium
point.

Only the trajectories that satisfy the boundary conditions
u(0) = u(1) are solutions to the original boundary value
problem (12). We can now explain why there is only one plug
flow solution despite the fact that there are two roots of (19).
In the phase plane, the larger solution u+ is separated from
the u = 0 line by the homoclinic orbit. For the boundary value
problem this means that there is no boundary layer capable of
matching the outer solution u = u+.

Whenever there are two equilibrium points, that is, when
f < exp(−1), the phase plane has the same qualitative
structure. At f = exp(−1) the two equilibrium points come
together. As discussed previously, this is the point at which
the plug flow solution and channeled solution come together.
What remains to be explained is what happens at the point
where the parabolic solution and channeled come together. To
understand this transition, we must understand the structure of
the channeled solution.

In Fig. 15(a) we show the plug flow solution and the chan-
neled solution for f = 0.30 and ε = 10−3, and in Fig. 15(b)
we show the same solutions in the phase plane along with the
equilibrium points and stable and unstable manifolds of the
saddle point. The boundary layer near y = 0 closely follows
the stable manifold, and the layer near y = 1 closely follows
the unstable manifold. The channeled solution has similar
boundary layers, except that it follows these manifolds on
the other side. The channeled portion of the solution closely
follows the homoclinic orbit on the outside. It is difficult to see
the difference between the different trajectories on this scale,
and so in Fig. 15(c) we show a closeup around the saddle point.

The value of ε only changes the scale of the vertical axis
in the phase plane. The shape of the trajectories of (26) and
(27) does not depend on ε. The value of ε determines which
trajectories in the phase plane are solutions to the boundary
value problem. By rescaling the spatial variable in (12) by

y = ε1/2ŷ, (30)

the boundary value problem becomes

uŷŷ − exp(−|u|)u + f = 0; u(0) = u(ε−1/2) = 0. (31)

The phase plane trajectories that satisfy this boundary value
problem are those that begin at u = 0 and return to u = 0 by
“time” ε−1/2. Thus as ε goes to zero the time to traverse these
trajectories goes to infinity. The only trajectories that meet this
requirement and remain bounded are those that closely follow
the trajectories in and out of the saddle point.

As f gets smaller there are no topological changes in the
phase plane. As f goes to zero the saddle point goes to zero,
and the other equilibrium point (the center) goes off to infinity.
Because the homoclinic orbit surrounds the larger equilibrium
point, the homoclinic gets infinitely large. This explains why

016310-9



GUY, NAKAGAKI, AND WRIGHT PHYSICAL REVIEW E 84, 016310 (2011)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

u

y

(a)

0 1 2 3
−15

−10

−5

0

5

10

15

u

v

(b)

0.3 0.4 0.5 0.6 0.7
−4

−2

0

2

4

u

v

(c)

FIG. 15. (Color online) (a) Plug flow solution (red squares) and channeled solution (blue circles) for f = 0.30 and ε = 10−3. (b) Solutions
plotted in the phase plane along with the equilibrium points and the stable and unstable manifolds of the saddle point (green dash-dot curve).
(c) Closeup of the solutions around the saddle point.

the channeled solution and parabolic solution merge for small
f . The channeled solution becomes larger while the parabolic
solution gets smaller.

The homoclinic orbit intersects the u axis in two
places: at the saddle point u− and at the maximum extent
of the homoclinic orbit, which gives the maximum velocity of
the flow in the channeled solution. Because these two points
are on the same trajectory, they have the same energy, and so
the maximum velocity of the channeled solution can be found
by solving the equation

(u + 1) exp(−u) + f u = (u− + 1) exp(−u−) + f u− (32)

for u. By exploiting that f is small and u is large, we find that
the leading order solution to this equation is

u = f −1. (33)

From (25) the maximum velocity of the parabolic solution
is

u = f

8ε
. (34)

To find the value of f at which the channeled solution meets
the parabolic solution, we equate these two velocities to find
that

f =
√

8ε. (35)

From the asymptotic analysis we construct a bifurcation
diagram of maximum velocity versus pressure gradient. The
lower branch corresponds to the drag dominated solution,
and the maximum velocity is the smaller root of (19). The
upper branch corresponds to the viscous dominated case,
and the maximum velocity is given by (34). The middle
branch corresponds to the channeled solution, and it is neither
drag dominated nor viscous dominated. It exists for pressure
gradients in the range

√
8ε < f < exp(−1) and its maximum

velocity is the nontrivial solution of (32). In Fig. 16 we show
plots of the maximum velocity versus the pressure gradient for
both the leading order asymptotic solution for the numerical
solution of the boundary value problem. When these two plots
are superimposed, the only notable difference is at the left
knee. Elsewhere, the curves are indistinguishable to the eye
on this scale. The similarity between these two plots validates
our asymptotic analysis.

D. Generalization

To this point we have assumed that the breaking rate of the
gel is the exponentially increasing function (4). The analysis
of the previous section gives insight into what breaking rate
functions give channeling behavior. We consider the equation

εuyy − g(u) + f = 0, (36)
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FIG. 16. (Color online) Plots of maximum velocity vs pressure gradient for ε = 5 × 10−4. (a) Asymptotic solution. (b) Numerical solution
of the boundary value problem.

where the drag term g is proportional to u/k−(|u|). For
simplicity we assume that u > 0 so that we ignore the absolute
value. As before, we examine the first-order system

uy = v, (37)

εvy = g(u) − f. (38)

Sufficient conditions for obtaining channeled solution are
(1) g(u) = f has two roots u− < u+ when 0 < f < fc

� ∞.
(2) g′(u−) > 0 and g′(u+) < 0.
(3) f u− − G(u−) = f u − G(u) has a nontrivial root

u++ > u−, where G is an antiderivative of g.
(4) ε is sufficiently small.
The first condition ensures that there are two equilibrium

points for a range of applied pressure gradients. The second
condition ensures that the smaller equilibrium is a saddle point
and the larger equilibrium point is a center. The third condition
means that the level curve of the energy function containing
u− intersects the u axis at a second point, which implies that
there is a homoclinic orbit. The final condition ensures that a
trajectory which follows the outside of the homoclinic orbit is
a solution to the boundary value problem.

These conditions translate into very mild conditions on the
form of the breaking rate function. For example, if the breaking
rate is a strictly positive, increasing function which grows
faster than linear, the model will exhibit channeling for small
enough ε. Mathematically these conditions are (1) k−(0) > 0,
k′
−(|u|) > 0, and k−(|u|)/u → ∞ as u → ∞. These imply that

the function g above satisfies g(0) = 0, g′(0) > 0, and g → 0
as u → ∞. The first two conditions on g for channeling are
clearly satisfied. The only nontrivial condition to check is that
there is a homoclinic cycle, that is, the third condition on g.
This is argued below.

Assume that f is in the range where the first two conditions
on g are met. Let W (u) = f u − G(u) − E−, where E− =
f u− − G(u−). The function W has a root at u−, and to
guarantee a homoclinic orbit we need that W has another root
larger than u−. The first two derivatives of W are W ′(u) =
f − g(u) and W ′′(u) = −g′(u). Because u− is an equilibrium
point, W ′(u−) = 0, and because g′(u−) > 0, W ′′(u−) < 0.
Thus W is negative for some values of u to the right of u−.

Because g → 0 as u → ∞, W ′(u) → f , and so W (u) → ∞.
Therefore there is a second root to W , which means that there
is a homoclinic orbit.

V. DISCUSSION

The model we present here provides a novel and simple ex-
planation for flow-induced channel formation in the cytoplasm
of Physarum. As our asymptotic analysis shows, the qualitative
predictions of the model are not sensitive to our assumptions.
An important feature of the solutions is the hysteresis of
flow channel formation. In our model exploration we only
analyzed the steady state solutions, but in the cell, the pressure
is oscillating temporally. Thus the flow speed is constantly
changing, and the robustness of a hysteric switch is needed
to maintain the channels under these conditions. We expect
that models with more detailed treatments of the rheology and
actin dynamics would produce similar results as long as fluid
stresses increase the rupture rate in the cytoskeleton.

The forces involved in cell locomotion are all generated
locally, but they must be coordinated across different regions of
the cell in order to achieve directed motion. Channel formation
is one means of providing global coordination across the cell.
Physarum is an unique cell given its large size and extremely
fast flows, but the coupled dynamics of cytoplasmic streaming
and cytoskeleton are involved in the locomotion of many other
cells [37,38]. Understanding how local stimulus is translated
into behavior is a fundamental question. Physarum has been
shown to exhibit fascinating global behavior such as finding
optimal solutions through mazes [12,13], which we interpret
as a form of primitive intelligence. The physics of soft matter
of cytoplasm is a key component of how the cell processes
information to achieve such complex tasks [10].
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APPENDIX: TIME AVERAGING
OSCILLATORY PRESSURES

In this paper we analyzed the velocity and network profiles
that result from a constant applied pressure gradient. In
Physarum the pressure gradient oscillates in time, which drives
the flow back and forth. In this Appendix, we show that the
velocity profiles of the constant pressure gradient case are
related to the amplitude of the oscillating velocity profiles.

Suppose that the applied pressure gradient f in (8) is a
periodic function of time with mean zero. The two time scales
of the problem are the time scale of cytoskeletal rearrangement
and the time scale of the pressure oscillation. The time scale
of the oscillation is smaller than the time scale of cytoskeletal
rearrangement [2]. We denote the nondimensional period of
the pressure oscillation as η, and because time has been scaled
by the cytoskeletal rearrangement time η � 1.

To determine the long-time behavior of the model, we use
the method of multiple time scales. Let τ = t/η represent the
time variable of the fast pressure oscillation scale. We treat the
velocity and network concentrations as functions of y, t , and
τ , but the applied pressure gradient is a function of only τ .
With the two time scales, Eqs. (8) and (9) are

εuyy − θu + f (τ ) = 0, (A1)

θt + η−1θτ = 1 − exp(|u|)θ, (A2)

along with the boundary conditions (10).
We exploit that η � 1 and expand the solution in powers

of η:

u = u0 + ηu1 + O(η2), (A3)

θ = θ0 + ηθ1 + O(η2). (A4)

To leading order the network equation is

θ0
τ = 0. (A5)

Thus, θ0 does not vary on the fast time scale. The leading order
equation for the velocity profile is

εu0
yy − θ0(y,t)u0 + f (τ ) = 0. (A6)

Let f (τ ) be expressed as

f (τ ) = f0f̂ (τ ), (A7)

where ∫ 1

0
|f̂ (τ )| dτ = 1. (A8)

The solution to (A6) is of the form

u(y,t,τ ) = U (y,t)f̂ (τ ), (A9)

where U satisfies the equation

εUyy − θ0U + f0 = 0. (A10)

To determine the equation for θ0, we use the equation for θ

at order η:

θ1
τ = −θ0

t + 1 − exp(|u0|)θ0. (A11)

To avoid secular growth, the right side of this equation must
have zero average over one period of the fast time scale. That
is, ∫ 1

0

[ − θ0
t + 1 − exp(|u0|)θ0

]
dτ = 0. (A12)

Using (A5) and (A9), this gives the equation for the network
to leading order as

θ0
t = 1 − θ0

∫ 1

0
exp[|U (y,t)f̂ (τ )|]dτ. (A13)

We make the approximation that∫ 1

0
exp[|U (y,t)f̂ (τ )|]dτ ≈ exp(|U (y,t)|), (A14)

which is valid for small amplitude oscillations. The equations
for the leading order solution are

εUyy − θ0U + f0 = 0, (A15)

θ0
t = 1 − exp(|U |)θ0, (A16)

which are equivalent to Eqs. (8) and (9).
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