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Automated Ischemic Lesion Detection in a Neonatal
Model of Hypoxic Ischemic Injury

Nirmalya Ghosh, PhD,1 Rebecca Recker, BA,1 Amul Shah, BS,1 Bir Bhanu, PhD,3 Stephen

Ashwal, MD,1 and Andre Obenaus, PhD1,2,4,5*

Purpose: To develop and compare an automated detec-
tion system for ischemic lesions in a neonatal model of
bilateral carotid artery occlusion with hypoxia (BCAO-H)
from T2 weighted MRI (T2WI) to the currently used ‘‘gold
standard’’ of manual segmentation.

Materials and Methods: Forty-three P10 BCAO-H rat
pups and 8 controls underwent T2WI at 1 day and 28
days. A computational imaging method, Hierarchical
Region Splitting (HRS), was developed to automatically
and rapidly detect and quantify 3D lesion and normal
appearing brain matter (NABM) volumes.

Results: HRS quantified lesion and NABM volumes within
15 s in comparison to 3 h for its manual counterpart,
with a high correlation for injury (r2 ¼ 0. 95; P ¼ 8.6 �
10�7) and NABM (r2 ¼ 0. 92; P ¼ 1.4 � 10�22). Average
lesion volumes for mild, moderate, and severe injuries
were 3.85%, 28.85%, and 52.98% for HRS and 0.51%,
24.22%, and 48.74% for manual detection. Lesion vol-
umes and locations were similar for both methods (sensi-
tivity: 0.82, specificity: 0.86, and similarity: 1.47).

Conclusion: HRS is an accurate, objective, and rapid
method to quantify injury evolution in neonatal hypoxic
ischemic injury models.

Key Words: global cerebral ischemia; magnetic resonance
imaging; automatic segmentation; automatic lesion detec-
tion; hierarchical region splitting
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NEONATAL HYPOXIC ISCHEMIC injury (HII) occurs
in 3–5 newborns per 1000 live births and may lead to
devastating sequelae including cerebral palsy, epi-
lepsy, and cognitive delay (1) and numerous animal
models simulating HII have been developed (2). MRI is
increasingly used to noninvasively assess the evolu-
tion, pathogenesis, and severity of focal and global HII
in human newborns and animal studies (3–5). Simpli-
fied semi-quantitative scoring systems to grade injury
severity from MRI have been developed for clinical use
(6,7) and more recently these scoring systems have
been adapted for use in rat pups (8). These scoring
systems, although helpful, are subjective and qualita-
tive measures of brain injury and often do not predict
injury volumes. Likewise, manual quantification of HII
lesions is extremely time-consuming, has low repro-
ducibility between observers (individuals may classify
the same MRI region differently), and may be error-
prone due to fatigue-related errors (influence of neigh-
boring data may affect the true value of a particular
pixel/voxel) (9,10).

With the advent of high resolution and multi-modal
medical imaging (11), one critical challenge is to
objectively analyze such medical and biological infor-
mation in as reproducible, quantifiable and accurate
manner as possible at or near real-time speed. This
would greatly improve serial data acquisition in clini-
cal studies and in animal models and improve lesion
volume determination as the injury evolves over time
(11). Advances in computer vision and computational
analysis can enhance automated extraction and
quantification of such data and these approaches can
greatly improve our ability to monitor ongoing biologi-
cal processes (12–15).

In recent years, research has been focused on auto-
mated MRI segmentation of anatomical brain struc-
tures (gray matter, GM; white matter, WM; and cere-
brospinal fluid, CSF) using a variety of methods
including fuzzy connectedness (16), constrained
Gaussian mixture models (GMM) (17), deformable
models with K-means clustering (18), spatially con-
strained fuzzy kernel clustering (14), graph cuts with
tissue prior models (19), and hidden Markov models
(HMM) (20). In some cases, the lesion has been mod-
eled as a reject class (21) or outliers of the normal tis-
sue models. For example, voxels not satisfying the
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criteria of GMM normal tissue models derived from the
Expectation Maximization (EM) algorithm (22) are
detected as lesions. MRI based automated lesion detec-
tion in other neurological diseases, such as multiple
sclerosis (15,23–25), focal cortical dysplasias (26,27)
and ischemic stroke (11) has generated great interest.
There are no studies that have examined the use of
automated detection of neonatal ischemic injury (the
focus of this work). In part this is due to the increased
difficulty due to the continuous evolution of the ische-
mic lesion in neonates and the unavailability of reliable
anatomical templates of the developing brain. A range
of strategies have been applied to measure lesional spa-
tial regularization or congruity including MRI textures
(13,26), probabilistic models (28), morphological opera-
tions (29), and physical model estimation (30), most of
which are computationally intensive and not useable
for quick injury estimation.

We have developed an automated computational
method, Hierarchical Region Splitting (HRS) that is
computationally efficient yet detects neonatal brain is-
chemic injury comparable to manual segmentation
(and other established methods). Most importantly,
HRS provides a generic framework that does not
require a brain atlas or probabilistic disease model.
We investigated the ability of HRS to detect (in three-
dimensions) the HII lesion and normal appearing
brain matter (NABM) volumes and compared our com-
putational approach with manual volumetric methods
in a rat pup model of bilateral common carotid artery
occlusion with hypoxia (BCAO-H) that mimics global
HII seen in term newborns (8).

Our primary hypothesis is that the HRS method
automatically and objectively detects and quantifies
HIE lesions (in almost real time) comparable to those
using manual extraction methods which are currently
considered the ‘‘gold standard.’’

METHODS

Bilateral Common Carotid Artery
Occlusion With Hypoxia (BCAO-H)

All animal protocols were approved by the Institutional
Animal Care and Use Committee. Ischemia was
induced by bilateral occlusion of the common carotid
arteries in unsexed P10 Sprague-Dawley rat pups (n ¼
43) while control animals (n ¼ 8) did not experience
surgery or hypoxia (8). BCAO-H was induced under
anesthesia (4% isoflurane) by a midline neck incision
where the common carotid arteries were exposed, sep-
arated from the vagal nerves, occluded with 5-0 nylon
sutures, and then ligated under a surgical microscope.
The wound was sutured and animals were then placed
with their dams on a warm heating pad (37�C) for re-
covery from anesthesia. After 90 minutes BCAO, the
pups were further exposed to varying durations of
hypoxia (1–15 min; 8% oxygen – 92% nitrogen) to pro-
duce graded volumes of injury severity.

MRI

Control and BCAO-H animals underwent MRI at
1 day (examining early injury) and 28 days (approxi-

mating long-term injury) post-injury (8). Pups were
lightly anesthetized using isoflurane (1.0%) before
imaging and a thermostat-controlled heated water
cushion maintained body temperature at 35–37 6
1�C. Two Bruker Advance MRI scanners (Bruker Bio-
spin, Billerica MA), one at 11.7 Tesla (T) and another
at 4.7T were used for acquiring T2-sequence data with
20 coronal slices (1 mm thick and interleaved by 1
mm) (31). At 1 to 13 days, pups were imaged on 11.7T
scanner (8.9 cm bore) with a multi-echo T2 sequence
with the following parameters (8): TR/TE ¼ 4600 ms/
10.2 ms, number of echoes ¼ 10, matrix ¼ 128 � 128,
field of view (FOV) ¼ 3 � 3 cm with 2 averages, with a
total imaging time of 20 min. At 28 days, the maturing
pups were imaged on a 4.7T scanner (30-cm bore)
with multi-echo T2 sequence with following parame-
ters: TR/TE ¼ 2850 ms/20 ms, number of echoes ¼
6, matrix ¼ 128 � 128, FOV ¼ 3 � 3 cm with 2 aver-
ages, with a total imaging time of 12 min. We observed
no variability between the two scanners; furthermore,
HRS results use the actual T2 data and their rescaled
values (i.e., not arbitrary MRI intensities).

Manual Volumetric Image Analysis

While inter-observer variations in manual lesion
quantification result in irreproducibility and subjec-
tivity, intra-observer quantification is typically con-
sistent. Hence, we have used single observer manual
detection as the ‘‘gold-standard’’ for comparison. The
manual volumetric MR image analysis method in the
current study was similar to those previously pub-
lished (31,32). Using Amira (Mercury Computer Sys-
tems, Inc.), T2 images were analyzed, the regions of
hyperintensity were used to delineate lesions and the
lesion boundaries were manually drawn from which
the infarct volume was computed. Data included
infarct volumes, noninfarct brain volumes, and total
brain volumes. The investigator performing the volu-
metric measurements was blinded to the hypoxia du-
ration (31). The 2D regions-of-interest (ROIs) on each
MRI (i.e., brain slice) were drawn manually and the
MR tissue volume of interest was calculated using a 1
mm inter-slice distance.

Hierarchical Region Splitting (HRS)

HRS is an automated and recursive region segmenta-
tion method that segments T2 values into uniform
image regions recursively. In each recursive splitting,
regions from the previous stage (iteration) are sepa-
rated into smaller yet more uniform image regions
(Fig. 1). Different brain tissues have different contrast
levels such that a uniform region likely represents a
single brain tissue type (e.g., cortex versus striatum).
Because T2 images reflect water content and as HII
lesions contain more water (edema) than normal brain
tissues, the HRS method can exploit these differences
to segment uniform T2-regions in which the brightest
signal is expected to indicate the location of the brain
lesion(s).

The HRS methodological sequence (Fig. 1) to extract
lesion and NABM from T2 images are:
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Rescaling

To reduce computational complexity and increase
robustness to MR signal variation, we rescaled the T2
values to a range [0, 255] and the scaling factors
were saved to map the automatically derived results
in image intensity values back to T2 values. As T2
values more than 255 are not common, rescaled data
were very similar to the actual T2 values. We have

used this rescaling step for compatibility of the
HRS method to other MRI modalities (e.g., diffusion
weighted images) where the range of values may vary
widely.

Deriving Histogram and Distribution Measures

The signal spectrum histogram (H) of the rescaled T2
(T20 in the range [1,N]) was computed.

Figure 1. HRS in (a, b) severely, (c, d) moderately and (e, f) mildly injured BCAO-H rat brains. a,c,e: The histograms illustrate the
global MRI signal spectrum of the rescaled T2 (denoted as T20 in this study) values in the (a) severe, (c) moderate, and (e) mild BCAO-H
animals. b,d,f: The automatically detected threshold of (b) T20 ¼ 181, (d) T20 ¼ 158, and (f) T20 ¼ 170 split the histograms and the level
0 images into two parts as shown in level 1. This histogram-based image splitting is repeated and sub-images with intensities from
each part of the histogram form the tree structure. Only the top part of the HRS tree is shownwhere each image represents only a por-
tion of the histogram. HRS is terminated when the split regions are considered uniform based on specified criteria (seemethods).
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HðiÞ i 2 ½1;N �

Histogram H was Normalized to estimate a probabil-
istic distributed function (p) and cumulative distribu-
tion function (V), which is cumulative sum of p, was
computed.

pðiÞ ¼ HðiÞ
�XN

i¼1

HðiÞ VðiÞ ¼
Xi

j¼1

pðjÞ

Finally, the cumulative weighted means (m) and the
terminal cumulative weighted mean (mt) are computed
from probabilistic distribution function p(i).

mðiÞ ¼
Xi

j¼1

pðjÞ�j mt ¼ mðNÞ

Computing Adaptive Segmentation Threshold

Similar to Otsu’s method (33), we compute the sequence
of Otsu’s measure (s2

b) using the following equation:

s2
bðiÞ ¼

½mt
�VðiÞ � mðiÞ�2

½VðiÞ�ð1�VðiÞÞ�

Then we find the mode (idx) in the Otsu’s measure
sequence; if there are more than one (closely spaced)
modes, we take the mean of them:

idx ¼ mean modes s2
b

� �� �

The normalized threshold (Th0), which is in between
[0,1], is computed by the following equation.

Th0 ¼ ðidx � 1Þ
ðN � 1Þ

We modeled the histogram at every level (i.e., level
0–2, Fig. 1b,d,f) as a bimodal distribution with two
distinct and distant peaks (Fig. 1a,c,e). We computed
the valley between these peaks as an adaptive thresh-
old (Th) to split the image into two sub-region images
(for the next level; one region has values greater and
the other region has values less than the threshold;
Fig. 1b,d,f) that were relatively uniform in intensity.
Each peak is a region with a minimum intra-regional
and maximum inter-regional T2 variance. For our
case, as range is [0,255], that is, N ¼ 255, we find
threshold in rescaled value by: Th ¼ Th0 � 255.

Recursive Bimodal Segmentation

A unique aspect of the HRS method is in its recursive
application of bi partite segmentation. The sub-
images were then recursively further split to generate
a tree-like hierarchical data structure (Fig. 1b,d,f). At
every recursion, skewness and kurtosis values of the
histograms or part of it have been computed by the
following equations:

Skewness ¼Eðx � mÞ3
s3

Kurtosis ¼Eðx � mÞ4
s4

where l is the mean of histogram x, r is the standard
deviation of x, and E(t) represents the expected value
of the quantity t.

Criteria for Stopping Segmentation

Recursive splitting was continued until individual
segments or sub-regions had near-uniform MRI
intensities. Uniformity was measured based on three
factors, whether: (a) the individual connected regions
were small (area < 50 pixels � 2 mL volume in a
single T2 slice) and unlikely to be further parti-
tioned; OR (b) the T2 signal value for the region had
a low standard deviation (STD < 10 T2 values), that
is, the regional MRI intensities were relatively uni-
form; AND (c) the T2 histogram for the segmented
region had a low kurtosis value (kurtosis < 1.5)
where the peak was too distinct to be modeled as a
bimodal distribution. The brain regions obtained
from HRS (e.g., HRS trees in Fig. 1b,d,f) were not
always uniform in T2 (or rescaled T2) values, but as
we descend down the HRS tree, we achieve greater
uniformity within individual regions. The threshold
values or split-stopping criteria (volume < 2 mL;
STD < 10; kurtosis < 1.5) were manually selected
based on published results (8).

Manually detected lesions had a standard devia-
tion within 20–25 and a mean within 150–255 of
the rescaled T2 values (see step 1). A kurtosis
threshold of 1.5 detects peaks that are much
sharper than Gaussian (normal) distribution (kurto-
sis ¼ 3) that has been used in other methods
including GMM (22). These thresholds do not affect
lesion detection but minimize unnecessary overseg-
mentation of small or very uniform regions which
reduces HRS tree size and computational (space and
time) complexity.

Detection of HII Lesion

Based on previously published studies (8) as well as
our current results using manual detection meth-
ods, we determined that a T2 value of 150 can effi-
ciently distinguish the HII lesion from normal tis-
sues. We used this value as a soft threshold, called
threshold for the lesion mean (meanTh ¼ 150 in
rescaled T2 value; see Step 1). We accomplished
this by systematically checking the mean value of
the sub-regions in the HRS tree one by one, starting
from the top (level 0) and gradually descending
down branches of the HRS tree until we reached a
sub-region with a mean (rescaled) T2 value that is
greater than the meanTh (¼150). HRS then catego-
rizes this sub-region as an HII lesion (e.g., Fig. 1b,
lesion: right-side sub-image in level 1 has a mean
rescaled T2 value ¼ 224, while NABM (left-side)
sub-image at level 1 has a mean T2 value ¼ 139).
Note that, sub-regions were not re-grouped to detect
lesion. The threshold � meanTh ¼ 150 was the cut-
off for the HII T2 mean. Lesion(s) detected by HRS
may have mean (rescaled) T2 values substantially
above this meanTh ¼ 150 value, and as a result
effective lesion thresholds differ between individual
animals.
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Finally, regional properties (area, mean, and stand-
ard deviation) and signal spectrum or histogram prop-
erties (kurtosis and skewness) were computed for the
2D lesions detected by HRS. The 3D volumes were
then computed.

Statistical Analysis

We used Student’s paired t-test with a two-tailed
distribution to determine whether the manual and
HRS results were likely to have derived from the
same two underlying populations that have the
same mean. Lower output probability value (P value)
signifies better correlation between results from
manual and HRS methods. We also computed corre-
lation coefficients (r2) of the HRS and manual results
to determine how well they can be modeled using
linear regression.

Performance Indices

Standard statistical analysis only considers scalar
volumetric comparisons without considering overlap
between the detected location of the lesions from HRS
and manual methods. To compare lesion location(s)
and measure performance between the HRS and
manual methods, we used three performance indices:
(i) sensitivity, (ii) specificity, and (iii) similarity, as
defined below (34).

Sensitivity ¼ LMan \ LHRS

LMan

Specificity ¼ BRMan � LManð Þ \ ðBRHRS � LHRSÞ
ðBRMan � LManÞ

Similarity ¼ 2� LMan \ LHRS

LMan [ LHRS

where LMan and LHRS were the binary lesion masks
derived from manual detection and HRS, respec-
tively, and where BRMan and BRHRS were the binary
masks for the total brain as derived from the manual
and HRS detection methods, respectively. Sensitivity
defined how well the lesions overlap between these
two methods and quantified true positive detection.
Specificity quantified overlap in NABMs from both
methods and signified the negative detection rate.
The similarity index measured location and volume
similarities between lesions derived from both meth-
ods. Note that the similarity index actually measures
the accuracy of HRS detection in comparison to the
gold-standard, in terms of location, size and overlap
of the detected HII lesion. Sensitivity and specificity
may range between [0, 1], while similarity can vary
between [0, 2].

RESULTS

Animals and Neuroimaging

All animals that survived 3 days (81.8%) post-BCAO-H
survived until study completion. Mortality rates were
higher in the more severely injured pups: mild (i.e.,
lesion < 15% total brain) was 5.3%, moderate (15% <

lesion < 35%) was 20%, and severe (lesion > 35%) was
44%.

Lesion distribution (1 day post BCAO-H) was
dependent upon severity (Fig. 2a). Animals with
mild injury primarily exhibited unilateral cortical
infarctions, those with moderate injury had bilateral
cortical involvement, whereas those with severe
injury had more extensive bilateral and in some
cases hippocampal involvement. At 28 days, similar
injury patterns were observed but were often smaller
(Fig. 2a) (8).

Manually Derived Lesion Volumes

Manually extracted 3D volumes at 1 day were 0.7 6
2.3%, 26.3 6 6.2%, and 48.7 6 5.5% for mild, moder-
ate and severe lesions, respectively (Table 1). At 28
days, all severe animals recovered to become moder-
ate/mild and hence there were no severe animals (i.e.,
lesion > 35%). An example of the 3D volumetric repre-
sentation of a manually extracted moderate lesion
and NABM at 1 day is depicted in Figure 2b.

HRS-Derived Lesion Volumes

HRS has lesions in mild (Fig. 1e,f), moderately
(Fig. 1c,d) and severely (Fig. 1a,b) injured BCAO-H
animals, from which we derived the 3D lesion vol-
umes (Fig. 2c). At 1 day after BCAO-H, mean 6
standard deviation of HRS-detected percentage lesion
volumes (with respect to the entire brain) were for
mildly injured: 5.95 6 8.4%, for moderately: 30.4 6

Figure 2. MR volumetric analysis of BCAO-H lesions. a: T2
weighted images in a moderately injured BCAO-H rat brain
at anterior (top row), middle (middle row), and posterior
(bottom row) brain levels. Images at 1 day (left column) and
28 days (right column) illustrate early and long-term injury.
b: Manually derived 3D T2 reconstructed brain (light-gray)
and lesion (dark-gray) volumes at 1 day. c: HRS-derived 3D
brain (light-gray) and lesion (dark-gray) volumes at 1 day.
Note similarity between manual (22%) and HRS (23%) -
derived volumes.
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5.5%, and for severely injured animals: 52.98 6 10.1%.
Mean and standard deviation for the same injury sub-
group remained nearly the same for 1 day and 28 days
when comparing mild and moderate animals (Table 1).

Comparing HRS and Manual Lesion Volumes

HRS-derived lesions in mild, moderate, and severely
lesioned animals (Fig. 3) were consistently larger
than those derived manually (Fig. 3). There was a 1–
4% increase in lesion volume with HRS (Table 1). We
found a very strong correlation (Fig. 4) for all ani-
mals between lesion volumes as measured by both
methods (r2 ¼ 0.95; P ¼ 8.6 � 10�7). Likewise, when
we examined the injury severity subgroups, we found
a strong correlation between manual and HRS-
derived percentage volumes as follows: mild (r2 ¼
0.49; P ¼ 0.0166), moderate (r2 ¼ 0.99; P ¼ 0.0086)
and severe (r2 ¼ 0.80; P ¼ 0.0571) (Table 1). For
NABM, 3D volumes computed by manual and
HRS methods were also strongly correlated (r2 ¼
0.92; P ¼ 1.4 � 10�22).

Performance indices (sensitivity, specificity, and
similarity) for locational accuracy of HRS based detec-
tion compared with manual detection method were
consistently high (sensitivity: 0.82 6 0.15; specificity:
0.86 6 0.12; similarity: 1.476 0.40) for all 43 BCAO-
H animals that we assessed (Table 2; Fig. 5b).

DISCUSSION

Although described in adult stroke (11), automated
HII lesion detection has not been reported in human
newborns nor in animal models of neonatal HII. The
neonatal brain has different physical characteristics
than the adult and the response to injuries such as
HII are also different. The neonatal brain has more
water content, smaller brain volume, less myelination
and anatomical definition (8), and most importantly,
more heterogeneity within brain and lesion data due
to ongoing nervous system maturation. Due to these
complexities, automated lesion detection methods uti-
lized in adults, like those using established anatomi-
cal brain maps (24), GMM (17) or other standard
probabilistic models (28), are not feasible for neonatal

HII detection. The principal findings of the current
study are that: (i) HRS is a mathematically less inten-
sive, yet a powerful automated approach to detect,
localize and quantify T2 MRI lesions in a neonatal
model of HII; and (ii) HRS measurement of neonatal
HII lesion volumes are similar to the currently used
‘‘gold standard’’ of manual quantification with its
advantages being speed, accuracy and robustness.
The speed of HRS (15 s per brain) is several orders of
magnitude faster than the manual method (2–3 h per
brain) and as such for both experimental work and

Table 1

Percent Volume of Ischemic Injury: Comparison of Manual Versus HRS Methods

Manual HRS r2 value P value

MRI 1 d after HII

Mild 0.73 6 2.3 5.95 6 8.35 0.49 0.0166

Moderate 26.25 6 6.2 30.40 6 5.50 0.99 0.0086

Severe 48.74 6 5.5 52.98 6 10.10 0.80 0.0571

MRI 28 d after HII

Mild 0.00 6 0.00 5.54 6 4.70 — 0.0004

Moderate* 21.18 6 6.52 26.53 6 8.73 1.00 0.1803

Severe** — — — —

*These values exclude a single outlier data point from the 28 d group that led to significant difference between manually (22.8%) and

HRS (45.8%) derived percentage lesion. Inclusion of this outlier results in manually detected percentage injury volume to be (21.72 6
4.70) and that from HRS (32.94 6 12.70) with a correlation of r2 ¼ 0.65; P ¼ 0.1995.

**All severe animals had recovered by 28d and became either moderate or mild. Hence no severe animal results could be reported for 28d.

Figure 3. Comparative volumetric results between HRS and
manual methods at different injury-severities. Manually
detected lesions in 2D and in 3D from T2WI and automati-
cally (HRS) detected lesions in 2D and in 3D from T2WI are
similar. T2WI from mild (<15% lesion), moderate (15–35%),
and severe (>35%) injuries are shown at the level of the hori-
zontal line. The percentage of the lesion volume compared
with the entire brain is shown below the 3D volumes. Com-
paring the percentage-lesion volumes, and 3D volumetric
results, we demonstrate that HRS values are remarkably sim-
ilar to those determined for the manually detected lesions.
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eventual clinical use offers significant practical
advantages. HRS is more accurate than the manual
method in the sense that it can detect those lesions
which have T2 values high enough to be considered
as lesion but which the human eye may overlook due
to smaller size or relative low contrast with respect to
the neighboring voxels. Human visual perception suf-
fers from inconsistencies in processing image data
and because HRS is an objective consistent method, it
can accurately detect these lesions. The robustness of
HRS is evident from the consistency (low standard
deviations) of our results (Fig. 4) and the performance
indices (Fig. 5b) compared with the manual methods
from 43 rat brains with different injury severities, dif-
ferent affected anatomical locations (Figs. 1, 3), and
different imaging time-points. As seen from the histo-
gram plots in Figure 1a (severe injury), Figure 1c
(moderate injury) and Figure 1e (mild injury), the
peaks for NABM and lesion are not always clearly
demarcated. With larger lesion size and improved MR
contrast, the lesion peaks appear more prominent.
However, irrespective of lesion percentage volume,
HRS detects and quantifies the lesion objectively. Our
findings also suggest that the HRS framework could
be used clinically for lesion detection and volume. We
acknowledge that before translating the HRS method

to clinical applications, we have to consider how to adapt
HRS to account for the anatomical location of the lesion(s).

Although Otsu’s method (33) has been used for
adaptive image segmentation, to the authors’ knowl-
edge it has not been applied recursively for hierarchi-
cal region splitting of MRI. A recent publication (35)
demonstrated a histogram and clustering based adult
TBI detection method that worked well only for MR
slices with visually detectable lesions (i.e., biased).
Our HRS method is more generic and unbiased, and
broadens the horizon of automated lesion detection.
Although structurally HRS-derived trees appear to
look like the decision trees (DT) used in machine
learning systems, they are fundamentally different. A
single DT is developed from supervised learning of a
training data set and each node acts as rule-base for
an expert system. In contrast, with HRS trees, there is
no learning/ training phase and it produces com-
pletely different hierarchical trees for each MRI slice
in an unsupervised, adaptive and data-driven way.
The nodes in HRS trees do not classify region splitting
results, as this is done by an external parameter
(meanTh in lesion detection). The novelty of our
approach is in the use of recursive splitting (without
any merging) to get a multi-level representation of the
MRI data (i.e., different abstraction or granularity

Figure 4. Statistical comparisons between manual and HRS lesion volumes. Cross-correlation of manual percentage lesion
volumes compared with the HRS-detected lesion volumes. The correlation factor r2 ¼ 0.95 at (P ¼ 8.6 � 10�7) demonstrates
that HRS performs similarly to manual detection methods. Most importantly, in most cases, the BCAO-H injured brains were
classified at the same severity levels based on percentage lesion volumes, mild (lesion < 15%), moderate (15% < lesion <

35%), and severe (lesion > 35%) in both types of analysis.

Table 2

Sensitivity, Specificity, and Similarity Scores by Injury Severity Levels

Mild Moderate Severe Overall

Sensitivity 0.47 6 0.12 0.86 6 0.08 0.85 6 0.09 0.82 6 0.15

Specificity 0.87 6 0.02 0.86 6 0.18a 0.87 6 0.07 0.86 6 0.12

Similarity 0.40 6 0.25 1.53 6 0.13 1.63 6 0.17 1.47 6 0.40
aNote that, for skewed histograms (or distributions), as happened to be in the case of moderately injured brains (specifically due to one

single brain, where specificity is as low as 0.42 compared to the others above 0.90), we obtained a high standard deviation and (mean þ
SD) become higher than the upper-limit of the values (as happened for specificity of the moderate brains).
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levels) and application to medical image processing,
where these methods have not been previously used.
HRS oversegmentation does not affect detection and
its usefulness is in detecting heterogeneity inside any
sub-regions within the lesion to characterize different
patterns of injury (see Fig. 5a) for better outcome pre-
diction (future work), as the MR values are not uni-
form in detected lesions.

Computationally intensive mathematical models are
generally used for brain segmentation but their com-
plexity hampers rapid detection, localization (i.e.,
detected location in brain MRI) and volumetric quanti-
fication of lesions (12,14,22,27). HRS provides a

robust solution in that it is simple, fast, and yet is a
reliable automated lesion detection method. HRS line-
arly maps any MR value (independent of modality) to
a manageable image intensity range, detects the
lesions and allows mapping of the results back to the
original relevant MRI values. HRS worked well (high
correlation with manually detected results) for 43
brains with different noise-levels (from different MRI
machines), different lesion volumes (mild, moderate,
and severe injury levels) and over two broad imaging
time-points (1 day and 28 days after HIE). We believe
that HRS, with our rescaling strategy, worked well. It
uses the rescaled image for regional intensity proper-
ties to detect internal details at an even finer level
within the MRI. Successive splitting of HRS images
are performed using automatically and adaptively
selected thresholds from the histogram-based MR sig-
nal spectrum at different hierarchical levels. Because
different brain regions contrast differently, the HII
lesion and NABM can also be automatically and adap-
tively detected.

HRS is a top-down locally adaptive automated image
segmentation method; top-down as we start from the
entire MRI data spectrum (histogram), and local
because it considers the histogram characteristic of
each individual region in the hierarchy of segmentation
levels. HRS is adaptive to the characteristic of local
regions. The derived threshold values are not affected
by small MRI signal variations because HRS maximizes
the difference in the means of the two regions while
minimizing the variance within each region. It is capable
of detecting lesions despite different degrees of injury
severity or location of the lesion in different brain
anatomical regions (e.g., cortex, hippocampus, etc.)
(Table 1; Figs. 3, 5a). Most importantly, it correctly clas-
sifies the degree of injury severity based on the percent-
age lesion volume in most cases (Fig. 4) when compared
with the manual ‘‘gold-standard’’ approach.

The majority of studies on MRI based lesion detec-
tion in humans and animals have not considered
automated segmentation (31,32,36–39). Manual
lesion detection by a single trained individual is
remarkably good as evidenced by intra-observer stud-
ies. However, in order for lesion detection to be clini-
cally relevant, a broad range of individuals (with dif-
ferent backgrounds and training levels) would have to
be deployed to make this viable. Thus, inter-observer
variability is and would be significant. Besides their
subjective nature, manual methods are also time con-
suming (2–3 h/brain), which can lead to fatigue-
related errors. Thus, manual results between individ-
uals are not comparable for statistical comparisons.
In contrast, HRS is fast (10–15 s/brain), objective and
robust. Using manual quantification as the ‘‘gold
standard’’, HRS detects the same anatomical location
of the lesion in all animals examined (Fig. 5b) with
very strong volumetric correlations (Fig. 4). For ani-
mals with mild brain injury, HRS overestimated the
percentage of lesion volume compared with manually
derived results (0% in most cases). This likely
occurred because, in manual methods, the human
visual system ‘‘overlooks’’ smaller lesion regions (as
expected with mild BCAO-H) due to the visual

Figure 5. a: Comparison of HRS performance for BCAO-H at
different injury severity levels. Each column is the right-most
branch in HRS trees (in Fig. 1b,d,e) for corresponding ani-
mals. HRS could detect different regions and locations of the
lesions (middle row) from the entire brain (top row). Even
inside the lesion, most critically affected tissues (with much
higher T2 values) could be detected (bottom row). b: Perform-
ance measures to quantify locational accuracy of HRS lesion
detection compared with manual lesion detection. Sensitivity
(range between [0, 1]) measures the true positive detection
rate while specificity (range between [0, 1]) measures the true
negative detection rate. Similarity (range between [0, 2])
measures size and location-specific reliability. The graph
illustrates that, for moderate and severely injured animals,
HRS detects lesions of a similar size and at the same locations
compared with manual methods. In the case of mildly injured
animals, HRS is not as robust in detecting small lesions at
different locations (sensitivity and similarity) compared with
the manual approach (see the Discussion section).

Automated Neonatal Ischemic Lesion Detection 779



illusions caused by neighboring pixel data (9). Also
lesion volumes and their 3D reconstructions from
both methods (Figs. 2b,c, Fig. 3) demonstrate that
HRS-derived volumes are less smooth than those from
the manual methods due in part to human bias to-
ward smoothing surfaces. Automated methods have
their own limitations and pitfalls but most studies (34)
have compared their automatically derived results to
manually derived ones. Specifically, as manual results
from a single trained observer have low intra-observer
variability such manual results can be used as a ‘‘gold
standard’’. In the study by Shen and colleagues (34)
sensitivity (mean, 0.96), specificity (mean, 0.99) and
similarity (mean 0.97) were computed only for 15 MR
images and visually detectable lesions and similarity
were quite low for its range [0,2]. This study also
ignored other MR slices where false-positives were
expected; hence, the specificity result reported is bi-
ased. Finally, this study used a simulated lesion that
was spherical, though lesions typically are not spheri-
cal. In contrast, our study used a large and heteroge-
neous dataset (43 � 12 MR images without bias) and
reports performance scores (Table 2) comparable to, if
not better than, published results.

Note that histograms of MRI slices at different injury
severity levels may look significantly different (mild:
Fig. 1e; moderate: Fig. 1c; severe: Fig. 1a), but HRS
can automatically define the best threshold (T2 ¼ 170
(mild), 158 (moderate), 181 (severe) in our examples)
for segmentation of the corresponding histograms.
Finally, HII lesion detection by HRS is also adaptive, in
terms of the following: (i) level in the HRS tree, (ii) sub-
image in the HRS tree, and (iii) T2 values (and their
mean) of the pixels in the detected region (with the
only constraint being that mean T2 < meanTh ¼ 150).

It is acknowledged that without histological confir-
mation, it cannot be determined equivocally whether
the manual detection or the HRS method is absolutely
correct for the dynamically evolving lesion. However,
our previously published work (40) demonstrated that
the manual lesion determination from MRI correlated
well with histology at later time points (28 days), but
underestimated the lesion volume at early time points
(3 days). This fact supports that HRS-derived lesion
volumes appear to be larger than manually detected
lesions at 1 day. This confirms that HRS and manual
methods are comparable, but that HRS detection is
much faster and automated.

In its current form, two limitations of the HRS
approach are recognized (and correctable). (i) HRS
considers the global spectrum (histogram) of individ-
ual MRI slices and can occasionally wrongly detect
small lesions (false-positives). Future work will use
2D/3D continuity and proximity to reject such false-
positives. (ii) HRS also falsely detected lesions at the
level of the brainstem (Fig. 3) that led to �4% larger
volumes than those from the manual method. This is
likely due to bright T2 CSF signal, but use of Fluid
Attenuated Inversion Ratio (FLAIR) images would min-
imize these errors. Also, after lesion detection (unlike
in (24)), anatomical atlases and published MR (e.g.,
T2) values for different brain tissues can be used in a
model-based rejection of outliers.

In conclusion, HRS is fast, robust and capable of
quantifying HII lesion volume. HRS fulfills the current
need to rapidly and objectively quantify injury vol-
ume(s) from neuroimaging. HRS has a broad applic-
ability to other types of acquired brain injury (e.g.,
trauma, stroke). Only the global threshold (meanTh)
would be different for different applications and dif-
ferent types of injuries or other tracked tissues (e.g.,
stem cells). The ability to rapidly segment and quan-
tify volumes of injury is instrumental in using MRI in
translational research for candidate selection for
treatment. Lesion shape considerations and 3D con-
nectivity based outlier rejection will further improve
our results and we will consider these in our future
studies. HRS also can be used serially to monitor the
evolution of disease over time and to objectively quan-
tify the benefits (or lack thereof) of specific treatments.
Thus, the HRS approach has the potential to define
early biomarkers of treatment successes/failures that
could trigger clinical choices to adjust therapies to
improve success.
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