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Abstract. Communication between humans is rich in complexity and is not 

limited to verbal signals; emotions are conveyed with gesture, pose and facial 

expression. Facial Emotion Recognition and Analysis (FERA), the set of 

techniques by which non-verbal communication is quantified, is an exemplar 

case where humans consistently outperform computer methods. While the field 

of FERA has seen many advances, no system has been proposed which scales 

well to very large data sets. The challenge for computer vision is how to 

automatically and non-heuristically downsample the data while maintaining a 

minimum representational power that does not sacrifice accuracy. In this paper, 

we propose a method inspired by human vision and attention theory [2]. Video 

is segmented into temporal partitions with a dynamic sampling rate based on 

the frequency of visual information. Regions are homogenized by an 

experimentally selected match-score fusion technique. The approach is shown 

to increase classification rates by over baseline with the AVEC 2011 video-

subchallenge [15]. 

Keywords: vision and attention theory; avatar image registration; local phase 

quantization  

1   Introduction 

The field of video-based emotion recognition has been an active area of work [13, 14, 

23] and has progressed with the help of standardized data sets such as JAFFE [10], 

among the earliest, and state-of-the-art data sets such as Cohn-Kanade+ [9] and the 

MMI Database [19]. However, despite the existence of these standards, many papers 

select subsets of data or do not detail how training and testing sets are generated [18]. 

Challenge data sets such as FERA Challenge 2011 [18] and The Audio/Visual 

Emotion Challenge and Workshop (AVEC 2011) [15] provide a benchmark to 

compare different emotion recognition systems on common ground. 

Facial Expression Recognition and Analysis (FERA) typically extract frontal face 

images and compute either appearance features (such as Gabor wavelets [22] and the 

family of LBP type features [7]) or geometric relationship features (such as AAM- 



  

Fig. 1. System overview. 

based features [9]). Facial expression is commonly detected in terms of Facial Action 

Units, a minimal set of facial muscle actions, or the ―big six‖ emotion labels. Fontaine 

et al. [3] assert that basic emotions can be described along the four dimensions: 

activation, expectancy, power and valence. AVEC 2011 uniquely requires detection 

of emotion along these four axes.  

Approaches commonly assume that video sequences are pre-cut such that a subject 

expresses a single emotion over the sequence, or take advantage of labeling the time 

point where emotion is most intense, known as the apex. While knowledge of apex 

location positively affects performance, labeling requires an expert. In uncut 

interview footage such as in Solid-SAL [11]—the data used in AVEC 2011—subjects 

express multiple apex maxima in a single video. An automatic approach for uncut and 

unlabeled video that does not require apex labeling is proposed. 

1.1   Vision and Attention Theory Inspiration 

Humans can suddenly change emotion state, meriting high frame-rates for precise 

detection of changes. However, a constantly high frame-rate may not be necessary for 

the whole video. A subject is not likely to change emotion state while idle. High 

frame rates unnecessarily increase sample size. Intuitively, a recognition system 

should devote fewer resources when the subject in video is idle and more resources 

when there is action in the video, e.g., a high frame rate is required to properly 

describe an animated or speaking subject to represent changes in visual information 

whereas only a few frames are needed to describe a subject when idle with little 

change in visual information. In the human visual system (HVS), steady state visual 

information is processed at a rate of <1Hz [2]. This rate increases proportionally with 

the frequency of visual stimulus [5]. In this paper, we use this concept as inspiration 

for partitioning videos into temporal segments of varying sampling rates which 

increase proportionally with the frequency of visual information. Visual stimulus is 

quantified using a Discrete-Time Fourier-Transform (DTFT) of motion features and 

the dominant frequency controls the sampling rate locally for each time-segment.  
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Contribution. A perceptual psychologically-inspired model for segmenting video 

into time partitions with a dynamic, minimal frame rate needed to meaningfully 

represent each local volume is proposed. We propose homogenizing dynamic time 

partitions with a combination-based match-score fusion technique which is 

experimentally selected from performance on the development set. This approach is 

robust in that it does not require apex labeling and does not make assumptions that 

would not scale to real world data. This approach directly addresses the sample 

dimensionality problem in AVEC 2011 while reducing loss in precision of emotion 

state changes. 

2   Technical Approach 

We propose the following recognition pipeline given in Fig. 1: (A) Frontal face region 

of interest are detected with a Viola-Jones framework [20]. (B) Faces are registered 

using Avatar Image Registration [21] (C) Local Phase Quantization features (LPQ) 

[12] features are extracted and (D) each frame is classified using a linear Support 

Vector Machine (SVM). (E) Video data is segmented into time partitions of varying 

sampling rate from 1Hz to the maximum video frame rate, controlled by the dominant 

frequency of the DTFT of motion features. (F) Test results are fused at the 

combination match-score level [6] using multiple matchers locally for each partition.  

2.1   Face Detection and Registration 

Viola and Jones Face Detection. A Viola-Jones detector [20] is trained to detect 

frontal faces in order to extract regions of interest. In the Solid-SAL data set, pose 

may be extreme such that a frontal face is obscured, or a face not totally in frame. For 

training, frames where the detector does not detect a frontal face are treated as bad 

samples and are withheld from model training. For testing, when the detector fails, it 

is not possible to properly classify the result using a model trained on frontal face 

features, as the image is not a frontal face and the result would be incorrect. In testing 

cases where features are not available, we assign the label with the highest a priori 

probability from training, for that emotion. 

 

Avatar Image Registration. Images are aligned with Avatar Image Registration [21] 

which aligns face images at the scene-level with SIFT Flow [8]. Each frame is 

spatially warped to a single reference frame, titled the Avatar Reference; enforcing 

global alignment. This powerful but simple approach will hallucinate a frontal, non-

posed face image by aligning facial structures across individuals and emotions while 

maintaining internal-structure information.  

 

SIFT Flow. SIFT Flow addresses the problem of image registration by aligning a 

query image to a target image at the scene level by spatially warping the query image 

to match the target image. The alignment task is formulated as an optical flow 

problem using dense SIFT descriptors. The objective function for SIFT Flow is 



formulated as: 
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where   (   ) is a pixel in the image,  ( ) is the motion vector at pixel   

between the query and target images where   ( )  ( ( )  ( )),    and    are the 

dense SIFT descriptors of the target image and the query image   respectively and   is 

the 4-member neighborhood about  . One of the expressed purposes of this algorithm 

is to counteract object motion between two scenes. This makes SIFT Flow well suited 

to correcting facial plane motion. 

 

Avatar Reference. While the SIFT Flow algorithm is powerful enough to align two 

images, a target image must be automatically generated for each frame to be 

registered to. There exists some veridical frontal face image  ̂, the Avatar Reference, 

that consists of deterministic values. Observed pixels in the data set are samples from 

the Avatar Image that are corrupted by a zero-mean noise as a result of extraction 

errors, facial motion, skin tone, etc. Let    be an image. A pixel is observed as: 
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where   is zero-mean noise. The minimum variance unbiased solution to Eq. (2) is: 
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where    is the  th image in data and   is the total number of frames in the data.  

2.2   Feature Extraction 

LPQ was originally introduced by Ojansivu and Heikkila [12] as a blur-invariant 

texture descriptor. In this paper, LPQ is preferred over LBP because the averaging 

from Eq. (3) causes some loss of high-frequency information. Images are reduced to 

    regions and LPQ features are generated for each region. 

 

Local Phase Quantization. In step one of LPQ, the 2-D DFT is computed locally for 

four coefficients. Let   be a sample image, and   be the image frequency coefficient. 

LPQ computes the local Fourier transform as: 

 

 

 (   )  ∑  
    

(   )      
    (4) 



 

where    is the neighborhood about  .   can be rewritten in terms of matrixes: 

    
  ( ), where    is the basis vector for a given frequency  . LPQ computes 

the four complex frequencies:   *,   -  ,   -  ,   -  ,    - +. In step three,   

is decorrelated with a whitening transform and the values are quantized. Let   be the 

SVD of  , and 〈 〉  be the  -th component of   corresponding to the decorrelated 2-

D DFT of neighborhood    from Eq. (4).  〈 〉  is quantized with: 
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〈 〉  is encoded to an 8-bit scalar—each bit corresponding to one of the neighbors of 

 — with the following equation: 
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Finally, a 256-bin histogram of  ( ) is generated and this is taken to be the feature 

vector for the image region. 

2.3   Psychologically-Inspired Dynamic Temporal Volumes 

Three conclusions can be drawn from inspection of the data sets: (A) The frame rate 

is too high to use all frames for training and testing. Video data in SolidSAL has a 

frame rate of ~50 FPS resulting in roughly 500,000 frames for the development set. 

Loading a feature vector of double precision numbers with that many samples and the 

feature cardinality from Sec. 2.2 requires more than 65GB of memory. (B) SolidSAL 

videos are interview footage, and there are times where the subject in frame is idle. It 

is not necessary to have such a high frame rate for these times. (C) States of emotion 

form homogenous regions. While a subject may change emotion suddenly, changes of 

emotion state are consistently low frequency, not erratic.  From these observations, 

we propose using vision and attention theory to generate partitions with sampling rate 

defined dynamically per volume, and fusing the information in each partition with 

match-score fusion to resist high frequency changes of emotion state. 

 

Intelligent Sampling with Vision and Attention Theory. An immediate solution to 

the first problem is to sample the data at a constant rate. However, sampling the data 

too sparsely results in a weak model; too densely, the model is too expensive. It may 

not be necessary to sample the data at such a high frame rate during the time points 

when a subject is not active. However, subjects can suddenly change their emotion 

state. This merits a minimum sampling rate in order to precisely detect change in 

emotion state. A method is needed for automatically partitioning the data into 

meaningful segments that capture sudden changes, while weighing idle sequences 

less. We propose an approach which is perceptual psychology-inspired, where the 

local sampling rate increases proportionally with the frequency of visual information, 

see Sec. 1.1. 



In this paper, we segment the data into temporal regions of 1Hz. This is inspired by 

the minimum bound of the HVS [2]. Let   define the domain of data with which 

classification is performed for a given temporal volume: 
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where   is the range with of data about  , controlling the sampling rate. When a 

person is active, the windows size   should be small; a person is idle,   should be 

large. A problem is posed where   must be selected dynamically. This must be done 

automatically per frame, without any knowledge of emotion labels. Visual 

information must be quantified in a way where frequency increases proportionally 

with activity in the image. SIFT Flow computes motion spatially, not temporally, and 

is unsuitable for this task. In this paper, we compute motion features as the magnitude 

of phase based optical flow [4]. Let  ( ) be the visual feature content signal 

computed as: 
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where ‖ (     )‖ is the magnitude of optical flow between frames    and   . An 

assumption is made that the frequency of  ( ) increases when the subject is active. 

For these sequences,  ( ) is a signal of fluctuating frequency, see Fig. 2. However, 

when the subject is idle, the signal is a constant level. The dominant frequency of   

defines the sampling rate   with the following equation: 
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where    * + computed with the FFT. Psuedo-code for computing   is provided 

in Algorithm 1.   is computed once for each temporal partition. For testing, frames 

which are not sampled are assigned the label given to the partition from the sampled 

frames. 

 

 
Fig. 2. ‖ (  ( )     ( ))‖ for development video 26 about frame 7938. 

Active Sequence Idle Sequence 



Algorithm 1. Dynamic assignment of   using dominant frequency of  ( ). 

procedure computebeta ({  
    

      
 },  ) 

Input: Sequence {  
    

      
 } where   is a pixel and   is 

the number of frames; spacing parameter   

selected s.t.   iterates 1/s over video 
sequence. 

Output: Sampling rate vector   of length    . 

  
  = 0 
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  =   + 1 

return   

 

Local Partition Match-Score Fusion. Observation (3) motivates combining match 

scores locally in each partition to enforce homologous label assignment. In this paper, 

we propose multiple snapshots, taken from the sampled frames of a local partition, to 

provide a more robust classification scheme. Fusion is performed at the combination 

based match-score level [16]. In combination based match-score fusion, the scores, or 

posterior probabilities from different match-scores are weighted and combined to give 

a final, scalar match-score. Let    be the sample feature vector of a local time 

partition  ; let  ̃ be the assigned label from one of the classes *       +; let 

  (  |〈  〉 ) be the output of matcher given data at time  . The classification rule in a 

match-score combination approach is: 
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 ( ) is an aggregator that can implemented with the following rules: 

 

Sum and Product Rules.  The aggregators for the sum and product rules are as 

follows:  
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where (11) and (12) are the weighted sum and product rules, respectively.   is a 

normalization s.t. Eq. (11)   ,   -.  
 

Extrema Rules. In extrema rules, the class label   is assigned using a     or a     
operator: 
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3   Results 

Avatar Image Registration is iterated for three generations, which has been shown to 

be a good tradeoff between computational time and accuracy for LPQ features [21]. 

All matchers are Support Vector Machines with a linear kernel from the LibSVM 

MATLAB toolbox [1]. Feature is vector min/max normalized to ,    -. For a 

detailed explanation of the data, and the development, training and testing sets, please 

refer to the Schuller et al. [15]. In this paper, we consider only the video sub-

challenge. Testing labels are assigned with a model only training fold data.  

Results on the development set are given in Table 1. Match-score fusion rule used 

for testing is determined experimentally using 4-fold random cross-validation with a 

75/25 split on development data to avoid overfitting. Similarly to baseline, expectancy 

and power features are more difficult to detect versus activation and valence. The max 

rule gives a better average versus other rules and is used for final results on the testing 

fold for the video sub-challenge. 

 

Table 1. Development Classification Rates on the Video-Subchallenge 

for Different Match-score Rules. 
Accuracy (%) Activation Expectancy Power Valence Average 

Min Rule 64.48±5.4 65.22±7.9 58.55±6.0 64.21±6.7 63.12 

Max Rule 69.30±3.0 65.58±5.5 59.87±6.0 67.79±4.9 65.64 

Product Rule 64.15±3.5 67.02±4.8 58.27±5.2 64.71±4.8 63.53 

Sum Rule 66.10±2.6 63.70±4.7 59.65±5.1 64.38±5.5 63.45 

 

Table 2. Video-Subchallenge Testing Classification Rates 
 Activation Expectancy Power Valence 

Accuracy (%) WA UA WA UA WA UA WA UA 

Testing 56.51 56.87 59.67 55.11 48.52 49.36 59.24 56.72 

 

Results on the video-subchallenge are given in Table 2. WA stands for weighted 

accuracy, and is the classification rate. UA stands for unweighted accuracy, and is the 

average recall over the two classes. Proposed approach differs greatly from the 

baseline in three ways. In the event of Viola and Jones failure the method defaults to a 

priori probabilities—some videos in training and testing folds had a majority of 



irretrievable faces, making it a more difficult problem than the development set. The 

sampling rate is assigned dynamically, and reduces the amount of samples when the 

subject is not active. This allows training of a model on a larger number of samples 

without entering the domain of being too computationally expensive. The number of 

frames retained by our approach is given in Table 3. Whereas approaches similar to 

the baseline approach might treat each frame in a video independently, in our model a 

video is comprised of dynamically sized partitions where a label consensus is reached 

with fusion. 

 

Table 3. Frames retained by Vision and Attention Theory 
Set Total Frames(Fr) Retained Frames(Fr) 

Development 449074 27412 

Training 501277 30076 

Testing 140125 8383 

5 Conclusion 

The concept of partitioning emotion video into dynamically sampled segments is 

explored. A model is proposed for controlling sampling rate in each local partition 

which was inspired by perceptual psychology where a partition was sampled 

according to the frequency of visual content. Then, posterior probabilities are 

combined for each local partition using a combination-based match-score fusion 

technique. Match-score rule was selected from 4-fold cross validation on the 

Development set. Performance on testing data is improved via intelligently selecting 

frames without unnecessarily increasing sample size.   
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