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Visual and Contextual Modeling for the Detection
of Repeated Mild Traumatic Brain Injury
Anthony Bianchi*, Bir Bhanu, Fellow, IEEE, Virginia Donovan, and Andre Obenaus

Abstract—Currently, there is a lack of computational methods
for the evaluation of mild traumatic brain injury (mTBI) from
magnetic resonance imaging (MRI). Further, the development of
automated analyses has been hindered by the subtle nature of
mTBI abnormalities, which appear as low contrast MR regions.
This paper proposes an approach that is able to detect mTBI le-
sions by combining both the high-level context and low-level visual
information. The contextual model estimates the progression of
the disease using subject information, such as the time since injury
and the knowledge about the location of mTBI. The visual model
utilizes texture features in MRI along with a probabilistic support
vector machine to maximize the discrimination in unimodal MR
images. These two models are fused to obtain a final estimate of
the locations of the mTBI lesion. The models are tested using a
novel rodent model of repeated mTBI dataset. The experimental
results demonstrate that the fusion of both contextual and visual
textural features outperforms other state-of-the-art approaches.
Clinically, our approach has the potential to benefit both clinicians
by speeding diagnosis and patients by improving clinical care.

Index Terms—Brain injury, contextual modeling, magnetic res-
onance imaging (MRI), textural modeling.

I. INTRODUCTION

M ILD traumatic brain injury (mTBI) annually affects mil-
lions of people within the United States [1]. This is due

to events, such as sports, military (blast), automobile accidents,
assaults, and falls. There are many short and long term symp-
toms associated with mTBI including loss of memory, loss of
reasoning, neuropsychiatric alterations including decrements in
social interactions [2]. Recently, there has been increased focus
on the potential effects of repeated mTBI as this may result
in exacerbation of ongoing tissue pathology and neurological
deficits. In extreme cases, second impact syndrome can occur in
which a subsequent injury is sustained within hours to weeks of
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the first. This may result in catastrophic swelling of brain which
may ultimately lead to death or the effects similar to a severe
TBI [3].
Currently, neurological injuries are evaluated using the

Glasgow Coma Scale (GCS) which evaluates a patient’s con-
sciousness level through his/her ability to respond to motor,
verbal and visual stimuli. Other qualitative factors are used
to assess the effects of TBI, including loss of consciousness,
loss of memory, alteration in mental status, focal neurological
deficits, and visual assessment of neuroimaging studies when
performed. However, visual assessment of neuroimaging is
subject to poor inter-rater reliability and may not be sensitive
enough to detect mild injuries, which often show subtle or no
symptoms. The clinical definitions for diagnosis of mTBI have
been recently clarified [4]. If GCS abnormalities are observed,
computed tomography (CT) or MR imaging is used, depending
on the severity of presumed injury, to assist in diagnosis though
quantitative measures are not routinely used in the clinic. How-
ever, clinical studies assessing potential quantitative methods
suggest that this type of analysis can improve detection and
treatment of mild injuries.
In clinical studies and those using experimental models of

TBI, manual quantitative analysis has been used to evaluate TBI
in MRI [5]–[7]. These manual studies have sought to identify
the location and size of a lesion from MRI with correlative his-
tology and assessment of long term neurological effects. How-
ever, manual detection of lesions in mTBI is very difficult and
often requiring 1) hours per scan for manual region-of-interest
analysis, 2) a trained operator to improve inter- and intra-rater
reliability, 3) large data sets for statistically sound analysis but
this is not feasible as it becomes resource intensive, and 4)
multi-modal inputs as mild or subtle alterations on MR images
are often difficult to identify (low contrast). Further consistency
in manual detection is a problem with both inter- and intr-aop-
erator variability. This low contrast appearance on MRI exac-
erbates the consistency in manual evaluation as individuals in-
terpret presumed abnormalities differently, despite strict proto-
cols, leading to large inter-operator variations. Fig. 1 illustrates
the low contrast appearance. This variability is even present in
higher contrast images, such as tumor size quantification [8].
Partial volume effects along with neighboring anatomical re-
gions can affect adjacent voxels making them seem to be of a
different class [9]. Operator fatigue also plays a large role since
manual detection can take a long time to analyze. However,
manual segmentation is still considered the “gold standard” and
automated algorithms are routinely compared to this standard.
On structural MR, gross tissue abnormalities, such as ex-

travascular blood and edema (increased water content), can be
identified in moderate to severe TBI; but these features are often
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Fig. 1. Examples of mTBI lesions in a rat (mildly controlled cortical impact
model for an MRI T2 map). Left column: Original coronal slices. Right column:
Manually drawn lesion regions. The last row is the expanded view of the row
above it. Note the texture changes in the manually drawn regions.

not present (or little) on mTBI MR data. While CT is typically
used in the initial assessment of head injuries and to identify
extra vascular blood in the brain, new emerging technique, such
as susceptibility weighted imaging (SWI), are even more sensi-
tive to micro-hemorrhages [10]. T2-weighted imaging (T2WI)
and the resultant T2 maps are routinely used to identify struc-
tural changes, edema and tissue relaxation properties. In exper-
imental models of TBI, T2 maps are used to identify and quan-
tify regions of both edema (high T2 values) and extravascular
blood (low T2 values). MRI T2maps have been used for manual
quantitative analysis of TBI [11]. However, edema, particularly
in mTBI, can be subtle and transient further making identifica-
tion of putative injury difficult. We have chosen to use T2 maps
in this study due it its ability to find edema and blood in a single
modality. Having a single modality decreases computation time
and imaging time.
The key questions associated with detection of mTBI lesions

are: single versus multiple lesions and their locations; single/
multiple lesions over time; focal versus diffuse lesion; contralat-
eral (both hemispheres) versus ipsilateral (same hemisphere);
coup versus contra coup injury. For this paper, we are con-
cerned with modeling and analysis of single/multiple injuries
(contralateral) over time where the injury is modeled by a mild

control cortical impact (CCI) animal model, which only present
a focal coup injury.
In the present study, we explored the ability of computer

vision and learning techniques to assess subtle alterations on
quantitative T2 maps after induction of mTBI. The contrast-to-
noise ratio (CNR) calculated from the manually segmented de-
tected lesions to the normal appearing brain matter in our dataset
is 6 on average, where we estimated the noise variance of the le-
sion regions for the calculation of CNR [12].
In order to analyze such images we use a range of different

models in our integrated approach that is proposed in this paper.
These models include Bayesian networks (BN) for contextual
modeling, support vector machines (SVMs) for discrimination
of lesion versus nonlesion tissue based on visual appearance.
In addition, we used Gompertz function for effective rep-
resentation of lesion progression and Fourier descriptor of
brain perimeter for smoothing so as to reduce the effect low
resolution and noise within MR images.
The rest of this paper is as follows. Section II presents the

related work and the contributions. Section III discusses the
technical approach. Section IV describes the experiments and
Section V provides the conclusions.

II. RELATED WORK AND CONTRIBUTIONS

A. Related Work

To the best of our knowledge, there has not been another
paper that has attempted to automatically detect mTBI abnor-
malities. Recently, a semi-automated approach [13] used an
atlas based classification algorithm to detect lesions in severe
TBI patients. The authors reported the use of a multi-modal
MRI atlas of healthy human brains along with outlier detection
to determine lesions which worked well in severe TBI due to
the high contrast and large size of the lesions.
When comparing our proposed approach to previous works,

other disease detections algorithms were considered. Some dis-
eases that have been addressed by automated computer vision
and image processing techniques are multiple sclerosis, tumors,
and stroke. These diseases often have, on MRI, a high contrast
appearance and a large injury size compared to mTBI, making
them relatively less challenging to detect compared to mTBI.
Table I has summarized some of the current methods utilized
for lesion detection.
Some approaches are atlas based, but the results vary since

they are dependent upon the atlas being used [14]. Registration
is used across many disease detection algorithms since it allows
for multiple subjects to be put into a common registered space.
This allows for statistical lesion extraction, through outlier de-
tection, with a known atlas. However, brain anatomy is vari-
able even among healthy brains, which causes a distribution of
values to be learned at every voxel in the atlas. Registration can
cause a distortion in the MR values due to interpolations in the
calculation of the registration [15], [16]. These registration dis-
tortions make mTBI lesions from T2 maps nearly indistinguish-
able.
Texture features have been used to increase the discrimi-

natory potential of MRIs [17], [18]. Many different types of
texture features have been used such as neighborhood statistics,
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TABLE I
OVERVIEW OF CURRENT LESION DETECTION METHODS FOR MRI DATA

co-occurrence matrices, fractals, and more. Recently, [19]
showed, using manually drawn ROIs, that mTBI causes texture
changes in the brain with features based on region histogram
statistics, co-occurrence matrix and gradient measures. Texture
features are also used in this paper to increase the discrimina-
tion of our unimodal dataset. Most of the other approaches use
multiple MRI modalities to detect the disease signature they we
are trying to measure. Having multiple modalities allows us to
measure multiple tissue properties, but leads to longer imaging
and subsequent analysis time. Thus, analysis using a minimal
number of modalities is essential for efficient results.
Context has been an active area of research in computer vi-

sion [20], [21]. It can be used to overcome low contrast detec-
tion problems. Context is defined [20] as, “any information that
might be relevant to object detection, categorization and classi-
fication tasks, but not directly due to the physical appearance of
the object, as perceived by the image acquisition system.” Con-
text types that have been described include: local pixels, 2-D
scene gist, 3-D geometric, semantic, photogrammetric, illumi-
nation, weather, geographic, temporal, and cultural [26]. Object
recognition in natural scenes has been one of the active areas
for context [27]–[31]. Many of these approaches use context
for position priming, which is the process of estimating the lo-
cation of the object based on the context. Context can be split
into two types local and global. 1) Local context includes spa-
tial relationships learned at the pixel/region level. It is used in
conditional random fields and auto-context [32]. 2) Global con-
text can be thought of as an estimation of the spatial location
of an object. For instance, the sky usually occurs at the top of
an image. Recently, Horsfield et al. [33] proposed using spa-
tial priming in Multiple Sclerosis (MS) lesion detection. The
spatial priors are learned directly from the data in a registered
space. This approach works with MS since lesions occur regu-
larly in white matter locations. However, using prior locations
directly on mTBI data will not work since the injury can occur
and progress at different sites within the brain. The proposed ap-
proach models the disease progression from any point of time
in its progression.

B. Contributions

The contributions of this paper are as follows. 1) A contextual
disease model based on Bayesian networks to estimate the spa-
tial location of mTBI abnormalities. It allows for a range of con-
textual inputs, when the exact value (time or approximate loca-
tion) is not known, which could be due to patient’s memory loss.
This contextual model helps to overcome the low contrast ap-
pearance of mTBI by focusing on the region of the search space
that may have injury. 2) A visual model that is learned using
texture features to build a probabilistic support vector machine
(PSVM). The method does not require registration (it is spa-
tially invariant), which can cause distortion. 3) A novel dataset
of rat MR images is developed to follow mTBI to test the va-
lidity of the proposed model. The rat controlled cortical impact
(CCI) mTBI model is used with multiple observations postin-
jury using T2 MRI maps to demonstrate the results. This paper
is an extension of [34]. It extends the approach to repeated TBI
and a more in-depth analysis of the contextual inputs is given.

III. TECHNICAL APPROACH

A. System Overview and Technical Rationale

The proposed system is a combination of a visual and con-
textual model. Fig. 2 shows the system diagram. A database
of known mTBI MRI brain and lesion volumes with manually
detected lesions and the associated contexts is used to build
the model. The visual model uses 3-D texture features to build
a probabilistic support vector machine that describes the le-
sion/normal appearing brain matter (NABM) space. The output
is a probability map that is combined with the contextual model,
where higher probabilities signify higher chances for a partic-
ular voxel being part of the lesion, where the lesion is an es-
timate of both blood and edema. If the lesion splits into mul-
tiple parts, it will still be captured since a voxel based classifier
is used. SVM is a discriminative model which performs well
with a large amount of data and can describe a complex deci-
sion space. With a voxel based classifier, both these conditions
are satisfied.
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Fig. 2. System flow diagram.

The contextual model uses a Bayesian network (BN) to esti-
mate the locations of the mTBI lesions (Fig. 3). This model uses
knowledge about the subject, where both temporal and spatial
information are used to describe the development of the disease.
The BN is a generative model that is able to extrapolate based
on little information when the underlying distribution assump-
tions hold. Generative models are used to simulate cause and
effect relationships and processes, while discriminative models
such as SVM do not have this ability. Our system combines the
advantages from both discriminative and generative models.
When a volume enters the system the texture features are ex-

tracted and then the Bayesian net is evaluated. Contextual in-
formation is also passed to the system which includes an esti-
mated location of the focal points of impact , time since
the first injury , and time between the two injuries .
These inputs can be exact (e.g., one day since injury) or a range
of values (e.g., 5–14 days since injury). Each of the major steps
will be described in the subsequent subsections.

B. Bayesian Net for Contextual Modeling

Modeling a joint probability distribution with many vari-
ables that interact with each other is an extremely difficult task
and requires a large number of training samples. At the other
extreme, naïve Bayesian learning is simple requiring a reduced
numbers of samples but often poor results are observed due to
features not being independent. BNs allow for a middle ground,
where dependencies among variables can be modeled in a
graphical manner. Directed acyclic graphs are used to represent
BNs, where nodes are random variables and edges represent
dependencies among random variables [35]. A BN with nodes

results in the full joint distribution

(1)

(2)

The properties of the BN allows for a node to only depend on
its parents’ values, so the joint distribution can be rewritten as

(3)

Fig. 3. Graphical representation of the Bayesian network, showing the depen-
dencies of random variables. Intuitive definition of distributions. A: Anatom-
ical constraints. : Central location of injury for injury one and two. :
Time since the first event. : Time between first and second injury. Q: Volume
(quantity) of injury with time. : Spread for first and second injury.M:Max
operator. V: Visual information. I: Estimated injury. Where is absolute
certainty of injury and is absolute certainty of NABM.

A node in a BN is only conditional on its parents’ values.
This means that each probability distribution is conditionally
independent of all its nondescendants in the graph given the
values of its parent.
1) Description of Random Variables: mTBI, like most other

injuries, evolves with time, so the contextual model (see Fig. 3)
has multiple random variables that evolve with time. is the
distribution of the time since the first injury. This random vari-
able can be learned directly from the data or it can be modeled
as an exponential distribution since it is most probable that a pa-
tient will arrive soon after the injury. is the random variable
for the volume of injury over time. This distribution can also be
learned from the data directly or modeled as a lognormal dis-
tribution. This distribution follows the natural progression of
the injury where there is an initial peak in gross abnormality
that resolves slowly overtime. As an example, Fig. 9(f) shows
that gross pathology (in our data set) is maximal during the
acute phase of the injury, followed by a sharp drop during the
sub-acute phase and it approaches a steady state in the chronic
phase. is the time between the first and second injury (i.e.,
repeated mTBI). After the first injury metabolic and cellular in-
jury cascades occur which may lead to a window of vulnera-
bility in which a second mTBI may worsen ongoing pathology
[36]. This function can also be modeled directly from the data
or using an exponential distribution from the time since first in-
jury. The process of subsequent injuries can be thought of as a
Poisson process, which has the time between injuries as an ex-
ponential distribution. and are variables that would be
dependent on location and can be estimated through a regional
epidemiological study.
2) Anatomical Constraints: Gross tissue level-pathology ob-

served following mTBI may expand and contract throughout its
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Fig. 4. (a) Description of the space and distance function. The XY plane is the
coronal plane and the YZ is the sagittal plane. (b) Effect of parameters
on the Gompertz function, with the other parameters being held constant.

duration, but tissue structures provide natural barriers within
the brain that restrict the spread of injury. For the rat brain
model, two strong barriers are observed. The first boundary is
the midline which is a physical separation between the left and
right hemispheres. If the injury occurs on the left hemisphere
it will not progress to the right. However, this may not be the
case with severe and moderate injuries as the injury will extend
throughout the brain. The second boundary that was observed
is the major white matter tract (corpus callosum) that bounds
the mild nature of the injury. To give an estimate of the loca-
tion of the corpus callosum, the top 1/4th of the brain was used.
These two constraints are represented in the form of a 3-D bi-
nary mask.
3) Location: An estimate of the location of the focal impact

point is essential to modeling the progression of the injury. In
our current model we account for two possible injury sites mod-
eled by distributions and . Examples of these distribu-
tions, estimated from our dataset, are shown in Fig. 9. Unlike
other diseases that occur in specific locations/structures in the
brain, mTBI progresses from an impact site which may occur
at almost any point on the perimeter of the brain. To model the
distribution of focal impact points, the perimeter distance in the
coronal slices from the midline and the location are used to
make a 2-D distribution. The values are binned to make his-
tograms. A smaller number of bins give a better generalization
of the distributions when the sample size is small. When the
sample size is larger the number of bins can be increased while
maintaining a generalized distribution.
4) Spread: Equation (4) is used to describe the injury pro-

gression given all the contextual inputs. This function is a sig-
moid like function, known as the Gompertz function [37], which
has parameters to control the shape and displacement.
The Gompertz function has more flexibility than the logistic
function and less number of parameters than the generalized
logistic function. The effects of these parameters are shown in
Fig. 4(b). Parameter determines the displacement of the func-
tion and determines the decay rate. The shape and displace-
ment parameters are not the only variables that affect the shape
of the curve; (quantity of lesion) also determines the shape.
When is large, the function will shift to the right and have a
more gradual slope. This represents a larger area for potential
injury and more uncertainty in the location. When is small,
the opposite is observed, the area is small and there is more cer-
tainty in the location. is estimated by taking the average le-

Fig. 5. Example of tangents around the perimeter of the brain. The tangents are
scattered due to the low resolution of the boundary. The high-frequency noise
is nullified after converting to the Fourier descriptor and filtering. The tangents
are accurately estimated after filtering.

sion size at each time point for all the volumes in the database.
There is a separate set of parameters for each value. This
is due to the shape of the injury being different when the re-
peated injuries are at distinct times from each other. When the
first hit occurs, there are many cellular cascades that take place
throughout the progression of the injury potentially leaving the
brain vulnerable to subsequent mTBIs [36]. This has been ob-
served in animal models [36], [38]

(4)

As described in (5), is a distance function weighted by .
It measures the distance from to every other point in the 3-D
space. weights the 3-D space so it accounts for rotation and
scaling. The parameters described in (7)–(9) describe the ro-
tation and scaling in the coronal space, and describes the
scaling in the z space. The parameters that need to be set in
these functions are and , which control the scaling in the
direction of the tangent and the direction of the normal, respec-
tively. Finding the tangent angle at is done by utilizing the
Fourier descriptor [39] of the closed perimeter of the brain slice.
When converting to Fourier space a low pass filter is applied that
cuts off the upper twenty percent of the frequencies (Fig. 5).
The parameters, , and control the rotation in the coronal
plane using , to create the new “axis” for the distance func-
tion. Equation (4) models the progression of mTBI, since the
injury spreads along the perimeter of the brain more than into
the center of the brain. Hence, the distance function is weighted
more along the tangent of the perimeter

(5)

(6)

(7)

(8)

(9)
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Fig. 6. An example of the contextual model over time. The surface is the model
manually thresholded at 0.2 to give a solid surface that illustrates the progres-
sion of the model over time with all other variables constant. The XY plane is
the coronal plane. Note, the best threshold for lesion detection is given as the
threshold that maximizes the dice curve. An example of this is shown in Fig. 12.

The contextual model is finalized in (10). An example of the
context over time is shown in Fig. 6. This function takes the
maximum of the two spread functions evaluated over each value
of the range of each contextual input. The output of the con-
textual model is an estimate of the lesion extent. If a contextual
input is known then the probability of it being that value is 1. For
example, if is known to be three days then and
all other values in the distribution equal zero. Another example
is when a ranged input is given. If is known to be between 5
and 14 days, the distribution becomes the priors known at those
values normalized by the sum of the probabilities at those values
(all other values are set to zero). If one of the contextual inputs
is not known, all values in the prior distribution are considered

(10)

(11)

An estimation of the lesion is finally given by (11). The con-
textual model and visual model are independent. This assump-
tion has been made by other approaches using context [20]. The
final output is a probability map.
5) Parameter Estimation: The parameters in the spread func-

tion (4) need to be learned. These parameters are learned from
the known detected lesions in the database of mTBI volumes
represented as a binary volume , where 1 is lesion and 0 is
NABM. is the set of variables [see (12)] that need to be
learned in the spread function [see (4)] for each time of second
impact and each anatomically constrained hemisphere
(left and right)

(12)

We use weighted nonlinear least squares [40], [41] to estimate
the parameters. The cost function is given by

(13)

Each contextual input is known from the database for eval-
uating the spread function. Equation (13) finds an estimate
that minimizes the sum of the differences between the spread
function and the ground truth ( ) at every voxel. The
weight is used to give the lesion a higher value in the cost
function since there are many more NABM voxels compared to
lesion voxels.

C. Visible Model

The visible model is the probability of an injury given the
visual appearance of a sample voxel in the MRI. The MRI
modality that has been chosen for evaluation of mTBI injury is
T2WI and its quantitative T2 map. This modality allows for ob-
servation of both edema (increased signals) and extravascular
blood (decreased signals), which are both potentially at the site
of injury. Edema presents itself as high intensities and blood
occurs as a low intensities. Note that we consider blood and
edema as a single class. Since the edema and blood are believed
to have local tissue effects, the texture around known lesions
are used. The texture features that are used in this study are
3-D local mean, variance, skewness, kurtosis, entropy, range,
gradient , gradient , gradient . An example of these features
can be seen in Fig. 7. These local statistics were chosen since
they are able to describe small local neighborhoods at every
voxel, which gives an estimate of the tissue. Note that partial
voluming has less of an effect since the tissue is estimated and
not a single voxel. The Bhattacharyya distance is a measure of
the similarity of two distributions and can give a bound on the
Bayesian error [42]. There are a total of ten features including
the original T2 values. These features go through the feature
selection process using the Bhattacharyya distance, to give the
final feature set. The size of the filter is an important parameter
and is found by finding the using the same feature selection
process. The local neighborhood size found to be most discrim-
inative is . For our current dataset the features that are
selected are: T2 value, entropy, variance, skewness, gradient ,
T2 mean and gradient .
SVMs are one of the leading supervised classifiers inmachine

learning. It is a max-margin classifier, which means it gives a
decision boundary that maximizes the distance between the two
classes. Describing the boundary using a maximum margin has
been shown to provide a high generalization. The kernel form
of SVM is utilized to give nonlinear boundaries. A radial basis
function kernel is used to project the data to a high dimensional
space making the separation linear. There are two parameters
that need to be set when using the radial basis function, the soft
margin parameter and the kernel shape parameter [44]. These
two parameters are found through grid search that minimizes
the error in a cross-validation test. SVM is generally used as a
hard classifier with the output being one class or the other. How-
ever, Platt [43] proposed a framework for probabilistic SVM
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Fig. 7. Example of features with a 2-D coronal slice. Left to right, top to bottom: T2 map, mean, variance, skewness, kurtosis, entropy, range, gradient , gradient
, gradient.

Fig. 8. Example of fusion between visual model and contextual model on a
contralaterally injured rat. Top left: Probability map after PSVM. Top right:
Probability map from the contextual model. Bottom: Fusion of the contextual
and visual model. Note this shows that the contextual model for repeated injuries
progress at different rates.

(PSVM)which allows for estimation of the posterior probability
. A sigmoid (with two parameters) is fit to the

SVM result giving an estimate of the posterior probability for
each class. Fig. 8 illustrates the estimates from the visual model
and the fusion with the contextual model. LIBSVMs [44] im-
plementation of PSVM is used for testing.

IV. EXPERIMENTAL RESULTS

A. Dataset

Adult Sprague Dawley rats were randomly assigned to three
experimental groups: SinglemTBI, and repeatedmTBI (rmTBI)
induced three days or seven days apart. A controlled cortical
impact (CCI) was used to induce mild injury [6], [45]. The CCI
model has a focal injury. Briefly, a craniectomy (5 mm) was per-
formed over the right hemisphere (3 mm lateral, 3 mm posterior
to bregma) where a mild CCI was induced using an electromag-
netically driven piston (4 mm diameter, 0.5 mm depth, 6.0 m/s).
The incision made for the craniectomy is sutured after the in-
jury is induced. At three or seven days after the initial injury,
animals within the rmTBI groups (repeated injury) received a

second craniotomy and mCCI was induced on the left hemi-
sphere using identical parameters.
In vivo T2 weighted images (T2WI) were collected as

multiple 2-D slices [6]. Images were obtained at 1, 4, 8, 14,
21, 30, and 60 days postinitial injury using a 4.7T Bruker
Avance (Bruker Biospin, Billerica, MA, USA). T2WI se-
quences ( ; 25 1 mm slice) were
collected with a field-of-view of 3 cm (256 256 matrix). The
resolution of each voxel is . On average 12
coronal slices were used to cover the cerebrum. T2 maps were
computed using custom written software. Regions-of-interest
(ROIs) were manually drawn using Cheshire imaging software
(Haydan Image/Processing Group) [45]. ROIs included normal
appearing brain matter (NABM) and cortical tissue containing
T2 observable abnormalities using criteria from [45]. There
were a total of 81 volumes in the dataset with time points, as
shown in Fig. 9(e). Manual outlines of the brain were used to
separate the brain from the skull and other tissues.

B. Performance Measures

To provide a sense of where errors are coming from and how
the regions are correctly detected, the following measures were
used. Sensitivity or true positive rate (TPR) (14) measures the
percentage of the target object that is correctly detected. Speci-
ficity or true negative rate (15) is the percentage of the back-
ground that is correctly detected. 1-Specificity gives the false
positive rate (FPR), which is the false alarm rate. A receiver
operating characteristic (ROC) curve is shown for each of the
tests. A threshold is set on the probability map output from the
algorithm to give a binary decision surface. Each threshold cre-
ates a point on the ROC curve and together they form a graph
that represents the tradeoff between TPR and FPR. ROC has
been a strong measure of performance in radiology and other
medical disciplines [46]. Only FPR under 0.2 are considered for
clinical relevance

(14)

(15)

(16)
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Fig. 9. Distributions learned from the database for each of the nodes in the
Bayesian network. Note the number of bins used in: (a) and (c) is 5, (d) is 6, and
(b), (e), (f) is 7.

Fig. 10. Visual meaning of measurements. FPL: False positive. TP: True pos-
itive. FN: False negative. TN: True negative.

The Dice coefficient (16) measures set agreement, which is
the intersection of the known object and the detected object di-
vided by the size of the known and detected objects. Dice gives
a better idea of the intersection between the detected object and
the actual object since it does not include true negatives in the
calculation. Fig. 10 shows the physical meaning of theses per-
formance measures.

C. Varying Levels of Context

In these experiments each contextual input was tested to
verify the effects they have on the model using our real data.
Testing was conducted using the leave-one-out approach for
learning the parameters. The following cases were examined:
all contexts known, and unknown position (unkPOS),

unknown time (unkTIME), unknown (unkALL),
and V alone (Probabilistic SVM). Fig. 11 is the ROC plot for

Fig. 11. (a) ROC plot with multiple contextual inputs. Results were evaluated
after thresholding the output probability map [from (11)]. (b) Dice plot with
multiple contextual inputs. The peak of the Dice curve (maximum dice coef-
ficient) is used to threshold the output probability map. Legends in (b) are the
same as in (a).

each of the aforementioned context tests after thresholding the
output probability maps to get a hard classification. When all
the context is known an equal error rate of 0.93 is achieved, and
with missing context a decrease in performance is obtained.
The Dice plot in Fig. 11 shows results corresponding to the

results in the ROC plot. With unkPOS and unkTIME a sim-
ilar performance is observed since each of these cases causes
a smoothing effect in the output of the contextual model. This
smoothing effect is clearly seen in Fig. 12. Essentially, when the
context is not known, a wider area has to be considered. In the
case of unkPOS smoothing is experienced along the edges of a
brain since the focal point is shifted along the perimeter of the
brain. The unkTIME case has smoothing in all directions, which
is due to the time points with a large amount of lesion having
the largest effect on the output from the contextual model. In
unkALL both of the smoothing effects occur.

D. Class Analysis

Evaluating the performance of each class (single, contra3,
contra7) gives an insight into the potential errors of the model.
From Fig. 13 it is clear that the single mTBI class has the best
performance. This is due to the single mTBI class being more
consistent allowing the model to estimate the area of injury
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Fig. 12. Example outputs from the thresholded probability maps (for single and repeated mTBI) with varying levels of contextual input. The thresholds are
selected at the highest point on the dice curve for each respective level of context. Each row is a coronal slice, where the top two are from a single mTBI rat and
the bottom two are from a repeated mTBI rat. The colors represent the following. Green: True positive. Teal: True negative. Red: False positive. Brown: False
negative. (Note: This figure should be viewed in color.)

better. The distributions for [in Fig. 9(c)] show that the
second injury is less consistent than the first. Also, there is
more variation in the shape and size of the second mTBI.

E. Ranged Context

In this test the effect of having ranged values for contextual
input is examined. The known locations are first binned into the
distribution shown in Fig. 9(a)–(d). From the known location
a range of values is obtained by taking a set number of bins
on either side of the known location (Fig. 14). For example, if
is known to be 29 voxels from the midline and the range

input is to be two steps away, the range input would be from
19–39 voxels from the midline [values from Fig. 9(a)]. The re-
sults from range testing are shown in Fig. 15. From these plots
it is evident that the performance increases as the position is
closer to the known location. As the range gets wider the result
approaches the performance of having the position unknown.
This is due to the contextual model being able to focus when
the values are known and hence follow the progression of the
injury better. Ranged values are possible inputs to the system
and give better performance than having completely unknown
inputs.

F. Comparison With State-of-the-Art Approaches

The proposed approach is compared to two other state-of-
the-art approaches. The compared approaches are setup as de-
scribed in the papers [22], [24]. First, the approach of Sun et
al. [24] is used since it is a purely data driven approach, which
does not account for contextual or database information. This
approach uses symmetry to find asymmetric lesions in the brain.
This approach does not use any prior knowledge of the brain ex-
cept that it should be symmetric. The user set parameters were
optimized using three example T2 maps from the dataset, and

then the parameters were fixed for testing of the entire dataset.
The second approach that was chosen to compare against is that
of Anbeek et al. [22]. Their approach is pure model-based ap-
proach, which takes advantage of visual information in the data-
base. The volumes are registered, with rigid registration, and
then a KNNmodel is built from the known lesions in the dataset.
Since unimodal MRI data are used, the texture features are used
in their approach as channels. The parameters were chosen as
described in [22] and each feature was normalized.
The results from Table II demonstrate that the performance

of our proposed approach outperforms the compared state-of-
the-art approaches. All of the approaches tend to underestimate
the lesion area [24], had difficulty in detecting the mTBI le-
sions due to the subtle T2 value differences and the lesions were
mostly comprised of textured area. These two problems caused
[24] to consider lesion within NABM. The symmetry approach
[24] is best suited for stroke data where the lesions are more uni-
form and have higher contrast. The pure model-based approach
[22] also had difficulties due to the low number of lesion voxels
and the injury not occurring within the same locations consis-
tently. A large amount of data is required for a viable K-NN
classifier and the lesions must occur in a similar location. MS
is a disease where the model-based approach [22] excels since
the lesions are primarily identified in the white matter locations.
Also, a proper ratio between diseased brains and normal brains
would have to be maintained to give a proper normal versus ab-
normal bias.
Run time is also a consideration when determining the ef-

fectiveness of an algorithm. All testing was carried out on the
same computer system (PC with Intel Xeon (E5345) Quad CPU
2.33 GHz and 2 GB of RAM). The proposed contextual and vi-
sual approach has the fastest computation time. A majority of
the time is spent in the PSVM calculation. The pure model-
based approach [22] had increased computation time, due to
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Fig. 13. (a) ROC for each class. (b) Dice plot for each class. Definition of
classes: Single-only a single injury, Contra3-contralateral injury three days after
the first injury, Contra7-contralateral injury seven days after the first injury. Leg-
ends of (a) and (b) are the same.

Fig. 14. Example of the ranged inputs on . The midline is shown in yellow.
Orange (arrow) is the focal impact point, blue 1 away, green 2 away, red 3
away. Each higher range includes the previous. For example, 2 away includes 1
away. Increasing the away, increases the uncertainty in the position. It represents
including the value in the prior histogram [Fig. 9(e)] some step away (left and
right) of the true point.

each sample needing to be compared to every sample in the data-
base. Some increases in speed could be made to the K-NN algo-
rithm, but when the database becomes large computation time
will become large.

G. Applicability of the Proposed Approach to Human Data

In this paper, we showed single and multiple injuries over
time as follows. 1) Our model accepts an input as a brain volume
with contextual information at a single point in time as an input.
Multiple volumes are not need to ensure an accurate estimate.
2) The location of the injury may be focal, diffuse or unknown.

Fig. 15. (a) ROC plot with varying distance input. (b) Dice for varying input
distance. Legends of (a) and (b) are the same.

TABLE II
COMPARISON OF ALGORITHMS

Time is in the online phase of the algorithm. The range is the 95%
confidence interval. ( —at the equal error rate, —at the highest dice).
The time is for an entire brain.

If the location is unknown then prior distributions and
(shown in Fig. 9) are used as possible locations, where each lo-
cation is tested and weighted by the distribution. If the injured
region is diffuse then a ranged input can be given (as shown
in Section IV-E). 3) We have focused on focal lesions in this
paper. Note that for diffuse lesions it is extremely difficult to get
ground truth and one has to rely in histological data. This topic
will be explored further in the future. 4) Multiple lesions can
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be handled by our approach (see Fig. 12). Over time the lesions
may collapse into a single lesion or break into multiple lesions.
These lesions can be detected using visual and contextual mod-
eling. The model will need to be updated for cases where there
are more than two injuries.

V. CONCLUSION

An approach was presented that incorporates visual and
contextual knowledge to detect mTBI lesions using unimodal
MRI, specifically T2 maps. Texture features are used with
Probabilistic SVM to create a visual model of the mTBI ap-
pearance on the T2 MRI maps. The contextual model utilizes a
Bayesian network which allows for exact or partial contextual
inputs to be given to the system. Qualitative and quantitative
results of the algorithm were shown using a novel rat mTBI
dataset. The results show when more contexts are known, we
obtain injury detections that are highly similar to the manually
detected lesions by a trained observer. An equal error rate of
0.93 was achieved. The proposed algorithm outperformed other
state-of-the-art-approaches, including computation time per-
formance. This work will be extended to human data through
the use of large mTBI databases and some modification. New
animal models will be explored that include diffuse and contra
coup injuries. Integration of susceptibility weighted imaging
and diffusion tensor imaging is expected to improve the per-
formance of the visual modeling and improve the contextual
model through the estimation of WM tracts.
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