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Abstract

Fingerprint matching is still a challenging problem for reliable person authentication because of the complex distortions involved in
two impressions of the same finger. In this paper, we propose a fingerprint-matching approach based on genetic algorithms (GA), which
tries to find the optimal transformation between two different fingerprints. In order to deal with low-quality fingerprint images, which
introduce significant occlusion and clutter of minutiae features, we design a fitness function based on the local properties of each triplet
of minutiae. The experimental results on National Institute of Standards and Technology fingerprint database, NIST-4, not only show that
the proposed approach can achieve good performance even when a large portion of fingerprints in the database are of poor quality, but
also show that the proposed approach is better than another approach, which is based on mean-squared error estimation.
© 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Fingerprint matching is one of the most promising meth-
ods among biometric recognition techniques and has been
used for person authentication for a long time. Now, it is not
only used by police for law enforcement, but also in com-
mercial applications, such as access control and financial
transactions. In terms of applications, there are two kinds of
fingerprint recognition systems: verification and identifica-
tion. In verification, the input is a query fingerprint and an
identity (ID), the system verifies whether the ID is consis-
tent with the fingerprint. The output is an answer of yes or
no. In identification, the input is only a query fingerprint,
the system tries to answer the question: Are there any finger-
prints in the database that resemble the query fingerprint?
The output is a short list of fingerprints. In this paper, we
are dealing with the verification problem.

A fingerprint is formed by a group of curves. The most
useful features, which include endpoints and bifurcations,
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are called minutiae. Fig. 1 shows examples of an endpoint
and a bifurcation in a fingerprint image. In previous work
(e.g. [30]), we present a learned templates-based algorithm
for minutiae extraction. Templates are learned from exam-
ples by optimizing a criterion function using Lagrange’s
method. To detect the presence of minutiae in fingerprints,
templates are applied with appropriate orientation to the bi-
nary fingerprints only at selected potential minutia locations.

Generally, the minutiae-based fingerprint verification is a
kind of point-matching algorithm. However, the distortions
between two sets of minutiae extracted from the different
impressions of the same finger may include significant trans-
lation, rotation, scale, shear, local perturbation, occlusion
and clutter, which make it difficult to find the corresponding
minutiae reliably.

2. Related work and contribution
2.1. Related work
Generally, fingerprint-matching algorithms have two

steps: (1) align the fingerprints and (2) find the correspon-
dences between two fingerprints. The approach proposed
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Fig. 1. Examples of minutiae.

by Jain et al. [2] is capable of compensating for some of
the nonlinear deformations and finding the correspondences.
However, since the ridges associated with the minutiae are
used to estimate the alignment parameters, the size of the
templates has to be large, which takes much memory and
computation, otherwise, the alignment will be inaccurate.
Jiang and Yau [3] use the local and global structures of
minutiae in their approach. The local structure of a minutia
describes a rotation and translation invariant feature of the
minutia in its neighborhood, and the global structure tries
to determine the uniqueness of a fingerprint. The problem
with this technique is that it cannot compensate for real-
world distortions of a 3D elastic finger. These distortions can
be considered equivalent to a space variant scale distortion.
Furthermore, the weight vector that is associated with each
component of the feature vector, such as distances, direc-
tions, relative local orientations, etc., has to be empirically
determined. Another prominent matching algorithm, which
is proposed by Kovacs-Vajna [4], uses triangular matching
to deal with the deformations of fingerprints. However, the
final results of matching have to be validated by a dynamic
time warping (DTW) algorithm. Without DTW for further
verification, the results are not acceptable. In previous work
(e.g. [5]), we have developed a fingerprint identification ap-
proach, which is based on the local optimization of the cor-
responding triangles to perform verification between two
fingerprints.

Besides minutiae, researchers have also used other fea-
tures for fingerprint matching. Saleh and Adhami [6] pro-
posed an approach which transforms fingerprint images into
a sequence of points in the angle-curvature domain. The
matching between a query fingerprint and a template fin-
gerprint is based on the least-squares error of the Euclidean
distance between corresponding points in the angle-curve
domain. Jain et al. [7] presented a filter-based algorithm,
which uses a bank of Gabor filters to capture both local and
global details in a fingerprint as a compact fixed length Fin-
gerCode. The authors reported that the FingerCode-based
system performs better than a state-of-the-art minutiae-based
system when the performance requirement of the applica-
tion system does not demand a very low false acceptance
rate.

The combinations of different kinds of features have also
been used in fingerprint matching. Jain et al. [8] presented
a hybrid-matching algorithm that uses both minutiaec and
texture information. Ceguerra and Koprinska [9] proposed
an approach that uses matched minutiae as the reference axis
to generate a shape signature for each fingerprint. The shape
signature is then used to form a feature vector describing the
fingerprint. A linear vector quantizer (LVQ) neural network
is trained using the feature vectors to match fingerprints.
Both approaches reported improvements in the matching
results.

2.2. Contribution

In this paper, we use genetic algorithms (GA) to achieve a
globally optimized solution for the transformation between
two sets of minutiae extracted from two different finger-
prints. The fitness function is based on the local properties of
each triplet of minutiae, which include angles, triangle hand-
edness, triangle direction, maximum side, minutiae density
and ridges counts. The performance of our approach on the
NIST-4 database, which has a large portion of fingerprints
of poor quality, shows that our approach can tolerate highly
nonlinear deformations. The comparison of the proposed
approach with another approach based on mean-squared er-
ror estimation shows the advantage of GA-based verifica-
tion.

3. Technical approach

In Ref. [10] we have provided an analysis of features (see
Section 3.3.2), specifically the angles that are used as fea-
tures. By using these features we are able to handle complex
distortions encountered in fingerprint images. Thus, we can
use a simple transformation consisting of scale, rotation and
translation for matching between a template and a query fin-
gerprint in this paper.

3.1. Fingerprint-matching problem

Suppose the sets of minutiae in the template and the query
fingerprints are {(ta,1.%s2)} and {(yum,1, ym.2)}. Tespec-
tively, where n =1,2,3,..., Nnm=1,2,3,..., M, (x,.1,
Xp,2) and (Ym,1, ym,2) are the coordinates of minutiae. The
number of minutiae in the template and the query fin-
gerprints are N and M, respectively. The transformation
Y, = F(X;) between X; (x,-,l, x,‘,z) and Y; (y,‘,l, y,"z) can be
simplified as

Yi=s -R-Xi+T (1)

where s is the scale factor,

R— |:cos() —sm()j|’

sin0 cos0
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0 is the angle of rotation between two fingerprints, and

r=[y]

is the vector of translation. Thus, the matching problem can
be defined as to find the optimized transformation, which can
map as many as possible minutiae in the template fingerprint
to the minutiae in the query fingerprint.

3.2. Selection of an optimization technique

We have reviewed many techniques commonly used for
optimization to determine their usefulness for fingerprint
recognition (e.g. [1]). The drawbacks of each of these
methodologies are as follows:

e Exhaustive techniques (random walk, depth first, breadth
first, enumerative): Able to find global maximum but com-
putationally prohibitive because of the size of the search
space and real-time considerations;

e Calculus-based techniques (gradient methods, solving
systems of equations): No closed form mathematical
representation of the objective function is available. Dis-
continuities and multimodal complexities are present in
the objective function;

e Partial knowledge techniques (hill climbing, beam search,
best first, branch and bound, dynamic programming, A*):
Hill climbing is plagued by the foothill, plateau, and ridge
problems. Beam, best first, and A* search techniques have
no available measure of goal distance. Branch and bound
requires too many search points while dynamic program-
ming suffers from the curse of dimensionality and is com-
putationally expensive;

e Knowledge-based techniques (production rule systems,
heuristic methods): These systems have a limited domain
of rule applicability, tend to be brittle, and are usually dif-
ficult to formulate. Further, the visual knowledge required
by these systems may not be representable in knowledge-
based formats;

e Hierarchical techniques: Generally, a coarse resolution is
employed to find a narrow range of the solution, then
using a fine resolution in the narrow range search the
optimal solution. However, like hill-climbing techniques,
hierarchical techniques cannot always find the optimal
solution.

Genetic algorithms search from a population of individuals,
which make them ideal candidates for parallel implemen-
tation and more efficient than exhaustive techniques. Since
they use simple rules to generate new individuals, they do
not require domain-specific knowledge or measures of a goal
distance. The evolution of GA depends on the fitness func-
tion, which can be designed to avoid derivatives. Compared
with other optimization algorithms, we believe GA is a bet-
ter solution to this problem. And our experimental results
showed that the performance of GA is better than a similar

approach which uses mean-squared error as the optimization
criteria.

3.3. Optimization based on GA

GA, introduced by Holland [11], provide an approach to
learning that is loosely based on simulated evolution. The
search for an appropriate hypothesis begins with a popu-
lation of initial hypotheses. Members of the current popu-
lation generate the new generation by means of selection,
crossover and mutation, which are patterned after processes
in biological evolution. At each step, hypotheses in the cur-
rent population are evaluated by a fitness function, with the
better fit hypotheses selected probabilistically for generat-
ing the next population. A detailed introduction to GA can
be found in Ref. [12].

GA has been widely used for optimization. Johnson [13]
considered the design of a switched beam linear array in
which two beams with specified shapes are to be produced.
GA-based optimizations are used for the design task. It is
discovered that much better results are obtained by simulta-
neous, multi-objective optimization-based design using GA.
Lam et al. [14] proposed the stability analysis of fuzzy
model-based nonlinear control systems, and the design of
nonlinear gains and feedback gains of the nonlinear con-
troller using GA. The solution of the stability conditions are
also determined by GA. An application example of stabiliz-
ing a cart-pole-typed inverted pendulum system was given
to show the stability of the nonlinear controller. Other re-
searches, which have used GA for optimization, can be found
in Refs. [15-18].

GA has also been used in applications of object recog-
nition. Bebis et al. [19] used GA to recognize 2D or 3D
objects from 2D intensity images. The approach is model-
based, while the recognition strategy lies on the theory
of algebraic functions of views. Tsang [20] presented a
GA-based technique for searching the best alignment be-
tween contours of near-planar objects. The method is more
efficient and robust than the dominant point approaches.
Similar idea has been used in Toet and Hajema [21]. Ozcan
and Mohan [22] applied GA to the partial-shaped matching
problem. The quality of matching is evaluated by a measure
derived from attributed-shaped grammars. Kawaguchi and
Nagao [23] and Zaki et al. [24] also used similar idea in their
recognition systems. GA has also been used in handwriting-
recognition systems, [25,26], and stereo matching of
images [27].

Fig. 2 shows the block diagram of our approach. First, a
feature extraction procedure, which is based on learned tem-
plate introduced in Ref. [1], is applied to both the template
and query fingerprints. The extracted features are the input to
GA module, which is used to find the optimized transforma-
tion parameters according to the maximum fitness value. If
the maximum fitness value is greater than the threshold, then
the input fingerprints are from the same finger. Otherwise,
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Fig. 2. Block diagram of GA-based approach for fingerprint matching.

they are not. In the following, we introduce our GA-based
approach in detail.

3.3.1. Chromosome representation and initialization

As shown in Section 3.1, the parameters that need to be op-
timized are s, 0, £, and ,. According to our experimental re-
sults, which are explained in detail in Section 4.2, the ranges
of these parameters (for NIST-4 database) are: 0.9 <s < 1.1,
—30°<0<30°, —128 <1, <128, —128 <1, <128. The res-
olutions of these parameters are 0.01, 1°, 1 pixel and 1 pixel,
respectively. Thus, the number of bits to represent s, 0, 7,
and t,, are 5, 6, 8 and 8, respectively. The length of chromo-
some representation is 27 bits. The size of the entire search
space is about 227 ~ 1.34 x 108, The bit string is initialized
randomly.

3.3.2. Fitness function

Fitness function is critical to the performance of GA. In
our approach, fitness function is defined by a two-step pro-
cess. During the first step, the optimized transformation is
used to check the global consistency between two sets of
minutiae. In the second step, local properties of the minutiae
are used to verify the detailed matching.

(1) Step 1. Hypothesizing transformation: Suppose the
optimized transformation is ﬁg (o), where e=(5, 0,1, H) Vj,

Template minutiae Query minutiae

Fig. 3. Illustration of F;(e).

j=1,2,3,...,N.Let

a=mo {7 ([]) [}

If d; is less than a threshold 7y, then we define the points

Y1 and Vil
Xj.2 Yj2

are potential corresponding points. Fig. 3 shows the illustra-
tion of I:"@ (o). If n., the number of potential corresponding
points based on ﬁé(o), is less than a threshold 7}, then let the
fitness value for the transformation ﬁé (o) be F V(ﬁé) = nc.

2



X. Tan, B. Bhanu / Pattern Recognition 39 (2006) 465477 469
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P 3 in P 2
med
I

Fig. 4. Definition of feature points’ labels.

nin

B c’ B’

Fig. 5. A /¢’ and A pc have the same internal angles but different
triangle handedness.

In this case, it does not make sense to further evaluate the
matching. Otherwise, we check the local properties of the
triplets of minutiae.

(2) Step 2. Detailed matching: Each noncolinear triplet of
potential corresponding points can form a triangle. Germain
et al. [28] used the triplets of minutiae in their identification
procedure. The features they used as the indexing compo-
nents are: the length of each side, the angles that the ridges
make with respect to the X-axis of the reference frame, and
the ridge count between each pair of vertices. In previous
work for fingerprint indexing [10], the features we use asso-
ciated with the triangles are: triangle’s angles, handedness,
type, direction, and maximum side. In this approach, the lo-
cal properties associated with the triangle are described as
the following. Note that, in order to reduce the effect of non-
linear deformation, not all the noncolinear triplets are used,
e.g. the minimum length of the sides and the minimum an-
gle in a triangle should be greater than certain thresholds.

e Angles omin and o,04: Suppose «; are three angles in the
triangle, i =1, 2, 3. Let omax = max{o;}, tmin = min{o;},
Omed = 180° — otmax — %min, then the label of the triplets
in this triangle is such that if the minutia is the vertex of
angle omax, we label this point as Py; if the minutia is the
vertex of angle omin, we label it as P,; the last minutia is
labeled as P3. Fig. 4 shows an example of this definition.

e Triangle handedness ¢: Let Z; = x; + jy; be the com-
plex number (j = /—1) corresponding to the coordinates
(xi, yi) of point P;, i =1,2,3. Define Zy = Z> — Zj,
Z3p=7Z3—2Zs,and Z13=2Z|—Z3. Let p=sign(Z,1 X Z33),
where sign is the signum function and X is the cross prod-
uct of two complex numbers. Fig. 5 shows two triangles
that have the same oyniy and oy,eq but different ¢.

end point of
a valley

start point
of aridge

start point of

end point  avalley

of aridge

Fig. 6. Examples of minutiae with different v value.

e Triangle direction #: Search the minutia from top to bottom
and left to right in the fingerprint, if the minutia is the
start point of a ridge or valley, then v =1, else v = 0.
Let n =4vy + 2v2 + v3, where v; is the v value of point
P;, i =1,2,3. Fig. 6 shows examples of minutiae with
different v value.

Note that when two minutiae are on a horizontal ridge (which
will seldom happen), this feature may not be robust as the
distinction between start and end points can disappear with
slight fingerprint rotations. This may happen whenever the
ridge direction is approximately horizontal. In that case, the
triangles that use this as an edge may effect ultimately a few
pair of corresponding triangles. It does not have much effect
on the final matching result since so many other minutiae
features are used.

e Maximum side A: Let A = max{L;}, where L = |Z»;],
Ly =1|Z3|, and L3 = |Zy3].

e Minutiae density y: In a local area (32 x 32 pixels) cen-
tered at the minutiae P;, if there exists 7, minutiae, then
minutiae density for P; is y; =n,. Minutiae density y is a
vector consisting of all y;’s. Note that considering elastic
skin deformations a circular window is a better choice for
computing minutiae density. However, a rectangular win-
dow is computationally simpler and since we use relative
minutiae density for matching within a threshold, there
will not be much difference between using a circular or a
rectangle window.

e Ridge counts &: Let & , & and &3 be the ridge counts
of sides P; P>, P,P3 and P3Py, respectively, then £ is a
vector consisting of all &;’s. Fig. 7 shows the examples of
ridge count and minutiae density.

If two triangles from two different fingerprints satisfy the
following criteria, then they are potential corresponding tri-
angles, and the fitness value of the hypothesis F V(F) = n,
where 7, is the number of potential corresponding triangles.
The criteria are:

|Oc;nin - “ﬁlin' < TOfmin7

/ "
|amea' - Ocmea'l < Tamed’

(15/ — (]5//,
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Fig. 7. Examples of ridge count and minutiae density.

n=n,

2 =<1y,

G — 1 I<T, =123,

& — &< T: i=1,2,3, 3)

where (%, %eqs @15 2 25 &) and (i 2000 @
", A"y, &) are the local properties of the triangle in dif-
ferent fingerprints; Ty, Tt,,.q> 1> Ty> and Ty are thresholds
to deal with the local distortions.

Thus, the fitness function is defined as

~ ne, ifne<Ty,
FV(F) = “4)
ng, ifnezTy,

where n. is the number of potential corresponding points,
n; is the number of potential corresponding triangles, and
T, is the threshold.

One of the challenges for fingerprint matching is to model
the nonlinear/nonuniform distortions in finger’s skin. We use
a simplified model for matching. As long as using the sim-
plified model we can find some matched features, we think
we have a candidate transformation between a pair of fin-
gerprints. We use local features to filter false matches. Thus,
our approach can accommodate some nonlinear/nonuniform
distortions.

3.3.3. Population generation

Suppose (a) the size of population P is N; (b) hypotheses
of the transformation are ﬁ}, i=1,2,3...Np;(c)crossover
rate is py; (d) mutation rate is p,,; (¢) hypotheses are ordered
in the descending order of their fitness values; (f) the fitness
value of a hypothesis I:} is F V(I:",-).

Then, a new generation P, is generated by

e Selection: probabilistically select the first pg; x N, hy-
potheses from P and add them to P,.

e Crossover: probabilistically select (1 — py) x N, /2 pairs
of hypotheses from P according to Pr(E;). For each pair

Parents Crossover Mask Children

11101001000 ~a 10011010011 10001000100

00001010101 /

Fig. 8. An example for uniform crossover operations in GA.

01101011001

hypotheses, generate two children by applying the
crossover operator and add them to P,. The probability
Pr(F;) is defined by

FV(E;)

Pr(ﬁ,-) = ﬁ
L FV(E)

(&)

e Mutation: choose p;; x Np hypotheses from P with uni-
form probability. For each hypothesis, invert one randomly
selected bit.

Generally, crossover operators include single-point crossover,
two-point crossover, and uniform crossover. In uniform
crossover, the crossover mask is generated as a random bit
string with each bit chosen at random and independent of
the others. Fig. 8 shows an example of uniform crossover,
which is used in our approach.

3.3.4. Termination conditions

Termination conditions decide the length of the learning
time and possibly how good the solution is. The termination
conditions we use are: (1) terminate GA if the maximum fit-
ness value does not change in N; generations; (2) Terminate
GA if the fitness value of a matching is greater than 100,
then it is a correct genuine matching and is unnecessary to
continue the evolution.

3.3.5. Computation time reduction

One problem with GA is that the computation time of
the evolution can be long. In order to reduce it, we use the
termination conditions that are defined above. In addition,
during the evolution, the first p; x N, hypotheses are selected
and added to the next generation. Only mutation can change
the fitness value of these hypotheses. If no mutation happens
for a particular individual corresponding to any one of these
hypotheses, then it is unnecessary to compute their fitness
value again.

4. Experimental results
4.1. Database

The database we use in our experiments is the NIST Spe-
cial Database 4 (NIST-4) [29], which is a publicly avail-
able fingerprint database. Since the fingerprints in NIST-4
are collected by an ink-based method, a large portion of the
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s0021_0

aE

f0022_05

s0022_05

471

[ o b

f0011_02

s0011_02

s0031_02

Fig. 9. Sample fingerprints in NIST-4 database.

fingerprints are of poor quality and contain certain other ob-
jects, such as characters and handwritten lines. The size of
the fingerprint images is 480 x 512 pixels with a resolution
of 500 DPI. NIST-4 contains 2000 pairs of fingerprints. Each
pair is a different impression of the same finger. The finger-
print is coded as a f or s followed by 6 numbers, which
means the fingerprint image is the first or second impres-
sion of certain finger. Some sample fingerprints are shown
in Fig. 9. The features are extracted using the learned tem-
plate approach described in Ref. [30].

4.2. Estimation of data range for GA

Parameters that need to be optimized are s, 0, f, and
ty. The data range of these parameters are critical to the
performance of the approach. On one side, if the data range
is too small, we may miss the optimal solution. On the other
side, if the data range is too large, the GA may take a much
longer time to finish. The estimation of the data range is
based on the experiments of the first 100 pairs of fingerprints
of NIST-4.
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Fig. 10. Histograms of transformation parameters (first 100 pairs of fingerprints in NIST-4).

For the first fingerprint in each pair of fingerprints, we
manually choose minutiae features, then find the corre-
spondences in the second fingerprint. Using the pairs of
correspondences of minutiae features in each pairs of fin-
gerprint, we estimate the transformation parameters by
mean-squared error. Fig. 10 shows the distributions of s, 0,
ty and t,. The data range that we choose for these param-
eters are: 0.9<s<1.1, —30°<0<L30°, —128<1r, <128,
—128 <1, <128. Fig. 10 shows that the transformation pa-
rameters of the first 100 pairs of fingerprints are all within
these data ranges.

4.3. Estimation of parameters for GA

Fig. 11 shows a triangle. Without loss of generality, we
assume that one vertex, O, of the triangle is (0, 0), and it does
not change under distortions. The analysis of angle o shows
that (1) the minimum and the median angles omin and tyeq
in a triangle are more robust than the maximum angle omax
under distortions; (2) 2° can accommodate the uncertainty
of most distortions and keep the size of the search space as
small as possible. Thus, we have T, . =2° and T, =2°.
We present a detailed analysis of threshold selection in Refs.
[31] and [10].

A
______________ B
Y2 1
1
1
1
|
|
1
! o X
o X2 ! A% >
Fig. 11. Illustration of variables.
Table 1
Parameters
Parameters ~ Value Parameters Value Parameters Value
Ty 12 T 5 Py 0.2
T"min 2° T7111(’d 2° P 0.005
T, 20 T, 2 Ny 15
T; 2 Np 100

The parameters used in our approach are listed in Table 1.
In the following, we provide comments on the parameters.

(1) s, 0, ty and t,—The ranges of these parameters are de-
scribed in Section 4.2 and confirmed by Fig. 10, his-
tograms of transformation parameters;
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150
f — 1st Experiment
—— 2nd Experiment
=== 3rd Experiment
—eo— 4th Experiment
== 5th Experiment
100 |

Fitness Value

a
o

0 10 20 30 40
Generations

Fig. 12. Fitness value changes for matching between the first pair of
fingerprints in Fig. 9 (f0001_10 and s0001_10).

(2) T, and T,,—These are matching (see below Eq. (2)) and
fitness (Eq. (4)) related thresholds. A higher value of T,
means a larger distortion in matching is allowed which
will lead to increased computation. The value of 7, is
estimated based on the distribution of matched triangles
for correct and incorrect recognition [10];

(3) ps, Pm, Npy—These are the standard crossover rate, the
mutation rate, and the size of population parameters used
in genetic algorithms [1,32]. They are based on the size
of the search space, rate of convergence and diversity of
the individuals in the population;

(4) N;—It is the number of generations. We choose it from
our observation of the evolution of GA. Fig. 12 shows
an example of GA evolution process. If the fitness value
does not change after N, generations, then we stop the
evolution;

(5) All the other thresholds listed in Table 1 are for choosing
corresponding triangles [10]. We choose them based on
the feature extraction results. The larger the thresholds,
the more corresponding triangles will be found, which
will require longer time by GA.

Note that for all the results reported in this paper all the
parameters are fixed for the entire NIST-4 dataset.

4.4. Results

A total of 2000 matchings, between consistent pairs, are
performed to estimate the distribution of genuine match-
ing. We also perform 200,000 matchings between inconsis-
tent pairs to estimate the distribution of imposter matching,
where for each matching we randomly select two finger-
prints from NIST-4 that are the impressions of different fin-
gers. Fig. 12 shows five evolutions of the fitness value for
the matching between the first pair of fingerprints (fO001_10
and s0001_10) shown in Fig. 9. Since we use two methods,
explained in Section 3.3.4, for the computation time reduc-
tion, if the fitness value becomes greater than 100, then the

—

f0023_04 and s0023_04. fitness value = 290

Fig. 13. Examples of genuine matching: maximum fitness value between
two fingerprints which are from the same finger.

evolution stops. We observe that the evolutions terminate
within 40 generations. Considering the size of the search
space is 2%, the GA searches only a fraction of the search
space. We repeat experiments of genuine matchings and im-
poster matchings five times, respectively. Fig. 13 shows four
pairs of fingerprints, which are the different impressions of
the same fingers, and their corresponding maximum fitness
values. Fig. 14 shows four pairs of fingerprints, which are
the different impressions of the different fingers, and their
corresponding maximum fitness values. We observe that the
more similar the two fingerprints, the larger the fitness value.
Since the fingerprints in Fig. 14 are not from the same fin-
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£1295_07 and s0814_01, fitness value =0

Fig. 14. Examples of imposter matching: maximum fitness value between
two fingerprints which are from different fingers.

gers, their fitness values are small. Figs. 15 and 16 show the
average probability distribution function (PDF) of 10 exper-
iments for both distributions, respectively. Note that Figs.
15 and 16 are at different scales. On the average, 99.1%
imposter matchings and 11.5% genuine matchings have a
fitness value of 4.

Based on genuine and imposter distributions, the receiver
operating characteristic (ROC) curve is defined as the plot
of genuine acceptance rate (GAR) against false acceptance
rate (FAR). Fig. 17 shows the comparison of the average
ROC curve of our GA-based approach in this paper and the
ROC curve reported in Ref. [5]. It also shows the lower and
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Fig. 15. PDF of fitness value for genuine matchings.
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Fig. 16. PDF of fitness value for imposter matchings.
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Fig. 17. Comparison of ROC curves of two approaches using entire
NIST-4 (2000 pairs of fingerprints).

upper bounds of GA-based approach, which are estimated
by repeating the experiments 10 times. The advantage of
GA-based approach is about 3.0%. When FAR is small, i.e.
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f0003_10

s0003_10

s0048_04

s0069_10

Fig. 18. Sample fingerprints with low fitness value in genuine matching.

less than 0.02%, the advantage is about 2.0%. One main
reason is that this approach finds global transformation and
uses of local properties to verify it, which is better than find-
ing local transformation only. Note that we have shown the
results on the entire NIST-4 database. Verification results on
NIST-4 are reported in Ref. [4]. However, in Kovacs-Vajna
[4] 6.0% data are rejected manually by the author because
of bad quality. Without dynamic time warping (DTW) for
the detailed verification, the FAR is 10.0%, which is unac-
ceptable, although the GAR is 85.0%. With DTW, the GAR
is 85% and 80%, and the corresponding FAR is 0.002% and
0.05%. It makes no sense for the use to compare the per-
formance reported in Kovacs-Vajna [4] with DTW since the
author has not used the entire database, and we do not know
which of the fingerprints have been rejected manually.

Examining the results, we find that: (a) the low fitness val-
ues for most genuine matchings are due to the poor quality
of fingerprints. There is not enough overlapped areas from
which the feature extraction procedure can extract enough
good minutiae; (b) the nonzero fitness value for most im-
poster matchings are due to the similar structures and clutter
features in two different fingerprint images. Fig. 18 shows
some low-quality fingerprint pairs. In each case, the maxi-
mum fitness value is 4 (obtained in different runs of exper-
iments).

4.5. Effectiveness of selection and crossover
In order to demonstrate the effectiveness of selection and

crossover operators, we compared the performance of the
pure GA and that of other two variations of GA. These
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Fig. 19. Comparison of the average performance of pure GA and its two
variations.

variations are:

e Instead of selecting hypotheses from parental population
according to their fitness value, the first variation selects
the hypotheses randomly for further evolution. The only
restriction is that any hypothesis can only be selected once.

e The second variation simply skips the crossover. In order
to generate the same number of children as the pure GA,
the mutation rate of this variation is increased to 0.8, which
is the same as the crossover rate.

We perform the same experiments, which are explained
in Section 4.4, to test the performance of both variations.
Fig. 19 shows the comparison of the average performance
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of the pure GA and both variations. We observe that the
performance of pure GA is much better than that of the
other two variations. This demonstrates that the selection
and crossover are critical to the success of GA.

4.6. Computation time

On a SUN Ultra II workstation, which has a 200 MHz
cpu, the average computation time for a genuine matching
and an imposter matching are 15 and 8 s, respectively. The
difference of run-time between two kinds of matching is be-
cause the GA needs to check more detailed local properties
of the fingerprints for the genuine matchings, while it does
not need do this for imposter matchings. This run-time can-
not satisfy the real-time requirement of the real-world appli-
cations. However, the computation time can be reduced by:

e Using a more powerful computer;
e Parallel computation on an appropriate hardware.

5. Conclusions

In this paper, we proposed a fingerprint-matching ap-
proach, which is based on GA to find the globally optimized
transformation. The local properties of each triplets of minu-
tiae are used to find potential corresponding triangles and
tolerate reasonable distortions, including translation, rota-
tion, scale, shear, local perturbation, occlusion and clutter.
We achieve promising experimental results on the NIST-4
database, which has a large portion of poor-quality finger-
prints. The comparison shows the advantage of the proposed
approach.
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