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Abstract

In recent years feedback approaches have been used in relating low-level image features with concepts to overcome the subjective

nature of the human image interpretation. Generally, in these systems when the user starts with a new query, the entire prior

experience of the system is lost. In this paper, we address the problem of incorporating prior experience of the retrieval system to

improve the performance on future queries. We propose a semi-supervised fuzzy clustering method to learn class distribution (meta

knowledge) in the sense of high-level concepts from retrieval experience. Using fuzzy rules, we incorporate the meta knowledge into

a probabilistic feature relevance feedback approach to improve the retrieval performance. Results on synthetic and real databases

show that our approach provides better retrieval precision compared to the case when no retrieval experience is used. r 2002

Elsevier Science Ltd. All rights reserved.
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1. Introduction

Past several years have witnessed the developments of
a variety of content-based retrieval methods and systems
for image databases. In interactive relevance learning
approaches (Peng et al., 1999; Rui et al., 1998; Minka
and Picard, 1997) for image databases, a retrieval system
dynamically adapts and updates the relevance of the
images to be retrieved. In these systems, images are
generally represented by numeric features or attributes,
such as texture, color and shape, which are called low-
level visual features (Flickner et al., 1995). What users
desire are called human high-level concepts. The task of
relevance feedback learning is to reduce the gap between
low-level visual features and high-level human concepts.

The most important thing to be learned in relevance
feedback learning are the weights of different features.
Learning a user’s ideal query is also important. The
feedback, provided by different users in the form of
‘‘similar’’ (positive) images and ‘‘dissimilar’’ (negative)
images, is an important part of the experience. In these
systems, generally once the user is done with a query and
starts a new query, the experience (meta knowledge)

gained by the systems with previous queries is lost. For
this scenario, there is only user adaptation but no long-
term learning. It is possible to exploit the system’s
experience for learning visual concepts. Meta knowledge
is the experience of each query image with various users.
This experience consists of the classification of each
image into various classes (clusters), relevances (weights)
of features and the number of times this image is
selected as a query and marked as positive or negative.

In practical applications, we desire good retrieval
performance not for a single user but for many users.
Here, good retrieval performance means high precision
and fast response. Although different people may
associate the same image into different categories, the
generalization of viewpoints of many people count much
for making this decision and it will help in indexing large
image databases. This paper attempts to capture and
utilize the previous experiences of the system with
various queries to learn visual concepts. The visual
concepts are continually learned and refined over time,
not necessarily from the interaction with one single user
in a single retrieval session.

At the very beginning, images in the database have no
high-level conceptual information. With more and more
users performing retrieval tasks, based on their feed-
back, it is possible for the system to capture this
experience and learn image class distribution in the sense
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of high-level concepts obtained during the earlier
experience of image retrieval. This method can give
better results than those which are purely based on low-
level features since we have extra knowledge of high-
level classification. This can significantly improve system
performance, which includes both the instantaneous
performance and the performance at each iteration of
relevance feedback.

The above discussion raises two fundamental ques-
tions: (A). How to learn class distribution in the sense of
high-level concepts from different users’ queries and
associated retrievals? (B). How to develop a better
relevance learning method by integrating low-level
features and high-level class distribution knowledge?

The key contribution of the paper is to present a new
approach to address both of these questions. Based on
the semi-supervised fuzzy c-means (SSFCM) clustering
(Pedrycz and Waletzky, 1997), we propose a modified
fuzzy clustering method which can effectively learn class
distribution (meta knowledge) in the sense of high-level
concept from retrieval experience. Using fuzzy rules, we
incorporate the meta knowledge into a probabilistic
relevance feedback method to improve the retrieval
performance. As stated above, meta knowledge consists
of a variety of knowledge extracted from prior
experience of the system.

This paper is organized as follows. Section 2 describes
the related research on learning visual concepts. Section
3 gives our technical approach (Algorithm A) for
improving retrieval performance by incorporating meta
knowledge into relevance feedback method. Here, the
assumption is that the retrieval experience is directly
given in matrix form. Section 4 presents the improved
approach (Algorithm B) which derives retrieval experi-
ence by using a probabilistic technique and modifies
concept learning and relevance feedback (Bhanu and
Dong, 2001). Experimental results of these two algo-
rithms are provided in Section 5 and Section 6, presents
the conclusions of the paper.

2. Related work

Since there is a big gap between high-level concepts
and low-level image features, it is difficult to extract
semantic concepts from low-level features. Chang et al.
(1998) propose the idea of semantic visual templates
(SVT), where templates represent a personalized view of
a concept. The system interacting with the user
generates a set of queries to represent the concept.
However, the system does not accommodate multiple
concepts, which may be present in a single image and
their interactions. Tieu and Viola (2000) used a boosting

technique to learn a classification function when a user
selects a few example images at query time. The classifier
relies on 20 of the large number of visual features. Cox

et al. (2000) used a Bayesian approach for optimal
solution for multiple visual features. Ratan et al. (1999)
adopted multiple instance-learning paradigm using the
diverse density algorithm to model the ambiguity in
images and to learn visual concepts. This method
requires image segmentation, which leads to additional
preprocessing and the brittleness of the method. Rui and
Huang (2000) optimized learning process using a
hierarchical feature model. This approach yields explicit
optimal solutions and it is fast to compute. All the
above-mentioned systems attempt to learn human
concepts only with a single user.

Lipson et al. (1997) used qualitative spatial and
photometric relationships to encode class models for
classifying scenes by adopting a configural recognition

scheme. Lim (1999) proposed the notion of visual
keywords for content-based retrieval, which can be
adapted to visual content domain via learning from
examples. The examples are generated by a human
during off-line. The keywords of a given visual content
domain are visual entities used by the system. In both of
these two approaches, no relevance feedback is used.

Unlike the previous research published to date, this
paper exploits meta knowledge, accumulated over time
incorporating experience of many users on various
queries, for learning visual concepts where multiple
concepts may be present in the same query image. Fuzzy
clustering and relevance feedback are the main tools
used for this purpose.

3. Technical approach

Fig. 1 illustrates our approach for concept learning by
exploiting meta knowledge. Since it is not uncommon
that one image can be ascribed into different concepts,
we use SSFCM clustering method to learn the concept
distribution, and the images’ ascriptions to different
concepts are represented by the resulting partition
matrix. Initially, when the system is presented with a
query image, it does not know which concept the user is
seeking. It just presents the images to the user using the
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Fig. 1. Simplified system diagram for concept learning using meta

knowledge.
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K-nearest neighbor (NN) search on the entire database.
If the user is not satisfied with these retrievals and
provides feedback, the system attempts to decide the
concept that is sought by the user.

The concept distribution knowledge is derived from
semi-supervised fuzzy clustering performed over time. If
the desired concept is achieved, the system only needs to
search images within the cluster corresponding to this
concept; otherwise, it performs statistical relevance
learning to estimate feature weights and search images
in the entire database. With increased retrieval experi-
ences, the concept learning is improved, which helps to
capture user’s desired concept more precisely, and thus
future retrieval performance is improved. Fig. 2 pro-
vides the detailed system block diagram. The focus is the
upper-right (dotted) region. The rest of the components
shown in the figure represent a typical probabilistic
feature relevance learning (PFRL) system.

In this section, we present a concept learning
algorithm (we call it Algorithm A) based on the
assumption that the retrieval experience is directly
represented by positive and negative matrixes, which
we will introduce in Section 3.1.

3.1. Problem formulation

Assume each image corresponds to a pattern in the
feature space Rn: The set of all the patterns is X :We also
assume that the number of high-level classes c is known.
After the image database (size N) has already experi-
enced some retrievals by different users, we have X ¼

Xu,Xp,Xn; where Xu represents the set of the images
that are never marked (unmarked) by users in the
previous retrievals; Xp represents the set of the images
that are marked positive by users; Xn represents the set
of the images that are marked negative by users. Note
that Xp-Xna+: The reason is that one image may be
marked positive in one retrieval while marked negative
in another. Even though two or more retrievals may
actually be for the same high-level concept (cluster), it is
still possible that the image is marked both positive and
negative since whether or not to associate an image to a
specific high-level concept is subjective to different users.
We provide two matrices to represent the previous
retrieval experience:

(i) Positive matrix P ¼ ½pik�c�N : if image k is ever
marked positive for the ith cluster nþ times, the
element pik ¼ nþ; otherwise, pik ¼ 0;

(ii) Negative matrix Q ¼ ½qik�c�N : if image k is ever
marked negative for the ith cluster n� times, the
element qik ¼ n�; otherwise, qik ¼ 0:

Our problem is how to use the retrieval experience to
improve the fuzzy clustering performance, i.e., make the
data partition closer to a human’s high-level concept.

3.2. Fuzzy clustering

The fuzzy clustering method (Jain et al., 1999; Bezdek
et al., 1999; Gustafson and Kessel, 1978) is a data
analysis tool concerned with the structure of the dataset
under consideration. The clustering result is represented
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Fig. 2. Detailed system diagram for concept learning using meta knowledge.
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by grades of membership of every pattern to the classes
established. Unlike binary evaluation of crispy cluster-
ing, the membership grades in fuzzy clustering are
evaluated within the [0, 1] interval. The necessity of
fuzzy clustering lies in the reality that a pattern could be
assigned to different classes (categories). The objective
function method is one of the major techniques in fuzzy
clustering. It usually takes the form

J ¼
Xc

i¼1

XN

k¼1

ua
ikjjxk � vi jj

2; ð1Þ

where xk; k ¼ 1; 2;y;N; are the patterns in
Rn; v1; v2;y; vc are prototypes of the clusters,
1oaoN; and U ¼ ½uik� is a partition matrix des-
cribing clustering results whose elements satisfy two
conditions:

(a)
Pc

i¼1 uik ¼ 1; k ¼ 1; 2;y;N;
(b) uikX0; i ¼ 1; 2;y; c and k ¼ 1; 2;y;N:

The task is to minimize J with respect to the partition
matrix and the prototypes of the clusters, namely
minv1v2;yvc ;U J; with U satisfying conditions (a) and
(b). The distance function in (1) is the Mahalanobis
distance defined as

d2
ik ¼ jjxk � vijj2 ¼ ðxk � viÞ

TW ðxk � viÞ; ð2Þ

where W is a symmetrical positive definite matrix in
Rn�Rn:

The fuzzy c-means (FCM) method is often frustrated
by the fact that lower values of J do not necessarily lead
to better partitions. This actually reflects the gap
between numeric-oriented feature data and classes
understood by humans. The semi-supervised FCM
method attempts to overcome this limitation (Pedrycz
and Waletzky, 1997; Bensaid et al., 1996) when the
labels of some of the data are already known.

3.2.1. Semi-supervised c-means fuzzy clustering

Pedrycz and Waletzky (1997) modified objective
function J is given by (1) as

J1 ¼
Xc

i¼1

XN

k¼1

u2
ikd2

ik þ a
Xc

i¼1

XN

k¼1

ðuik � fikbkÞ
2d2

ik; ð3Þ

where bk ¼ 1 if xk is labeled, and bk ¼ 0 otherwise, k ¼
1; 2;y;N: The matrix F ¼ ½fik�c�N with the given label
vectors in appropriate columns and zero vectors else-
where. a ðaX0Þ denotes a scaling factor whose role is to
maintain a balance between the supervised and un-
supervised component within the optimization process.
a is proportional to the rate N=M where M denotes the
number of labeled patterns. The estimations of cluster
centers (prototypes) and the fuzzy covariance matrices
are

vs ¼
XN

k¼1
u2

skxk=
XN

k¼1
u2

sk ð4Þ

and

W�1
s ¼

1

rs detðPsÞ

� �1=n

Ps; ð5Þ

respectively, where s ¼ 1; 2;y; c; rs ¼ 1 (all clusters
have the same size), and

Ps ¼
PN

k¼1 u2
skðxk � vsÞðxk � vsÞ

TPN
k¼1 u2

sk

; s ¼ 1; 2;y; c: ð6Þ

The Lagrange multiplier technique yields an expression
for partition matrix

ust ¼
1

1þ a

1þ a 1�
Pc

j¼1 fjt

� �
Pc

j¼1 d2
st=d2

jt

þ aðfstbtÞ

8<
:

9=
;;

s ¼ 1; 2;y; c; t ¼ 1; 2;y;N: ð7Þ

Using an alternating optimization (AO) method, the
SSFCM algorithm iteratively updates the cluster cen-
ters, the fuzzy covariance matrices and the partition
matrix by (4), (5) and (7), respectively, until some
termination criteria are satisfied.

3.2.2. Proposed semi-supervised fuzzy clustering method

for class distribution learning

We first pre-process the retrieval experience using the
following rules (i ¼ 1; 2;y; c and k ¼ 1; 2;y;NÞ:

(i) If pikbqik; we can conclude that image k should be
ascribed into the ith cluster, i.e., uik should be large
compared to other ujkðj ¼ 1; 2;y; c; jaiÞ;

(ii) If pik5qik; image k should not be ascribed into the
ith cluster, i.e., uik should be close to zero;

(iii) If (i) and (ii) are not satisfied, we cannot make any
conclusion on ascribing image k ðk ¼ 1; 2;y;NÞ
into the ith cluster, i.e., we have no idea on the
value of uik; so we have to execute fuzzy clustering
to derive its value.

Following the above discussion, we construct two new
matrixes Fc�N and Cc�N ; the first of which represents
positive information while the latter represents the
negative information. For an element fik of F; if pik

and qik satisfy condition (i), fik ¼ 1; otherwise, fik ¼ 0:
For an element cik of C; if pik and qik satisfy condition
(ii), cik ¼ 1; otherwise, cik ¼ 0:

We then normalize non-zero columns of P; namely, ifPc
i¼1 pik > 0; then pjk ¼ pjk=

Pc
i¼1 pik; j ¼ 1; 2;yc;

k ¼ 1; 2;yN : The purpose of normalization is to
estimate the membership grades of the marked images.

Our objective function is similar to that in (3) with the
modification

J2 ¼
Xc

i¼1

XN

k¼1

u2
ikd2

ik þ a
Xc

i¼1

XN

k¼1

ðuik � pikÞ
2d2

ik: ð8Þ

The task is to minimize the objective function J2 with
respect to the partition matrix and the prototypes of the
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clusters, namely minv1v2;?vc ;U J2 with respect to cluster
centers v1; v2;y; vc and U satisfying conditions (a) and
(b) for fuzzy clustering and a new constraint uik ¼ 0 if
cik ¼ 1; i ¼ 1; 2;y; c; k ¼ 1; 2;y;N. This new con-
straint implies that if we already know that a pattern
should not be ascribed to a certain class, we can pre-
define the corresponding membership element to be
zero. For the kth column of Cc�N ; there are nðkÞ non-
zero elements, whose row indices are IðkÞ ¼
fr1;k; r2;k;y; rnðkÞ;kg: All other notations are the same
as those in the first part of this section.

Using the technique of Lagrange multipliers, the
optimization problem in (8) with constraints (a) and (b)
for the fuzzy clustering, it is converted into the form of
unconstrained minimization

J2 ¼
Xc

i¼1

XN

k¼1

u2
ikd2

ik þ a
Xc

i¼1

XN

k¼1

ðuik � pikÞ
2d2

ik

�
XN

k¼1

lk

Xc

i¼1

uik � 1

 !
: ð9Þ

From the optimization requirement qJ2=qust ¼ 0; we get

ust ¼
1

1þ a
lt

2d2
st

þ apst

� �
; if cst ¼ 0; otherwise ust ¼ 0:

From the fact that the sum of the membership values,Pc
j¼1 ujt ¼ 1; we have

1

1þ a
lt

2

Xc

j¼1; jeIðtÞ

1

d2
jt

þ a
Xc

j¼1; jeIðtÞ

pjt

( )
¼ 1:

So we get

ust ¼
1

1þ a

1þ a� a
Pc

j¼1;jeIðtÞ pjtPc
j¼1;jeIðtÞ d2

st=d2
jt

þ apst

( )
: ð10Þ

The expressions of cluster centers and the fuzzy
covariance matrices are the same as in (4) and (5),
respectively. Our semi-supervised fuzzy clustering algo-
rithm for learning class distribution is outlined in Fig. 3.

3.3. Incorporating meta knowledge into feature

relevance learning

A kind of PFRL based on user’s feedback, that
is highly adaptive to query locations is suggested in
Peng et al. (1999). The main idea is that feature weights
are derived from probabilistic feature relevance on a
specific query (local dependence) but weights are
associated with features only. Fig. 4 illustrates the
cases at points near decision boundary where the NN
region is elongated in the direction parallel to decision
boundary and shrunk in the direction orthogonal
to boundary. This implies that the feature with
direction orthogonal to the decision boundary is more
important. This idea is actually the adaptive version of
the NN technique developed in Hastie and Tibshirani
(1996).

3.3.1. Proposed strategy for relevance feedback with

fuzzy clustering

Using fuzzy clustering, we already get class distribu-
tion knowledge, which is represented by the partition
matrix Uc�N : We now transform this meta knowledge
into defuzzied partition matrix Zc�N ; i.e., update the
elements of U by binary scale {0, 1}. The elements of
Zc�N are defined as: if uikXbðmaxj¼1;2;?;c ujkÞ; zik ¼ 1;
else, zik ¼ 0; i ¼ 1; 2;y; c; k ¼ 1; 2;y;N: The value of
bAð0; 1� represents to what extent we can say that the
element uik is large enough so that image k can be
ascribed to class i:

Class 2

Class 1

Class 3

x2

x1

Fig. 4. Feature weights are different along different dimensions. The

dotted circles represent the equally likely nearest neighborhood and the

solid ellipses represent feature-weighted nearest neighborhood.

1. Given the number of clusters c, positive matrix P, negative matrix Q. Select the distance

function as Euclidean distance.

2. Compute new matrices Φ Ψc N and c N. Initialize partition matrix U: If ψ ik = 1, uik = 0;

Otherwise, set uik randomly in the interval [0, 1] so that the sum of each column of U is 1.

3. Compute cluster centers and the fuzzy covariance matrices by (4) and (5).

4. Update partition matrix: If ψik = 1, uik = 0; Otherwise, compute the element by (10).

5. If δ<−U'U (with δ being a tolerance limit) then stop, else go to 3 with U'U = .

× ×

Fig. 3. Algorithm A—semi-supervised fuzzy clustering algorithm (SSFCM) for concept learning.
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At any iteration, if M images (I1; I2;y; IM ) are
marked positive by the current user, we then check if
these positive images can be ascribed into one common
class. If (sAf1; 2;y; cg; 8kAfI1; I2;y; IMg that zsk ¼ 1;
then the current user seems to be seeking the concept
corresponding to class s: So the system can save the
tremendous amount of work for feature relevance
learning and searching K images over the entire
database; instead, only searching K images within
class s is needed, i.e., searching among the images
whose sth element of the corresponding U column
vectors are 1.

When enough retrievals on the image database are
executed by different users, the class distribution
knowledge will be close to most human users
concepts. This leads to not only saving computational
time for retrieval but also to improved retrieval
precision.

4. Improved concept learning approach

For the approach presented in the previous section,
the retrieval experience is directly represented by
positive matrix P and negative matrix Q: How can the
system derive such matrices? During the long-term
learning process, each time after the current user ended
his (her) query session, the system gets some positive
images and some negative images from this user’s
feedback. Obviously, ‘‘positive’’ (‘‘negative’’) means
that the corresponding images do (do not) contain the
concept the user has sought. If the system knows which
concept is sought by the user, it can update P by
locating those matrix elements corresponding to positive
images and this concept and increasing the elements by
1; it can also update Q in a similar manner with respect
to negative images.

Unfortunately, the system is not directly given which
concept the user has sought. We have to use some
technique to estimate the concept sought by the user so
that P and Q are derived to help concept learning. This
is the major improvement of the concept learning
approach presented in this section (we call it Algorithm
B). We also modify fuzzy clustering algorithm and the
strategy for relevance feedback.

4.1. Concept learning

After a user’s retrieval experience, let there be Nþ

positive labeled images and N� negative labeled images,
and they are represented by Iþ ¼ fIþ1 ; I

þ
2 ;y; IþNþg and

I� ¼ fI�1 ; I
�
2 ;y; I�N�g; respectively. The task is to first

determine which concept the user was seeking so that we
can derive correct knowledge from this retrieval and
then improve our concept learning by semi-supervised
fuzzy clustering later. The index k of the cluster

corresponding to the concept sought is computed as

k ¼ argmax
k¼1;2;:::;c

PðkÞ; ð11Þ

where PðkÞ is equal to

PrðIþ1 ACk;y; Iþ1 ACk; I�1 eCk;y; I�1 eCkÞ

¼
YNþ

i¼1

PrðIþi ACkÞ
YN�

j¼1

PrðI�j ACkÞ

¼
YNþ

i¼1

uk;Iþ
i

YN�

j¼1

ð1� uk;I�
j
Þ ð12Þ

with ukjðk ¼ 1; 2;y; c and j ¼ 1; 2;y;N) being the
element of partition matrix Uc�N and Ck ðk ¼
1; 2;y; cÞ being concept k: This probability-based
maximization method uses the current partition matrix
information to decide the sought concept, which
necessitates the assumption that current partitioning is
not too bad.

Now the images in Iþ are in cluster k and those in I�

are not in cluster k: We designate the positive matrix
Pc�N and the negative matrix Qc�N to represent this
kind of knowledge. At the very beginning, when no
retrieval has ever been executed on the system, P and Q

are initialized to be zero matrices. After a retrieval
experience, the elements fpk;Iþ

1
;y; pk;Iþ

Nþ
g in P and the

elements fpk;I�
1
;y; pk;I�

N� g in Q are increased by 1. So
the values of pkj and qkj represent to what extent people
agree and disagree to ascribe an image j into cluster k;
respectively.

The motivation for having matrices P and Q is to
capture and update previous users’ retrieval experiences.
In the following, P and Q are processed in the sense of
statistics by estimating users’ voting whether a certain
image contains a specific concept or not.

Define E ¼ P � Q; and let bj ¼ 0; if the jth column in
E is a zero vector; 1, otherwise. Let M be the number of
normalized columns of E; we define a ¼ N=M: We then
let F be the matrix that has normalized columns of E;
i.e., for the elements of F ;

fkj ¼
ekj �mini¼1;2;:::;c eij

maxi¼1;2;:::;c eij �mini¼1;2;:::;c eij

ð13Þ

for k ¼ 1; 2;y; c; j ¼ 1; 2;y;N and kth column in E is
a non-zero vector.

If the element ekj of E is negative, k ¼ 1; 2;y; c; j ¼
1; 2;y;N; it implies that there are fewer people
ascribing image j to cluster k than those opposing to
this association: we conclude that image j does not
contain concept k and directly predefine the element ukj

of partition matrix to zero. If for the jth column of
Ec�N ; there are lj negative elements whose row indices
are JðjÞ ¼ fr1;j ; r2;j ;y; rlj ;jg; we set ekj ¼ 0; j ¼
1; 2;y;N; kAJðjÞ:

We can now deal with the semi-supervised fuzzy
clustering, which is also an optimization problem with
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the objective function (3). Besides the two constraints (a)
and (b) appearing in Section 3.2, a new constraint is
added as we have discussed above:

ðcÞ ukj ¼ 0; j ¼ 1; 2;y;N; iAJðkÞ: ð14Þ

The estimations of cluster prototypes and the fuzzy
covariance matrices are also (4) and (5), respectively.
And we derive the expression for partition matrix
elements as

ust ¼
1

1þ a

1þ a 1� bj

Pc
j¼1; jeJðtÞ fjt

� �
Pc

j¼1; jeJðtÞ d2
st=d2

jt

þ aðfstbtÞ

8<
:

9=
;;

ð15Þ

where s ¼ 1; 2;y; c and t ¼ 1; 2;y;N :

4.2. Improving retrieval performance

As introduced in Section 3.3.1, we first defuzzy the
partition matrix Uc�N to Zc�N : With user’s feedback
after iteration 0; if Lþ images fIþ1 ; I

þ
2 ;y; IþLþg are

labeled positive and L� images fI�1 ; I
�
2 ;y; I�L�g are

labeled negative by the user, we check if these positive
images can be ascribed into one common cluster while
negative images are not in this cluster. If (sAf1; 2;y; cg;
the following two conditions are satisfied:

(a) 8jAfIþ1 ; I
þ
2 ;y; IþLþg; zsj ¼ 1 and

(b) 8jAfI�1 ; I
�
2 ;y; I�L�g; zsi ¼ 0

then the current user seems to be seeking the concept
corresponding to cluster s: So the system saves
tremendous amount of computation for feature rele-
vance learning and searching K images over the entire
database; instead, only searching K images within
cluster s is needed, i.e., searching among the images
whose sth element of the corresponding U column
vectors are 1. When the above conditions are not

satisfied, we use statistical feature relevance approach
presented in Peng et al. (1999) to perform the retrievals
and update clustering.

Our concept learning algorithm with fuzzy clustering
and relevance feedback is outlined in Fig. 5.

5. Experiments

We first present experimental results on both synthetic
and real data using the approach introduced in Section
3. Then we demonstrate the improved approach in
Section 4 on synthetic and real data.

To evaluate the result of fuzzy clustering, we define
the groundtruth matrix Gc�N ; whose element gij ði ¼
1; 2;y; c and j ¼ 1; 2;y;N) is defined as: gij ¼ 1; if
image j has concept i; 0, otherwise.

An important measure for the fuzzy clustering result
is the percentage of correct clustering, which is defined as

percentage ¼

P
i

P
j gij xor zij

cN
; ð16Þ

where zij is the element of defuzzied partition matrix Z

as defined in Section 3.3.1.
The retrieval performance is measured by precision,

which is defined as

precision ¼
Number of positive retrievals

Number of total retrievals
� 100%: ð17Þ

5.1. Synthetic data—Algorithm A

Fig. 6 shows a synthetically created two-dimensional
pattern. It consists of three overlapping clusters: two of
them are ellipsoidal (classes 1 and 2) while the third one
(class 3) is a circle. The two ellipsoidal clusters have the

Given the number of clusters c, the number of images N.
Initialize positive matrix Pc×N and negative matrix Qc×N to be zero matrices.
Repeat

A user starts his (her) retrieval session by inputting a query image;
flag ← 1;
While (flag = 1)

If the system can decide that user is seeking a concept corresponding to Cluster s
Search images within Cluster s;
flag ← 0;

Else
Probabilistic Feature Relevance Learning (PFRL);

End if
End while
If (flag = 0)

1. Compute κ by (11) and update P and Q , then compute matrix F and α ;
2. Compute cluster centers and the fuzzy covariance matrices by (4) and (5);
3. Update partition matrix: if not predefined as 0, the elements are computed by (15);
4. If δ <−U'U (with δ being a tolerance limit), stop; else, go to 2 with U = U' ;

End if

Fig. 5. Algorithm B—concept learning with fuzzy clustering and relevance feedback.
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same means [0 0]T, and their covariance matrix given
as rows are [12 �6.8; �6.8 4] and [12 6.8; 6.8 4],
respectively. The third cluster has mean of [�1 0]T and
its covariance matrix is [1 0; 0 1]. The size of each
cluster is 50, so we have 150 patterns in total. For
standard fuzzy clustering, the correct percentage is only
36.7%, which is close to the guess value 1/3. This is not
unusual because clusters significantly overlap.

We then test both Pedrycz’s clustering algorithm
(Pedrycz and Waletzky, 1997) and our algorithm on this
data with different amounts of experience. Experience is
defined as the ratio of the number of labeled patterns to
the total number of patterns. When the experience is g;
we randomly choose gN patterns and label them positive
for their groundtruth clusters; at the same time,
randomly choose gN patterns, and for each pattern,
label it negative for one cluster that is not its
groundtruth cluster. Then repeat clustering with respect
to this experience 10 times, and calculate the average
correct percentage. For Pedrycz’s method, only positive
experience is used while for our method both positive
and negative experiences are used. Fig. 7 shows that
with increasing experience, the percentage of correct
clustering becomes better and that the result of our
method is better than Pedrycz’s. Fig. 8 shows the
misclassified patterns by our method with respect to
different experience values. This shows the advantage of
our algorithm for learning high-level concepts since in
addition to positive feedback, negative feedback is also
available from user’s responses.

5.2. Real data—Algorithm A

We construct two image databases with sizes of 180
and 1047, respectively for experiments.

5.2.1. Database I

This image database consists of a variety of images all
containing one or more of the following five objects:
water, sun, sky, cloud and ground. The total number of
images is 180. Each image is annotated with five labels
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Fig. 6. Two-dimensional data distribution with three overlapping
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Fig. 8. Misclassified patterns for synthetic dataset: (a) no experience, (b) 20% experience, (c) 50% experience.
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(0 or 1), so the groundtruth class distribution can be
represented by a matrix G180�5 whose elements are 0–1
values. Fig. 9 shows sample images. The numbers of
images within the five classes are 49, 63, 83, 130, 59,
respectively. Each image in this database is represented
by 16-dimensional feature vectors obtained using 16
Gabor filters for feature extraction (Peng et al., 1999).

Our semi-supervised fuzzy clustering algorithm is
applied to the data with different amounts of experience,
N ¼ 180; c ¼ 5; K ¼ 16; a ¼ 1; b ¼ 0:5: Fig. 10 shows
the percentage of correct clustering with respect to
different experience. The percentage of correct cluster-
ing is determined by comparing the elements of the
groundtruth matrix G and those of defuzzied partition
matrix U :

We then randomly select one of the 180 images as
query, and other 179 remaining images as training
samples. The retrieval process is automatically executed
since we use the groundtruth matrix G180�5 to provide
user’s interactions: At first, randomly select a concept
that the query image can be ascribed to, and regard this
concept as what the user is seeking. When the retrieval
system presents the resulting K images, we use matrix
G180�5 to mark them. If the membership element of the
G180�5 corresponding to the image with respect to
desired concept is 1, then mark this image positive;
otherwise, it is marked as negative. By repeating such
retrievals 50 times by selecting a different image as query
each time, we obtain the average precision results shown
in Fig. 11.

We observe that when only PFRL is used, the average
precision (=58.1%) is the lowest. With the increasing
experience, the average precision becomes higher.
Experience of 10% helps to increase the precision
significantly (precision=68.9%). When the experience
is 20%, the precision reaches 88.0%. These results
support the efficacy of our method.

Fig. 12 and Fig. 13 show four groups of sample
retrievals in total when 20% experience is available. The
query image in each group contains different number of
concepts from 1 to 4. The retrieval results at the second
iterations are improved over those at the first iterations
with the help of meta knowledge derived from the
experience using fuzzy clustering. For example, the
query image in Fig. 12(b) contains two concepts: cloud

and ground. The user is seeking the concept cloud. At the
first iteration, the system makes K-NN search and only 5
out of the 16 resulting images contain cloud. At the
second iteration, the system incorporates the class
distribution knowledge into relevance feedback frame-
work and 14 out of 16 images contain cloud.

5.2.2. Database II

This database contains 1047 images, which includes
all the images in Database I. There are 9 concepts (of
sizes): plant (115), sky (128), animal (100), sunset (199),
building (249), texture (152), people (185), cloud (204)
and water (146). On the average, each image contains

Fig. 9. Sample images from real-world database: (a) images having one concept; (b) images having two concepts; (c) images having three concepts;

(d) images having four concepts.
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1.41 concepts. Besides the 16 texture features used in
Database I, we also extract means and standard
deviations from the three channels in HSV color space.
Thus, each image is represented by 22 features.

We implement our fuzzy clustering method on this
database with c ¼ 9; K ¼ 16; N ¼ 1047; a ¼ 1 and b ¼
0:5: Fig. 14 shows the percentage of correct clustering
with respect to different experience. Observe that with
experience increased, the percentage of correct clustering
is improved. The average precision results with different
experience are shown in Fig. 15.

Fig. 16 shows two groups of sample retrievals when
80% experience is available. In (a), the user is seeking
cloud. The K-NN search at the first iteration only gives 9
cloud images. At the second iteration, the class distribu-
tion knowledge helps to give 16 cloud images. In (b), the

user is seeking water, 8 water images are given at the first
iteration and 14 water images are given at the second
iteration.

5.3. Experimental results using the improved approach

For each retrieval, the user’s interaction is monitored
by the groundtruth matrix Gc�N .

5.3.1. Synthetic data—Algorithm B

Fig. 17 shows three synthetically created overlapping
clusters (two-dimensional Gaussian distribution). Each
cluster contains 50 patterns. Cluster 1 and 2 are
ellipsis with the same mean of [0 0]T and they have
covariance matrices (given as rows) [3.0625 –1.6238;
�1.6238 1.1875] and [3.0625 1.6238; 1.6238

Fig. 12. The sample (top 16) retrieval results (experience=20%) at the first and the second iterations with query image containing (a) one concept,

and (b) two concepts.
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1.1875], respectively. Cluster 3 is a circle with the mean
of [�1 0]T and covariance matrix (given as rows)
[1 0; 0 1]. Fig. 17(a) shows the cluster distribution.

We implement our clustering algorithm on this
synthetic data with c ¼ 3; N ¼ 150; K ¼ 8; and b ¼ 1:

Simulating the system with increased retrieval experi-
ences (the number of users’ retrieval sessions), we
randomly select a pattern as the query for each retrieval,
and decide the concept (cluster) that is sought by
positive and negative images. We then update the fuzzy

Fig. 13. The sample (top 16) retrieval results (experience=20%) at the first and the second iterations with query image containing (a) three concepts,

and (b) four concepts.
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clustering and derive the defuzzied partition matrix. An
example of this process is shown in Fig. 17(b)–(d), in
which the clustering result is improved with increased
experiences.

Fig. 18 shows the average percentage of correct
clustering with increased experiences. Notice that only
89.7% of correct clustering is achieved after 100
experiences. This is because the partition matrix derived
from the initial FCM clustering without any experience
is far away from groundtruth matrix. After a user’s
experience, the system may mistakenly decide the
concept sought. This incorrect knowledge will mislead
the fuzzy clustering which may cause the updated
partition matrix to be farther away from groundtruth
matrix. After a retrieval experience, if the correctly
sought concept is directly given instead of deriving it by

computation, this is called a training experience. Fig. 18
also gives the performance curve with training experi-
ences, which help clustering result to finally reach 100%.
The role of training stage will be discussed further in the
real data experiment.

5.3.2. Real data—Algorithm B

In this section, we implement the improved algorithm
on Database II introduced in Section 5.2.2. We simulate
the process of a retrieval system for which queries
are selected randomly among the patterns in the
database.

We implement our fuzzy clustering method on this
database, with c ¼ 9; N ¼ 1047; K ¼ 16 and b ¼ 0:5:
For the reasons of the big gap between low-level features
and a human concept, the initial fuzzy clustering is far

Fig. 16. The sample (top 16) retrieval results (experience=80%) at the first and the second iterations with query image containing (a) one concept,

and (b) two concepts.
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away from groundtruth labeling. We can set a training
stage at the beginning of the system’s running online.
Let there be t training experiences, in each of which on
the average L images are labeled positive or negative,
the amount of concept knowledge derived from training
is estimated to be tL=cN ; which denotes the percentage
of elements whose values are given in advance out of all
the elements in the groundtruth matrix.

Fig. 19 shows the fuzzy clustering performance of the
system going through 500 retrieval experiences starting
with different amounts of training experiences. With
increased number of initial training experiences, fuzzy
clustering is improved. Compared with the case that has
no training, 20 training experiences improve the

clustering significantly. In our experiment, L ¼ 26; so
the amount of concept knowledge derived from the 20
training experiences is 5.5%. We also observe from
Fig. 19 that even with training experiences, the percen-
tage of correct clustering still cannot converge to 100%,
which again reflects the gap between image features and
human visual concepts.

For concept k; k ¼ 1; 2;y; c; in the corresponding
kth rows in groundtruth matrix G and defuzzied
partition matrix Z; for j ¼ 1; 2;y;N; let

N1 be the number of j that give gkj ¼ 1;
m; be the number of j that give gkj ¼ 1 and zkj ¼ 0;
N0; be the number of j that give gkj ¼ 0; and
n; be the number of j that give gkj ¼ 0 and zkj ¼ 1:

Fig. 17. Fuzzy clustering results: (a) groundtruth labels, (b) 0 experience (47 errors), (c) 10 retrievals (30 errors), and (d) 30 retrievals (5 errors).

Fig. 19. Improved clustering with different amounts of training.Fig. 18. Synthetic data: improved clustering with increased number of

retrieval experiences.
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We define the probability of detection and probability
of false alarms as Pd ¼ ðN1 � mÞ=N1 and Pf ¼ n=N0;
respectively. Calculating the average Pd and Pf over the
c concepts, we obtain the ROC curves for detection
performance of partition matrix with different amounts
of experiences shown in Fig. 20. With the value of
defuzzy parameter b decreased, Pd and Pf both becomes
larger. Observe that with more retrieval experiences, in
the case when b is not very large, the detection ability of
partition matrix is improved.

Fig. 21 presents the retrieval performances with
different amounts of experiences starting with 20
training experiences. We select an image in this database
as the query, implement our retrieval strategy, and
repeat this experiment by changing query until each of
the 1047 images has been selected as query. Then we
calculate the average precision at each iteration. Among
these 1047 queries, the number of those leading to direct
search within a cluster is 174, 289 and 421, respectively,
corresponding to 200, 300 and 500 experiences. If the
percentage of correct clustering is high, the retrieval with
direct search within a cluster yields a high precision after
iteration 0; so, it is not strange that with increased

experiences, the average retrieval precision is improved.
The more important aspect of direct search within one
cluster is that the computational time at iteration 1 is
decreased by 1/c compared with that of searching the
entire database. This has deep significance for retrieval
performance in practical applications. Fig. 22 shows two
different retrievals with the same query image which is
regarded as containing the concepts of both cloud and
water based on the concept learning after 500 experi-
ences.

5.4. Discussions

Since real image database is incrementally changed
with the addition or removal of images from the
database, the size of partition matrix U changes
correspondingly. In the following, we consider the two
cases of image addition and removal separately. Let the
current size of database be N0; and the current partition
matrix be U0; whose size is c � N0: When a new image is
added, the size of partition matrix U becomes c � ðN0 þ
1Þ; and the ðN0 þ 1Þth column corresponds to the new
image. When the fuzzy clustering is to be implemented
on the database again after the new retrieval experience
is obtained, in partition matrix, the initial values of the
elements corresponding to the original N images are set
to be those in U0; and the elements corresponding to the
new image are randomly initialized with the constraint
that the summation of these elements be 1. Since neither
the feature vector of a new image nor a new retrieval
experience will change the clustering significantly, only a
few iterations of updating are needed. Similarly, when
some images are removed from the database, to
partition the remaining images, the initial partition
matrix element values are correspondingly set to be
those in U0:

As for computational load of the clustering algorithm,
since inverse matrix computation is required at each
iteration, it is obviously not fast. Fortunately, when a
new query comes, to present images to user, the system
does not have to implement the on-line clustering,
instead, the system only needs to use existing clustering
result to help relevance feedback. There may be a time
lag for the on-line clustering due to its computational
complexity. For example, when Nth query comes, the
system may only finish clustering based on retrievals 1 to
(N� t), where t is very small compared with N: The
system will use this clustering result to help relevance
feedback during the Nth retrieval. Since there is little
information difference between retrieval 1 to (N� t)
and retrievals 1 to (N� 1), the retrieval performance is
barely influenced by this on-line clustering time lag.
From the above observation, the clustering lag has little
influence on retrieval performance so long as the
clustering time is far below the average retrieval time
(frequency), which is generally satisfied in real image

Fig. 20. ROC curves for database classification with different amounts

of retrieval experiences.

Fig. 21. Retrieval performance with various amounts of experiences.
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databases. For this reason, computational load of the
clustering is not our main concern in this paper.

6. Conclusions

This paper presented two approaches for incorporat-
ing meta knowledge into the relevance feedback frame-
work to improve image retrieval performance. We first
give Algorithm A based under the assumption that the
retrieval experience is directly represented by positive
and negative matrixes. Algorithm B derives retrieval
experience by using a probabilistic technique and
modifies concept learning and relevance feedback. We
find that Algorithm B is promising for concept learning.
The modified semi-supervised fuzzy clustering method
can effectively learn class distribution in the sense of
high-level concept from retrieval experience. Using fuzzy
rules, we adapted the meta knowledge into relevance
feedback to improve the retrieval performance. With
more retrievals on the image database by different users,
the class distribution knowledge became closer to typical
human concepts. This leads to faster retrieval with
improved precision. The consequence of this is to be
able to handle more effectively a large database. In
future, we plan to show results on a larger and more

complex image database. The dynamic concept creation,
splitting and merging are also the topics of future
research.
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