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Abstract 

The performance of a recognition system is usually ex­

perimentally determined. Therefore, one cannot predict the 

peiformance of a recognition system a priori for a new 

dataset. In this paper, a statistical model to predict the 

value of k in the rank-k identification rate for a given bio­

metric system is presented. Thus, one needs to search only 

the topmost k match scores to locate the true match object. 

A geometrical probability distribution is used to model the 

number of non match scores present in the set of similar­

ity scores. The model is tested in simulation and by us­

ing a public dataset. The model is also indirectly validated 

against the previously published results. The actual results 

obtained using publicly available database are very close 

to the predicted results which validates the proposed model. 

keywords: Object identification, Performance prediction, 
Rank-k identification rate, geometric distribution model. 

1. Introduction 

Two important operational tasks of a biometric system 
are authentication and identification. Several indicators 
have been proposed for measuring the performance of the 
above tasks which include False Accept Rate, False Reject 
Rate, Receiver Operating Characteristic, Rank-k identifica­
tion/recognition rate (Rd and Cumulative Match Character­
istic (CMC) Curve. Out of these, the last two measures, 
namely, Rank-k identification rate and Cumulative Match 
Characteristic Curve have been specifically proposed for 
biometric identification systems. Rank-k identification rate 
provides the number of times the correct object is present 
in the top k most likely candidates. CMC Curve provides 
a plot of the rank-k identification rate against k [6]. These 
results are usually evaluated empirically for a given dataset. 
A fundamental problem in the empirical evaluation is that 
the results for a new dataset cannot be predicted [4]. What 
is fundamentally missing here is a theoretical approach that 
would predict the identification performance for any bio­
metric system. This paper focuses on developing such an 
approach for predicting the performance of a biometric sys-
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tern. The results of our approach are validated on a publicly 
available dataset. 

Given a collection of objects (gallery [7]) this paper pre­
dicts the value of k for a specific Rk so that the matching 
object could be found among the top k matches provided by 
the recognition system. It should be noted that k is an in­
dex position in the sorted list of similarity scores provided 
by the system. For a given gallery and the corresponding 
matching algorithm, this is achieved by collecting a set of 
similarity scores for various probe objects. The similarity 
scores are then processed and modeled using a geometric 
distribution. Once the parameter of the geometric distribu­
tion has been estimated, the bounds of the values of k are 
predicted. In addition, this paper examines the change in 
the value of k as the gallery size is increased. It has been 
found that the value of k expressed as a fraction of the size 
of the gallery remains more or less a constant (with a slight 
decrease) when the gallery size is increased to a very large 
value. The important terms used in this paper are defined 
in Table 1. 

2. Related Work and Contributions 

2.1. Related Work 

To the best of our knowledge the problem of predicting 
bounds of the match score indices in a biometric identifica­
tion system has not been addressed earlier and, therefore, 
a direct comparison with published research is not possible. 
The following describe the related work on indexing as well 
as on prediction. While comparing our work with existing 
indexing related work, it should be noted that while the end 
results of an indexing algorithm and our work are the same, 
the approaches are quite different. Our work is independent 
of a specific biometric and uses match scores produced by a 
matching algorithm on a given dataset and predicts the value 
of k for a given Rb whereas a typical indexing algorithm is 
tailor made to a specific biometric and does not predict the 
results on a different dataset. 

Bhanu et al. [1] describe indexing using minutiae triplets 
and its performance is reported for NIST-4 fingerprint 
database [12]. Cappelli et al. [3] describe a new hash based 
indexing method to speed up fingerprint identification in 
large databases and results are reported on several databases 
including NIST-4. Daugman [5] presents binomial models 
that used only the non-match scores to estimate the prob­
ability that a false match never occurs [8]. Grother and 



Table 1: Definitions 

Gallery A collection of objects. 
Probe 
Similarity score 

A query object whose matching object is present among the gallery objects. 
A real number representing the similarity between two objects. A similarity score may be either 
a match score or a non-match score. Depending on the way the similarity score is computed, the 
smaller the score the more similar the objects or vice versa. In this paper a low value of score is 
preferred. 

Match score 
Non-match score 
Indexing 

The similarity score obtained when two matching (similar) objects are compared. 
The similarity score obtained when two dissimilar objects are compared. 

Trial 
A method of re-organizing a set of data such that object retrieval from a gallery becomes easier. 
Any experiment generating n similarity scores. 

Index, Rank In a sorted set of similarity scores, the position of the given similarity score. 

Phillips [7] present the prediction of recognition perfor­
mance of large sized biometric galleries using a binomial 
model under the assumption that the match score distribu­
tion and the non match score distribution are independent. 
This approach has been followed by others [11] for recog­
nition with an additional assumption that the match and non 
match score distributions remain the same when the gallery 
size is increased. In [2], Boshra et al. present a theory for 
predicting object recognition which is verified on synthetic 
aperture radar data. 

2.2. Contributions 

The contributions of this paper are as follows: 
1. We developed a foundational approach for predicting 

identification performance, applicable to a variety of 
biometrics. The approach is rooted in statistical perfor­
mance characterization. Such a theoretical approach 
does not exist in the biometric or object recognition 
field in general. 

2. Given the match scores of a biometric, using the geo­
metric distribution, we can predict the indexing perfor­
mance for a given Rank-k identification rate. 

3. The approach presented is independent of a specific 
biometric and can adapt to any matching algorithm. 

4. We carry out both direct and indirect validation of our 
results in two publicly available databases. 

While the prediction using a known ("nice") distribution, 
(geometric distribution in this paper) is not new, this is the 
first paper to theoretically model the performance for Rank­
k identification and fills the void in the biometric, computer 
vision and patter recognition field. 

3. Technical Approach 

An overview of the technical approach is shown in Fig­
ure 1. The input to our system is a collection of similarity 
scores produced by different probe objects which are noisy 
versions of the objects present in the gallery. Here we as­
sume a closed-set recognition system [7]. The similarity 
scores are processed by our system and a geometric distri­
bution model is built. The parameter p of the geometric 
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Figure 1: Overview of the technical approach 

distribution model when estimated from the given data, en­
ables us to predict the value of k for a any given recognition 
rate Rk. The details of the approach are given below. 

Let N be the size of the gallery. When a single probe 
is presented to the system, it is matched against all the N 
objects of the gallery and, thus, N similarity scores are pro­
duced. This constitute one trial. Let S represent the set of 
similarity scores. S contains one match score and N -1 
non-match scores. Let S be sorted in the ascending order of 
the score values. Here we assume that the lower the similar­
ity score, the better the match is. In a different recognition 
system, the opposite may be true and our approach can be 
applied by normalizing the similarity scores. Let X be a ran­
dom variable representing the count of the non match scores 
present in S before the first match score. If the recognition 
system is ideal, the value of X would be zero. 

We want to model X in order to predict its value for a 
given Rk. This is the same as predicting the value of k for a 
specific Rk. In order to build a statistical model, we examine 
the properties of X, which are: 

1. X represents a count and hence X E Z, the set of inte­
gers. 

2. XE[O,N-l]. 

3. Many a time X may have value zero. This is because, 
often, for a well designed recognition system, the cor­
rect match score is the first one in the set of sorted 
similarity scores. 

Considering the above properties one can see that X can be 
modeled using geometric distribution. It models the number 
of trials needed before the first success in repeated Bernoulli 
trials [10]. In our case, each element in the set S can be as-
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Figure 2: Histogram of the number of non match scores present 

before the match score (random variable X) obtained from (a) Sim­

ulation with gallery size = 10000, noise variance = 10 (b) NIST­

fingerprint data [12l (c) NIST Biometric score set, Right index fin­

ger [9] (d) geometric distribution with p = 0. 05,N = 10000. Note 

the similarity of the histogram of data in (a), (b) and (c) and that 

of a geometric random variable in (d). Note that these figures pro­

vide visual justification for the selection of geometric distribution 

to model the random variable. The datasets in (a), (b), (c) and (d) 

are not related to each other. 

sumed to be coming from a Bernoulli trial (a given similar­
ity score may be a match score or a non match score) and if 
the score is a match score, we denote it as success and if the 
score is a non match score, we denote it as failure. Thus, 
geometric distribution can model the number of non match 
scores present before the first match score. Besides, our re­
quirement of high probability for very small values of X is 
also satisfied by the geometric distribution. 

The random variable X is a waiting-time random variable 
(we wait till the first match score is obtained) and the geo­
metric distribution is a natural candidate model to describe 
the waiting-time random variable. 

The suitability of geometric distribution can also be vi­
sually verified by observing the histograms of X obtained 
from experimental trials and the histogram of a geomet­
rically distributed random variable as shown in Figure 2. 
Thus one may note that the candidacy of the geometric 
model is neither based on prior knowledge nor empirically 
obtained from the data. It is a first order formulation with 
promising results. 

The reason for modeling the values of X as coming from 
a single geometric distribution, though the objects which 
produce the similarity scores are the instances of different 
gallery objects, is the fact that, the similarity score values 
are independent of the gallery/probe object names and the 
score never bears any information concerning the objects 
from which it is calculated. It only represents the closeness 
of the objects. To give an example, if we have an ideal 
matching algorithm, the 'distance' between an object and 

its noised version would be zero, irrespective of the object. 

3.1. Estimation of geometric distribution parameter 

Let X be a geometrically distributed random variable. 
Then 

P(X=x)=p(l-pY (1) 
where x = 0, 1, . . .  

Let Xl ,X2, ... ,XT be the realizations of T independent and 
identically distributed geometrical trials described by the 
model in eq. (1). The value of p can be estimated using 
maximum likelihood approach and it can be shown that the 
estimate is unbiased. 

3.1.1 Estimating the value of k for Rk = 95% 

The CDF of the geometric distribution is given by 

F(x) = 1-(1-py+l (2) 

We need to find out the range of values of X which occur 
in 95% of the experimental trials. As X is modeled as a 
geometric random variable, lower bound of x is obviously 
zero. The upper bound is given by the equation 

F(x) = 1-(1-py+! = 0.95 (3) 

If there are x non match scores before the first match score, 
then 

k (as defined in Rk) = x + 1 (4) 

From eqs. (3) and (4), the predicted bounds for Rk = 95% 
can be obtained. 

4. Experimental Results 

The following sections describe the experimental results 
obtained from simulation and by using NIST 4 [12] finger­
print dataset. The unknown parameter p in eq. (1) is es­
timated using half the available data. The model is tested 
using the remaining data. 

4.1. Simulation 

4.1.1 Technical details of simulation 

The simulation was carried out on a gallery of variable num­
ber of objects, starting from 100 to 50,000. Each object was 
represented by 10 point features . The feature points were 
obtained from a uniformly distributed random variable in 
the interval [0, 100]. The probe objects were obtained by 
shifting the feature point locations of the gallery objects by 
adding a Gaussian noise of zero mean and different vari­
ances. This helps to evaluate the performance at different 
noise levels. The idea is not to identify all the noise levels 
that could be present in a biometric system because some 
of them are known and others are unknown but to represent 
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Figure 3: Simulation results on a gallery of size 5000. The model 

predicted that the top 201 match scores would contain the exact 

match 95% of the time. The actual success was 92%. 

them in terms of Gaussian noise variance. The similarity 
score between two objects were obtained by finding the sum 
of the Euclidean distance between the closest feature points 
of the two objects. 

4.1.2 Results on a gallery of size 5000 

Our aim is to predict the upper bound of k (The lower bound 
of k is always one) for Rk = 95% so that by searching k top 
matches we could find the actual match object in 95% of the 
cases. 5000 probe objects were generated by adding Gaus­
sian noise N(O, 10) to each of the 5000 gallery objects. Out 
of these, 2500 probe objects were used to build the model. 
The model predicted the value of k to be 201 ( rv 4% of the 
gallery size). The prediction was validated by testing us­
ing the remaining 2500 probe objects. It was found that 
the top 201 matches contained the actual match object in 
92% cases. This result is shown in Figure 3. It should be 
noted that the probe objects used for training and testing the 
model were derived from different gallery objects, giving 
more credibility to the results. 

4.1.3 Ten fold validation of results 

To understand how stable the above results are, we per­
formed a lO-fold cross-validation on the same gallery of 
size 5000, each time trying to predict k for Rk = 95%. The 
mean and variance of the predicted value of k for Rk = 95% 
and the actual value of Rk were calculated. The mean value 
of k was found to be equal to 194 with almost zero variance. 
The average success of finding the exact matching object on 
searching the top 194 objects was 91.11 % with a variance of 
0.58. The low variance for the value k and for the accuracy 
of prediction shows the stability of our prediction model. 
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Figure 4: Variance plot of the predicted value of k expressed as 

fraction of the gallery size. The variance changes from 10-35 to 

10-6 The gallery sizes are 100, 500, 1000, 2000, 5000, 10000, 

and 50,000. k value predicted for Rk = 95%. The validation of the 

prediction is shown in fig. 5. 

4.1.4 Results on different sizes of gallery 

In order to understand how our prediction model performs 
for different gallery sizes, the procedures mentioned in sec­
tions 4.1.2 and 4.1.3 were repeated for gallery sizes 100, 
500, 1000, 2000, 10000, and 50,000. The same number 
of trials were used for building the model and for validat­
ing it. The number of trials used for training and testing 
were 5000, 25000, 50000, 1000, 2500, 5000, and 25000 
respectively. The mean value of k predicted for each of 
the different gallery sizes is shown in Figure 4. The ver­
tical bar at each data point represents the variance obtained 
from the lO-fold cross validation which varied from 10 -35 

to 10 -6. It can be observed from the figure that we need 
to search approximately the top 4% of the gallery size sim­
ilarity scores to find the match irrespective of the gallery 
size. Note the very low value of variance of the predicted 
k values. The measured value of Rk with variance obtained 
in lO-fold cross validation experimentation is shown in Fig­
ure 5. 

4.2. Effect of noise on the prediction 

In order to study the effect of noise on our prediction 
model, we carried our prediction on a gallery of size 5000. 
We choose noise variance to be 1, 3, 5, 7, and, 10 and pre­
dicted the value of k for Rk = 95%. For each noise variance 
value, a lO-fold cross-validation was also carried out. The 
variance of predicted value of k with noise is shown in Fig­
ure 6. Even with large value of noise, the variance of the 
predicted value of k is extremely small and therefore the 
vertical bars representing the variance of the k values ap­
pear as points. As expected the mean value of k increases 
as noise increases. For low noise variance, k = 1, imply­
ing that the first score itself is the match score. For these 
values of k, 100% success is obtained. Thus, for low noise 
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The predicted bounds are shown in fig. 4. 
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Figure 6: Effect of noise on the predicted value of k, for Rk = 95%. 

The variance of k for different noise values in a 10 fold experimen­

tation was so small that the vertical bars appear like points. 

variance, our prediction over achieves the results. The ac­
tual value of Rk obtained under different noise variances is 
shown in Figure 7. Note the increasing bar size as the noise 
variance is increased. Even with a noise variance of 10, the 
achieved value of Rk is around 9l.5% while the prediction 
was made for 95% Rk. Thus we see that the performance of 
our model does not deteriorate significantly in presence of 
high noise. 

4.3. Results on NIST-4 Fingerprint Dataset 

The NIST-4 fingerprint database [12] consists of 2000 
pairs of fingerprints. Using a fingerprint matching algo­
rithm [1], 4 million similarity scores were generated result­
ing in 2000 sets of trial data (one probe object would pro­
duce one trial data containing 2000 similarity scores). This 
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Figure 7: Effect of noise in the achieved value of Rk. k was pre­

dicted for Rk = 95%. The variance of k was in the range 0 to 
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dataset was equally divided into two halves randomly and 
one half was used for building the model and the other half 
was used for testing the model. Our system predicted that 
we need to examine the top 215 match scores for getting the 
true match object 95% of the time. We found that we actu­
ally get 93.8% success by examining the top 215 scores. 
By conducting a 10-fold cross-validation experiment, we 
found that our model predicted the mean value of k to be 194 
(9.7% of gallery) with almost zero variance for Rk = 95%. 
By searching the top 194 match scores, the actual match 
object was found in 92.44% trials with variance 0.16. 

In order to evaluate the performance of our predic­
tion model on different gallery sizes of real data, we built 
smaller galleries of size 100, 200, 500, and 1000 from the 
original NIST-4 2000 gallery set and in each case carry­
ing out 1000 trials. lO-fold cross-validation experimenta­
tion was done for each of these sizes. The predicted k value 
for Rk = 95% with its variance is shown in Figure 8. The Rk 
values achieved for various gallery sizes is shown in fig. 9. 

4.4. Indirect validation of our model 

As mentioned earlier in section 2.1, Bhanu et ai. [I] and 
Cappelli et ai. [3] have reported results on indexing perfor­
mance on the NIST-4 dataset. Bhanu et ai. report 83% suc­
cess on examining the top 10% of the gallery while Cappelli 
et al. report 96% success. The success achieved using our 
prediction model is 92.44%. While Cappelli et ai. report a 
higher success, they have also indicated that a 50-pixel bor­
der has been removed from the images before extracting the 
minutiae. It is also not clear whether the entire dataset was 
used for their experiment. We have reported results on the 
entire database without doing any preprocessing and our re­
sults are in the same ballpark. Besides, note that ours is a 
generic approach which is independent of a specific biomet­
ric and requires only the similarity scores produced by any 
matching algorithm whereas the algorithms used by others 
are specifically meant for fingerprint indexing. Thus the re-
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suits reported by Bhanu et al. [1] and Cappelli et al. [3] 
provide an indirect validation of our model. 

5. Conclusions 

We developed a model for predicting the value of k for a 
given rank-k identification rate. Our method is independent 
of specific biometrics used and can adapt to any matching 
algorithm. It just requires the match scores produced by dif­
ferent probe objects. The model was tested using simulation 
and found that even when the noise is increased, the model 
performs gracefully. The model was also tested on a public 
dataset available from NIST, of size 2000. We predicted the 
value of k for 95% rank-k identification rate. It was experi­
mentally found that the predicted k value provided success 
rv 95%. The slight difference between the prediction and 
actual performance is due to the deviation of the data from 
the pure geometric distribution, which is a first order model. 

By varying the gallery size from a small value to a very large 
value, we found that the fraction of the gallery that should 
be examined when a new probe object is presented remains 
a constant or decreases slightly. The value of k decreasing 
as the gallery size is increased is a very good indication. It 
implies that the fraction of the gallery that needs to be ex­
amined for locating a matching object would not increase 
proportionately if the gallery size is increased. However in 
simulation, we found that the k values remains more or less 
a constant. The performance of our model was also vali­
dated indirectly with the results reported in the literature. 

Applicable to any biometrics, and adaptable to any 
matching algorithm, our method provides a fundamental ap­
proach for predicting indexing performance. 
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