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Abstract

We are investigating hierarchical approaches for in-
dexing/matching of articulated targets in SAR im-
ages using pseudo-invariants, symmetry, persistence
and uniqueness of scatterers based on physical rea-
soning and topographical primal sketch features.
This paper presents our initial model-based ap-
proaches for target signature modeling, indexing and
matching. We describe a method that efficiently re-
trieves correct object hypotheses using the major
axis of a pattern of scattering centers in SAR images
and the Hausdorff distance measure. The features
that we use here are the locations of scattering cen-
ters. We show results on XPATCH generated data
for T-72, T-80 and FRED tanks, and SCUD missile
launcher in articulated positions with and without
occlusion.

1 Introduction

Our focus for automatic target recognition (ATR)
now is on synthetic aperture radar (SAR) sensors
in support of matching/indexing for the moving
and stationary target acquisition and recognition
(MSTAR) program. This and the accompanying
papers [14, 31} describe the progress in the areas
of automatic model construction from ISAR images,
image segmentation and recognition of articulated
targets in SAR images.

Our goal is to develop physically-based approaches
having multiple representations for indexing and
matching to recognize articulated targets in SAR
images. The key features of our approach to rec-
ognizing a large number of articulated targets are:
(2) use models for articulation, (b) use physics-based
modeling to relate features with target geometry, (c)
use polymorphic features based on their stability,
persistence and uniqueness, (d) combine many fea-
tures with templates for hypothesis and verification.

*This work is supported by grants MDA972-93-1-0010
and DAAHO049510448. The contents of the paper do not
necessarily reflect the position or the policy of the U.S.
Government.
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Figure 1: Part of the MSTAR architecture for

model-based target recognition in SAR images. The
arrow shown in bold is not a part of the architecture.

and (e) construct models for indexing and matching
automatically. We also allow interaction between
search and indexing modules unlike the prediction,
feature extraction, match and search (PEMS) com-
ponents of the MSTAR architecture (see Figure 1).
It enables us to consider hierarchical and incremen-
tal approaches that give SEARCH and MATCH
more control, rather than a take-it-or-leave-it ap-
proach [20].

Recognition of articulated objects in SAR images
is a challenging problem. A simple approach may
consider each of the articulated parts of an object
as separate objects. However, such an approach is
quite inefficient since it will require a large model
database. Moreover, it may not be effective in dis-
tinguishing targets from different classes. We want
to develop an efficient recognition approach that in-
herently models the articulated nature of an object
such as a SCUD missile launcher or a tank with dif-
ferent positions of turret and gun.

ATR from SAR imagery is an important aspect of




current vision research. Some of the representative
work in ATR from SAR images includes [13] [21]
and [28]. This work focuses on template matching
techniques in which the templates are manually de-
signed. However, few research works on target in-
dexing using SAR images have been published in
the literature. Indexing is one of the fundamental
issues in model-based recognition that is concerned
with how accurately and efficiently the process can
narrow down the number of candidate models to be
matched without actually searching through all the
models in a database. This research features ac-
curate and efficient target indexing in SAR images
given locations of scattering centers.

We have developed a computationally simple ap-
proach that efficiently retrieves correct model hy-
potheses when objects are represented by a pattern
of point features. In the indexing table, model en-
tries are indexed with the major axes of the patterns
of scattering centers. We first index the input pat-
tern of scattering centers using its major axis and
validate candidate hypotheses using the Hausdorff
distance measure.

Our matching approach based on topographic pri-
mal sketch (TPS) and other features is under devel-
opment where we use hierarchical decision trees to
select various features based on the amount of infor-
mation gain, confidence in the feature and the kind
of surface from which a feature may originate.

We have done extensive experimentation with
XPATCH to generate articulated models for T-72,
T-80, Mlal tanks and a SCUD launcher at vari-
ous azimuth and depression angles . We have done
interactive analysis in relating the persistent scat-
ters with the target geometry and we have developed
programs to generate the model automatically [31].
We have evaluated the performance of our initial
approach to indexing and matching with respect to
scaling, occlusion, articulation, and occlusion with
articulation. The results are very good when there
is no occlusion and begin to deteriorate in the pres-
ence of occlusion and articulation, especially with
articulation.

2 Target Signature Modeling and
Scene Generation

The XPATCH radar signature prediction code (2]
and the XPATCH_ES ground-mapping radar sensor
simulation code were used to simulate the radar sig-
nature of vehicle targets and ground scenes. The
XPATCH code predicts the radar signature of tar-
gets that are represented by computer aided design
(CAD) descriptions of geometry and materials con-
tained in facet files. CAD models of tanks (includ-
ing the T-72, T-80 and Mlal) and a SCUD Missile
Launcher were used. Target materials were assumed

(c) Mlal

(d) SCUD

Figure 2: T-72, T-80, Mlal and SCUD Launcher
targets.

to be perfectly electrically conducting, except for the
tires of the SCUD Launcher which were coded to rep-
resent radar transparent material. Articulated tar-
get models were constructed by editing the facet files
to rotate the tank turrets to various angles and to
erect the SCUD Missile on the launch stand. Target
signatures were generated at “six inch” resolution in
X-band (maximum frequency 10.5 GHZ, a 1.0 GHZ
frequency bandwidth and a 5.6° angular span) to
be comparable with the resolution of the University
Research Initiative (URI) Synthetic Dataset. Re-
sults were obtained for all target azimuths from 0°
to 359° in 1° steps at a 15° depression angle. In
addition, two foot resolution target chips, required
for the XPATCH_ES ground scene simulations, were
generated in X-band (maximum frequency of 10.12
GHZ. a 0.25 GHZ frequency bandwidth and a 1.4°
angular span).

Target geometries of some non-articulated target
models (T-72, T-80, M1al and SCUD Launcher) are
shown in Figure 2. Example signatures for the T-72
at 70°, 210°. 290° and 330° are shown in Figure 3,
where the azimuth angle is measured clockwise from
the vehicle forward longitudinal centerline to the in-
coming SAR direction (in from the left of the page
in the SAR image Figures). For the tanks, at “six
inch” resolution, the individual track wheels tend to
show up as a row of bright returns near the leading
edge. For the T-72 tank model, the strongest returns
are typically from trihedral corners on the rear up-
per deck of the tank hull. Example signatures for
the SCUD Launcher at 70° and 142° are shown in
Figure 4. The returns are typically from features on
the up-range side of the vehicle, because the missile
usually hides the view of much of the down-range
side.
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(c) 290° (d) 330°

Figure 3: T-72 (0° turret) signatures.

(a) 70°

Figure 4:
tures.

SCUD Launcher (missile down) signa-

Target geometries of some articulated target mod-
els, T-72 tank with a 60° turret {counterclockwise
angle from the hull forward centerline to the main
gun axis) and the SCUD Launcher with the missile
erected on the launch stand, are shown in Figure 5.
Example signatures of the T-72 (with 60° turret) at
azimuths of 70°, 210°, 290° and 300° are shown in
Figure 6. The front views, 0° azimuth, of the T-
72 in Figure 9 (with a 0° turret on the left, 60° on
the right) illustrate that rotation of the turret can
shadow regions of the hull (compare returns in the
lower right quadrants in Figure 9) and also introduce
variations in the return from areas corresponding to
the turret and main gun. Example signatures of the
SCUD Launcher at azimuths of 70° and 142° with
the missile erect on the launch stand are shown in
Figure 10. The missile itself can be seen near the
top of both views in Figure 10 and with the missile
up out of the way, many areas on the down-range
side of the vehicle are now visible.

Test simulations of SAR ground mapping imagery
were generated using the XPATCH_ES code with

1239

Figure 5: T-72 (60° turret) and SCUD Launcher
(missile erect) targets.

(c) 290°

(d) 330°

Figure 6: T-72 (60° turret) signatures.

two foot resolution T-72 tank target signature chips
produced by XPATCH. An example image, at 15°
depression angle. is shown in Figure 7 with seven
T-72 tank targets, grass, trees, a road and a wire
fence. The SAR direction is from the top of the
image, with the shadows extending downward. The
target locations in the scene can be seen in Figure 8
where the tanks are located within the circles. The
orientation of the 7 tanks are: top row — 0°, second
row down (hidden in the tree shadow — 30°, third
row — 180°, and the four tanks in the bottom row
are from left to right — 60°, 90°, 120°, and 150°.

3 Indexing

In indexing. the feature correspondence and search
of model database are replaced by a table look-up



Figure 7: Simulated SAR scene with T-72 tanks.

Figure 8: Target locations in simulated SAR scene.

mechanism. This indexing table is computed off-
line. A brief survey of some representative object
recognition systems that have employed geometric
indexing or hashing techniques is given in Table 1.
Performance of these systems cannot be compared
directly because they have been developed based on
different assumptions. They perform in different sce-
narios using different features to generate object hy-
potheses. More importantly, it is hard to compute
complex structured features from point-like features
that SAR returns although those approaches marked
with asterisk (*) in Table 1 are potentially applicable
to the problem of ATR from SAR images.

A block diagram of our preliminary object recogni-
tion system is given in Figure 11. The entire system
is divided into two parts: off-line simulation of SAR
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(a) 0° turret (b) 60° turret

Figure 9: T-72 (0° and 60° turret) signatures at 0°
azimuth.

(a) 70° (b) 142°

Figure 10: SCUD Launcher (missile erect) signa-
tures.

signatures of model objects and construction of in-
dexing table and on-line recognition. In the off-line
part, SAR images of target models represented by
CAD files are simulated with the XPATCH software
for a set of aspects (represented by depression and
azimuth angles). For each image, locations of scat-
tering centers are detected and its direction of ma-
jor axis is computed. In the indexing table, model
hypotheses represented by (model name, depression
angle, azimuth angle, location of scattering centers)
are linked to indexing keys that are directions of
their major axes. At recognition time, scattering
centers are extracted from the target chip. The ma-
jor axis of the pattern of scattering centers is com-
puted and models whose major axis is within =£¢°
(threshold) neighborhood of the input major axis
are quickly collected from the indexing table. At
this stage, we apply the Hausdorff distance measure
to match the scattering centers of the models and the
target chip so as to validate the candidate hypothe-
ses. We rank-order these hypotheses and they enter
the verification stage in the order they are listed.

3.1 Computing Major Axis

We employed the principal component analysis to
compute the major axis of a pattern of scattering
centers. The use of this technique is specialized to
two dimensions in this work, however, it can be used
with input data of any dimensionality.

Assume that the input data is expressed as a matrix
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Figure 11: System Overview

Table 1: State-of-the-art techniques for indexing.

system acquisition indexing key
/recognition
input data
Yiand Chel- | 3D/3D Local Surface Group
berg [30] range image
Califano 2D/2D seven dimensional global
and Mohan | 2D drawing | invariants
[9]

* Rigoutsos | 2D/2D coordinates of scene points com-
and Hum- | intensity puted in the coordinate system
mel [22] image formed by an ordered pair of
scene points

Beis and | 2D/3D three angles and ratio of the
Lowe (4] range image | interior edge lengths from four
straight-line segment chain

Stein and | 2D/2D super segments with several dif-
Medioni [24] | intensity ferent cardinalities for edges
image
Stein and | 3D/3D 3D super segments with several
Medioni [25] | range image | different cardinalities for edges
and splashes

Flynn and|3D/3D two invariant feature values com-
Jain [15] range image | puted from a triple of scene sur-
face patches that are simultane-
ously visible

* Lamina et | 2D/2D coordinates of scene points in
al. intensity the affine-transformed coordinate
image system formed by an ordered
triplet of three scene points

X with each row i containing the coordinates of one
of the scattering centers x; = (zi,9:):

1 %

In Yn

The following steps are performed using this input
matrix:

1. The sample mean is computed for z and y co-
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2 g1 o+l j+2

Figure 12: Local neighborhood (filled region) that is
used to detect scattering centers.

ordinates as g, = (1/n)Y7_,z; and g, =
(1/n) 37, vi, respectively. A centered data
matrix X* is constructed from X:
Ty —flz Y1 — Hy
X" =
Tn —flz Yn — Ly
2. The sample covariance matrix R = 1/ n[X*]*'X*
1s obtained and its eigensystem is computed,
yielding two eigenvalue and eigenvector pairs

{(v1, A1), (v2, A2)}, such that the two pairs are
sorted so that A\; > A,.

The two eigenvectors, v, and v, span the 2D imag-
ing plane and the eigenvector v; is the direction in
the plane along which the data’s sample variance is
the larger (A; is the sample variance along the di-
rection vi). vo is the direction orthogonal to v;
with the larger variance. The directionality of v; is
an excellent estimate of the orientation of scattering
pattern. To resolve the 180° ambiguity, we use the
direction that forms an acute angle with z axis as
the direction of major axis.

e

p————




(a) FRED tank

(b) T72 tank

Figure 13: Magnitude of SAR returns (left) and scattering centers marked with small dark squares (right) for
(a) FRED tank (b) T72 tank at azimuth angle 60° and elevation angle 15°. Only target region is taken from
256x256 target chip and zoomed in for clear visualization of scattering centers in the target. The original
sizes of images in (a) and (b) are 62x78 and 78x93, respectively.

3.2 The Hausdorff Distance Measure

Given two finite point sets A = {ai,---,a,} and
B = {by, - -,bg}, the Hausdorff distance is defined
as

H(A, B) = max(h(A, B), h(B, A))

where
h(A, B) = maxmin|ja — b||
a€A beB
and || -|| is some underlying norm on the points of A

and B. The function h(A, B) is called the directed
Hausdorff distance from A to B. It identifies the
point a € A that is farthest from any point of B
and measures distance from a to its nearest neigh-
bor in B (using the given norm ||-||), that is, h(A, B)
in effect ranks each point of A based on its distance
to the nearest point of B and then uses the largest
ranked such point as the distance (the most mis-
matched point of A). Point of A must be within dis-
tance d of some points of B, and also there is some
point of A that is exactly distance d from the nearest
point of B (the most mismatched point). The Haus-
dorff distance H(A, B) is the maximum of h(A, B)
and h(B,A). Thus, it measures the degree of mis-
match between two sets by measuring the distance
of the point of A that is farthest point of any point
of B and vice versa. The notion of resemblance en-
coded by this distance measure is that each member
of A be near some member of B and vice versa. Un-
like most methods of comparing shapes, there is no
explicit pairing of points of A with points of B (for
example, many points of A may be close to the same
point of B). The function H (A, B) can be trivially
computed in time O(pq) for two point sets of size
p and g, respectively, and this can be improved to
O((p + g)log(p+ q)) (1]-
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3.3 Experimental Results for Indexing

In the first part of experiment, the model database
includes two armored vehicle targets, FRED tank (a
generic tank data set supplied with XPATCH soft-
ware) and T72 tank. The radar signature predic-
tions (at six inch resolution for all azimuths from 0°
to 359° in 1° steps at 15° elevation) of these tanks
are generated using the XPATCH SAR simulation
code.

We employ the following method to detect scatter-
ing centers. Other, more complicated, methods can
be used, as long as they produce locations of scat-
tering centers. We consider current pixel location a
candidate scattering center if the magnitude of SAR
return at the current pixel is a local maximum in
the local neighborhood shown in Figure 12. Current
pixel location is considered a local maximum if the
following four conditions are met.

z2(1,7—2) < z(i,7-1) < z(1,7) > z(i,5+1) > z(3,7+2)
and

z(i—-2,j) < Z(Z—l,]) < Z(l,]) > Z(Z+1,]) > Z(1+21J)
and
zZ(i-1,7-1) <z(i,5) > z(i+1,5+1)
and
2(i—-1,7+1) <z(3,5) > z2(i+ 1,5 - 1),

where z(i,j) represents the magnitude of the im-
age at the current pixel location, (7,j). The same
method is used for detection of scattering centers
at both off-line and on-line processes. Examples of
scattering centers detected using this method and
major axes computed from these scattering centers
are shown in Figure 13 for FRED tank and T72
tank at azimuth angle 60°. Top twenty scattering
centers in terms of magnitude are selected in this
experiment. If the number of scattering centers is
less than twenty, all available scattering centers are
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Figure 14: Indexing performance of the algorithm as
the amount of positional noise varies.

used. After all scattering centers are identified, in-
dexing table is built where a model entry, (model
name, depression angle, azimuth angle, locations of
scattering centers), is linked to a leaf node of binary
tree that spans a small range (¢) of directions con-
taining the major axis direction of the entry. For ex-
periment, data for all azimuth angles from 0° to 359°
are used as test data. We generate noisy locations of
scattering centers, (z + Ny (0,02),y+ N2(0,02)), us-
ing two Gaussian random noise generators, N; and
N;. (z,y) is a noiseless location of a scattering cen-
ter and N(0,0?) denotes Gaussian noise of mean,
0, and standard deviation, o in units of pixels. We
have employed a rather strict requirement for a suc-
cessful indexing. We consider an indexing result cor-
rect only when the first model entry ordered by the
Hausdorff distance measure is the same as the in-
put. Figure 14 shows the indexing performance of
our method as the amount of positional noise added
to location of scattering centers varies. Even though
the amount of noise increases, the accuracy of index-
ing does not degrade significantly. As expected, the
result shows that we need to use larger value of ¢°
to retrieve model hypotheses when noise gets large.

3.3.1 Scaling, Occlusion and Articulation

Experiments

After experimenting with two objects FRED tank
and T72 tank, we added T80 tank and SCUD mis-
sile launcher into the model database. Thus, we
have a total of four model classes in the database.
Based on this model database, we performed four
experiments. Figure 15 shows the indexing perfor-
mance. Note that performance is quite good for scal-
ing and partial occlusion. However, as expected for
our global approach based on Hausdorff measure, it
deteriorates magnitude with articulation and occlu-
sion.

4 Matching

Table 3 shows the summary of techniques used for
recognition of articulated objects. Table 2 shows
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Table 2: A summary of techniques for recognition of
objects in SAR images

°C

‘ Researchers | Technique ] Object ]
Chang & Lu|MSF Car/Van/Pick-
(10] up
Cruthirds et | BCS & FCS Landscape
al. [12]

Novak et al. | Template Tanks
[21] Correlation
Sato et al. [23] | Deformable Planes
Template
Matching
Verly et al. | Functional Tem- | Tank/Truck/AK
[27] plate
Correlation
Waxman et al. | NN & Aspect | Tanks
[28] Graph
Wong & Pos- | Scale-Space Landscape
ner [29] Clustering

the summary of techniques used for recognition of
objects in SAR images.

4.1 Feature Extraction
4.1.1 Local Maxima

Observing local maxima of an intensity image is a
simple way of analyzing the characteristics of the im-
age. Building the model database with local maxima
will reduce the space for storage and time for com-
parison. Here we have employed a simple method
of detecting local maxima. The method is based on
comparing the pixel value with its immediate eight
neighbors. If the current pixel value is greater than
all the other immediate eight neighbors, then it is
a local maximum. We extracted the top forty local
maxima from the images of SCUD missile launcher
and T72 tank. In the captions of Figure 16(a)
through 17(d), SCUD means that the missile is down
on the launcher and SCUP means that the missile is
up. In the captions of Figure 18(a) through 19(d),
T7200 means that the turret of T72 tank is straight
forward and T7260 means that the turret of T72
tank is rotated 60° with respect to the body. In
all captions of Figure 16(a) through 19(d), the three
digit numbers represent the aspect angles of the ob-
jects.

4.1.2 SCUD missile launcher

SCUD missile launcher has two poses of articulation,
the one with the missile down and the other with
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Figure 15: Indexing performance of the algorithm for four targets, Fredtank, T72 tank, T80 tank, and SCUD
missile launcher with missile in the down position. (a) Scaling experiment. (b) 10% occlusion for all four

targets. (c) Same as (a) but the turret of tank T72 is articulated by 60° for each aspect. (d) Same as (c)
but with 10% occlusion for T72 target for all 360 aspects.

the missile up. Figure 16(a), 17(a) and 17(b) are
the XPATCH SAR images of SCUD missile launcher
with the missile down at aspect angles 0°, 60°, and
120°, respectively. Figure 16(b), 17(c) and 17(d)
are the SAR images of SCUD missile launcher with
the missile up at aspect angles 0°, 60°, and 120°,
respectively. All Figures have small black dots at
the position of local maxima.

4.1.3 T72 Tank

For the T72 tank, two poses of articulation were
used, one with the turret aligned with the body and
the other with the turret rotated 60° with respect
to the body. Figure 18(a), 19(a) and 19(b) are the
XPATCH SAR images of T72 tank with the tur-
ret straight at aspect angles 0°, 60°, and 120°, re-
spectively. Figure 18(a), 19(a) and 19(b) are the
XPATCH SAR images of T72 tank with the turret
rotated 60° at aspect angles 0°, 60°, and 120°, re-
spectively. All Figures have small black dots at the
position of local maxima.

4.1.4 Discussion

For Figures 16(a) through 19(d), the radar is di-
rected from the left direction. From each image, we
extracted the top forty local maxima.

(b) SCUP-000

Figure 16: SCUD missile launcher

Figure 16(a) and Figure 16(b) show that many of
the local maxima don’t change whether the missile is
up or down. Figure 16(a) shows more local maxima
around the missile stand which is located at the back
side of the launcher. When the missile is up, the
missile stand does not give strong return. But the
image is longer compared to the one when the missile
is down because there is a longer path for multiple
bounce between the launcher body and missile body.

Figure 17(a) and Figure 17(c) show another charac-
teristic. Most of the local maxima form a narrow
L shape in the missile down image (Figure 17(a)),
while they form a wider, well spread out local max-
ima in the missile up image (Figure 17(c)).
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Table 3: Summary of techniques used for recognition of articulated objects

Beinglass & Wolfson (3]

the index of R-table. Pick
the rotary joint position as
the reference center. Check
the high scoring candidates
if there are only two high
scoring.

can be recognized by accumu-
lating scores from each com-
ponent connected by joint.
Components not linked by a
joint does not contribute to
recognize the object.

Techniques Principles of the Technique Results Applicability
Authors to SAR
images
Recognition by Compo- | Recognize each component | Objects are recognized | Extraction of
nents as an arrangement of geons. | quickly if an arrangement of | geons from
Biederman [7] Recognize whole object by re- | two or three geons can be re- | SAR images
lationship among components | covered from the image may not be
possible
Generalized Hough | Use transformation invariant | Object considerably occluded | Detection of
Transform shape signature to calculate

the joint and
interesting
feature must
be reliable in
SAR image

Worrall et al.

Context-Based Vision

(26)

Extract the contours of ob-
jects.  Obtain the best lo-
cal pose starting from a seed
pose by searching for a lo-

A direct approach towards
pose refinement is demon-
strated. Deformable model
improves the performance of

Extraction of
the con-
tours may be
possible from

the components. Obtain the
measurement of a constrained
object. Using the Kalman fil-
ter, estimate the pose by fu-
sion of the actual measure-
ments and the uncertainties.

types of constraints including
inequalities.

cal optimum of the evaluation | pose refinement by allowing | SAR image
function. the use of additional contex-
tual knowledge.
Framework for Recogni- | Define models using a set of | The functional dependency |In SAR im-
tion and Localization constraints that describe the | includes only the local pa- | ages, the cor-
Hel-Or & Werman [18] | natural relationship between | rameters. Can deal with all | respon-

dence of fea-
ture parts to
various parts
is nontrivial.

In some aspect angles, 120° for example, the missile
up position is clearly recognized. In general. missile
up images are wider than missile down images.

Similar analysis can be done for the T72 tank im-
ages. Strong returns are along the body of the tank
which can be used for hypothesizing aspect angle.
In Figure 18(a) and Figure 18(b), there are consis-
tent returns on the front of the tank and the back
right side. If we separate the images into two parts,
one for body and one for turret, then we can see the
similarity between the bodies with the same angle
(Figure 19(a) and Figure 19(c), Figure 19(b) and
Figure 19(d)). Also, we can see the similarity be-
tween the turrets with the same angle (Figure 19(a)
and Figure 18(b), Figure 19(b) and Figure 19(c)).

4.2 Experiments and Results for Matching

Figures 21 through 22 show the results of experi-
ments for the recognition of articulated objects in
SAR images with occlusion. There are three steps
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in the experiment: indexing, 2D Hausdorff distance
measurement and 1D Hausdorff distance measure-
ment. We used two kind of models, FRED tank and
T72 tank. T72 tank has the turret rotated 0°, 60°
and 90°.

In the indexing stage, we estimate the orientation of
the target and use the result as the indexing value to
narrow down the search space of the matching hy-
pothesis. We set the angle tolerance from 5° to 20°
with 5° steps. In Figures 21 and 23, the index lines
show the successful indexing results. We consider
the indexing is successful if the matching hypothesis
is in the result of indexing.

In the 2D Hausdorff distance measurement, we used
directed Hausdorff distance measurement h(A, B)
where 4 is the point feature of a testing image and
B is the point feature of a database. The reason
that we used the directed Hausdorff distance mea-
surement (h(A. B)) instead of the Hausdorff distance
measurement (H(A, B)) is to make the algorithm




(c) SCUP-060 (d) SCUP-120

Figure 17: SCUD missile launcher

(a) T7200-000 (b) T7260-000

Figure 18: T72 tank

work for occluded images. We assume occlusion of
the target occured and part of the target return is
not observed in the input image. In the Figures 21
and 23 the first lines show the successful matching
after the 2D directed Hausdorff distance measure-
ment.

In the 1D Hausdorff distance measurement, we used
the magnitudes of the SAR returns in dB. We calcu-
lated the dB differences from the highest peak value
to every other peak and enumerated the differences
in increasing order. Then we used them as the input
of the directed 1D Hausdorfl measurement. In Fig-
ures 21 and 23 the final lines show the final matching
results using 1D and 2D directed Hausdorff distance
measurement.

The Figure 20 shows the experimental result for the
data without occlusion, and the Figure 22 shows the
results for the data with occlusion. We generated
the occlusion data by removing 15% of points from
the input image. In 5° angle variation, the index-
ing results with occlusion are less than 50% correct .
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(b) T7200-120

(d) T7260-120

(c) T7260-060

Figure 19: T72 tank
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Figure 20: Matching results without Occlusion

As the angle variation increases, the indexing results
are increased up to 90% which is still less than non-
occluded cases. In both occluded and non-occluded
cases the matching improves by using the 1D Haus-
dorff distance measurement.

5 Other Features

5.1 Topographic Primal Sketch (TPS)

According to differential geometry, local surface
shape is uniquely determined by the first and sec-
ond fundamental forms [6]. Gaussian and mean cur-
vature combine these first and second fundamental
forms in two different ways to obtain scalar surface
features that are invariant to rotation, translation,
and changes in parameterization [5]. Also, mean
curvature uniquely determines the shape of graph




Matching vs. Noise (o) for € = 5°

rate 60

-~
[==]
7T 17T T7TTT

rate 60

()]
o
T 1T 1T TTT

o

05 1 15 2 25
noise (o)

(c)

Matching vs. noise (o) for ¢ = 10°

rate
0 05 1 15 2 25
noise (o)
(b)
Matching vs. noise (o) for ¢ = 20°
100 11—
90 -
70 [
rate 60 -
50 -
40 - -1
30 ! | | !
0 05 1 15 2 25
noise (o)

(4

Figure 21: Matching vs. noise without Occlusion
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Figure 22: Matching results with Occlusion

surfaces if a boundary curve is also specified [16]
while Gaussian curvature uniquely determines the
shape of convex surfaces and convex regions of non-
convex surfaces [11], [19]. There are eight fundamen-
tal viewpoint independent surface types that can be
characterized using only the sign of the mean cur-

vature (H) and Gaussian curvature (K) as shown in
Table 4 [6].

A program that classifies each image pixel into eight
categories (peak, pit, ridge, valley, flat, saddle, sad-
dle ridge, saddle valley) has been developed. This
program uses two curvatures, Gaussian curvature
and mean curvature. Based on the sign of the two
curvatures on a given pixel of image, that pixel will
be classified into one of the eight categories.

The algorithm that creates a surface type label im-
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'I"able 4: Surface type labels from surface curvature
sign.

K>o0 K=0 K<o
H<O Peak Ridge Saddle Ridge
H= (none) Flat Minimal Surface
H>0 Pit Valley Saddle Valley

age T(¢, j) from the original image g(%, j) in the fol-
lowing manner:

o Compute partial derivative images gu(3, ),
8u(i,7), Buul(?,J), 8uu(4, ), 8uv(i, j) from the
original image g(¢, j) using local fixed-window
surface fits that are accomplished via convolu-
tion operators.

e Using the partial derivative images, compute
the mean curvature image H(gy, gy, Suu, Suvv,
8uv) and the Gaussian curvature image K(gu,
8v, Buu)y Buv, guv)~

o Compute the sign (+, —,0) of mean curvature,
denoted by sgn (H), and the sign of Gaussian
curvature, denoted by sgn (K). The signum
function sgn (z) maps negative numbers to —1,
positive numbers to +1, and zero maps to 0.

o Use surface curvature sign to determine a sur-
face type label T(i, j) for each pixel (i, 7).

The equations of Gaussian curvature (K) and mean
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Figure 23: Matching vs.

curvature (H) are given below.
X(3,5) = (1 +g3(1,3))guu (i, )
Y(5,5) = (1+82(5,7)8ww (i, 4)
Z(i, j) = guli, 5)8u(i,J)

H(i, j) = X 1'2+Y.(i.,z')—2z.(i.,g‘g
1+83(1.5)+830.5))

s Buu(E)Eee(1,0)+EE (0

K@i ) = S gt ot gion)?

Figure 24 (a) through (h) show the eight topographic
primal sketch features [17]for the T72 tank at az-
imuth angle 60°.

5.2 Persistence of Scattering Centers and
Symmetry

For the T-72 tank model, the strongest returns that
are often persistent for 20° of azimuth (or more) are
typically from trihedral corners on the rear upper
deck of the tank hull (labeled 1 through 4 in Figure
5. The persistence of these corners for turret angles
of 0° and 60° can be seen from Table 5 where the
angular span is the range of azimuths for which the
return from that location is the peak signature from
the target.

The SCUD Launcher model is basically a mirror im-
age about the longitudinal centerline and the returns
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Matching vs. noise (o) for ¢ = 10°
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Table 5: Angular span of T-72 persistent scattering
centers.

corner | turret 0 turret 60
1 62 - 83 61 - 82

2 187 - 224 | 190 - 256
3 278 - 298 | 279 - 297
4 299 - 357 | 298 - 355

for various azimuths are largely symmetric about
180°. Four areas of persistent scattering centers are
labeled 1 through 4 in the SCUD Launcher view of
Figure 5 (their mirror image locations are also scat-
tering centers). The fourth scattering center, located
on the down-range side of the vehicle is only active
when the missile is moved up out of the way. The
persistence of these scattering centers, in terms of
azimuth angle span, for the SCUD Launcher with
the missile in both the down and the up positions is
given in Table 6. The centers labeled M4 through
M1 are the mirror image locations of 1 through 4.
The centers labeled 4a and 4b are the same phys-
ical location which is the strongest return for two
angular spans.

In our learning-from-examples approach [31] for au-
tomatic struction of recognition models from ISAR
data, we have also used the persistence of scatter-
ers. A novel feature of the approach is that it uses
the persistence of scattering centers computed dur-
ing training phase to extract good scattering centers



(f) Saddle Ridge

(e) Minimal

(h) Peak

Figure 24: Topographic Primal Sketch features for T72 tank with aspect 60°

Table 6: Angular span of SCUD Launcher persistent
scattering centers.

center | missile down | muissile up
1 16 - 51 12 - 48

2 59 - 83 59 - 82

4a (none) 114 - 141
3 126 - 155 142 - 155
4b (none) 156 - 165
M4b (none) 195 - 204
M3 205 - 234 205 - 215
M4a (none) 219 - 248
M2 277 - 301 278 - 301
M1 309 - 345 307 - 345

during testing phase.

6 Conclusions

In this paper, we have presented our initial re-
searches for indexing and matching. Our goal is to
develop physically-based approaches having multiple
representations for indexing and matching to recog-
nize articulated targets in SAR images. We will de-
velop hierarchical matching algorithms that detect
the aspect of the object and recognize the model
and articulation. We will study the characteristics
of TPS on SAR images. We will evaluate the com-
plete system with respect to scaling. occlusion, artic-
ulation, and occlusion with articulation. we are also
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developing an approach for indexing that is based
on hidden Markov models [8]. Currently the exper-
iments with SAR imagery are in progress with this
approach.
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