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ABSTRACT

The problem of understanding scene dynamics is to find
consistent and plausible 3-D interpretations for any change
observed in the 2-D image sequence. Due to the motion of
the Autonomous Land Vehicle (ALV), stationary objects in
the scene generally do not appear stationary in the image,
whereas moving objects are not necessarily seen in motion.
The three main tasks of our novel approach for target motion
detection and tracking are: (a) to estimate the vehicle’s
motion, (b) to derive the 3-D structure of the stationary
environment, and (c) to detect and classify the motion of
individual targets in the scene. These three tasks strongly
depend on each other. The direction of heading (i.e. transla-
tion) and rotation of the vehicle are estimated with respect to
stationary locations in the scene. The focus of expansion
(FOE) is not determined as a particular image location, but as
a region of possible FOE-locations called the Fuzzy FOE.
We present a qualitative strategy of reasoning and modeling
for the perception of 3D space from motion information.
Instead of refining a single quantitative description of the
observed environment over time, multiple qualitative
interpretations are maintained simuitaneously. This offers
superior robustness and flexibility over traditional numerical
techniques which are often 1ill-conditioned and noise-
sensitive. A rule-based implementation of this approach is
discussed and results on real ALV imagery are presented. -

1. INTRODUCTION

Visual information is an indispensable clue for the suc-
cessful operation of an Autonomous Land Vehicle (ALYV).
Even with the use of sophisticated inertial navigation sys-
tems, the accumulation of position errors requires periodic
corrections. Operation in unknown environments or mission
tasks involving search, rescue, or manipulation critically
depend upon visual feedback.

Assessment of scene dynamics becomes vital when
moving objects may be encountered, e.g., when the ALV fol-
lows a convoy, approaches other vehicles, or h?.s to detect
moving threats. For the given case of a moving camera,
image motion can also supply important information about
the spatial layout of the environment (“motion stereo") and

the actual movements of the ALV. This is a valuable input.

for navigation and vehicle control, i.e., steering, accelerating,
and braking.

Previous work in motion analysis has mainly concen-
trated on numerical approaches for the recovery of 3D
motion and scene structure from 2D image sequences.
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Recently, Nagelll gave an excellent review. The most com-
mon approach is to estimate 3D structure and motion in one
computational step_ by solving a system of linear or non-
linear equations.” 17 This technique is characterized by
several severe limitations.

First, it is known for its notorious noise-sensitivity. To
overcome this problem, some researchers_have extended this
technique to cover multiple frames.>’ Secondly, it is
designed to analyze the relative motion and 3D structure of a
single rigid object. To estimate the ALV’s egomotion and
the scene structure, the environment would have to be treated
as a large rigid object. However, rigidness of the environ-
ment cannot be guaranteed due to the possible presence of
moving objects in the scene. But what is the consequence of
accidentally inciuding a moving 3D point into the system of
equations? In the best case, the solution (in terms of motion
and structure) would exhibit a large residual error, indicating
some non-rigid behavior. The point in motion, however, can-
not be immediately identified from this solution alone.' In the
worst case (for some forms of motion), the system may con-
verge towards a rigid solution (with small error) in spite of
the actual movement in the point set. This again shows
another (third) limitaton: there is no suitable means of
expressing the ambiguity and uncertainty inherent to dynamic
scene analysis.

The approach that we propose is novel in two important
aspects. First, scene structure is not treated as a mere by-
product of the motion computation but as a valuable means
to overcome some of the ambiguities of dynamic scene
analysis. The key idea is to use the description of the
scene’s 3D structure as a link between motion analysis and
other processes that deal with spatial perception, such as
shape-from-occlusion, stereo, spatial reasoning, etc. A 3D
interpretation of a moving scene can only be correct if it is
acceptable by all the processes involved.

Secondly, numerical techniques have been largely
replaced by a qualitative strategy of reasoning and modeling.
The use of qualitative technicheg in computer vision has been
of growing interest recently.1919 Basically, instead of having
a system of equations approach a single rigid (but possibly
incorrect) numerical solution, we maintain multiple qualita-
tive interpretations of the scene. All the existing interpreta-
tions are kept consistent with the observations made in the
past. The main advantage of this approach is that a new
interpretation can be supplied immediately when the currently
favored interpretation turns out to be unplausible.

These interpretations are built in three separate steps
(see Figure 1). First, significant features (points, boundaries,
corners, etc.) are extracted from the image and the 2D dis-




resulting from vehicle rotation. For this purpose, we discuss
the changes upon the image that are caused by individual
application of the “"pure” motion components.

2.1 Viewing Geometry

It is well-known ‘that any rigid motion of an object in
space between two points in time can be decomposed into a
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Figure 1. Main steps of the Qualitative Motion Detection and
Tracking approach.

placement vectors are computed for this set of features. For
the examples shown here, points were selected and tracked
between individual frames. Automatic techniques suitable for
this task can be found elsewhere. 10 In the second step, the
vehicle's direction of translation, i.e. the Focus of Expansion
(FOE), and the amount of rotation in space are determined.
The effects of vehicle motion on the FOE computation is
described in section 2. Almost all the necessary numerical
computation is performed in the FOE computation stage,
which is described in section 3. The third step (2D Change
Analysis) constructs an internal 3D model of the scene. Sec-
tion 4 outlines the concepts and operation of this Qualitative
Scene Model. Experiments with our approach on real
imagery taken from the moving ALV are discussed in section
5. Finally, section 6 presents the conclusions of the qualita-
tive motion detection and tracking system.

2. EFFECTS OF VEHICLE MOTION

The first step of our approach is to estimate the
vehicle’s motion relative to the stationary environment using
visual information. Arbitrary movement of an object in 3D
space and thus the movement of the vehicle itself can be
described as a combination of translation and rotation. While
knowledge about the composite vehicle motion is essential
for control purposes, only translation can supply information
about the spatial layout of the 3D scene (motion stereo).
This, however, requires the removal of all image effects
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combination” of translation and totation. While many
researchers!3'!> have used a velocity-based formulation of
the problem, the following treatment views motion in discrete
time steps. :

_ Given the world coordinate s¥stem X Y Z) shown in
Figure 2, a t%'a.nslanon T = (U V W)' applied to a point in 3D
X =@XY2Z) isaccomplished through vector addition:

ol .

A 3D rotation R about an arbitrary axis through the origin of
the coordinate system can be described by successive rota-
tions about its three axes:

R=Ry Rg Ry )
where i
1 0 0
Ry = {0 cos ¢ -sin ¢} rotation about the X—axis, (3a)

0 sin ¢ cos ¢ |

[ cos® 0 sind |
Rg=| 0 1 0

| —sin® 0 cosej
_ -cos\v —siny 0
Ry = | siny cosy 0
0 0 1

rotation about the Y-axis, (3b)

rotation about the Z-axis. (3c)

A general rigid motion in space consisting of translation
and rotation is described by the transformation

M:X - X'=Ry R Ry (T+X) )]
Its six degrees of freedom are U, V, W, ¢, 6 and v .

This decomposition is not unique because the translation
could be as well applied after the rotation. Also, since the
multiplication of the rotation matrices is not commutative, a
different order of rotations would result in different amounts
of rotation for each axis. For a fixed order of application,
however, this motion decomposition is unique.

To model the movements of the vehicle, the camera is
considered as being stationary and the environment as being
moving as one single rigid object relative to the camera. The
origin of the coordinate system is located in the lens center
of the camera.

2.2 Image Effects of 3D Camera Motion

The given task is to reconstruct the vehicle’s egomotion
from visual information. It is therefore necessary to know
the effects of different kinds of vehicle motion upon the cam-
era image.

Under _ perspective imaging, a point in space

X = (X ¥ Z)7 is projected onto a location on the image plane
x = (x )T such that
=X =f¥X
x=f< y=f7, ©)

where f is the focal length of the camera (see Figure 2).
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under camera rotation RyRg (i.e., a particular sequence of
pan and tilt) is given by .

RyRy X): X = X’
Tgfp (X) : X =(xy) = x'=(Y)

Y= X cosB + f sin®

(%a)

Figure 2: Camera Model showing the coordinate system, lens
center, image plane and angles of rotation. The origin of the
coordinate system is located at the lens center. The focal
length f is the distance between the lens center and the image
plane.

2.2.1 Effects of Pure Camera Rotation

When the camera is rotated around its lens center, the
acquired image changes but no new views of the environment
are obtained.- Camera rotation merely maps the image into
itself.

The most intuitive effect results from pure rotation
about the Z-axis of the camera-centered coordinate system,
which is also the optical axis. Any point in the image moves
along a circle centered at the image location x = (0 0).

In practice, however, the amount of rotation of the.veh_i-
cle about the Z-axis is small. Therefore, vehicle rotation is

confined to the X- and Y-axis, where significant amounts of
Totation occur.

The vehicle undergoing rotation about the X-axis by an
angle —~¢ and the Y-axis by an angle —8 moves each 3D point
X to point X’ relative to the camera.

X > X' =RyRgX ©)
cos@ 0 sin@ X
= | sin sin@ cos¢ =-sing cosd| - |Y].
~cos¢ sin@ sing cosd cosd
Consequently x, the image point of X, moves to x” given by

X =f X cosf + Z sinf (Ta)
—X cos¢ sin + Y sing + Z cos¢ cosO
r=f X sind sin® + Y cosd — Z sind cosO
Y =X cos¢ sin@ + Y sing + Z cos cosO

(7b)

Inverting the perspective transformation for the original

image point x yields .

and Y=Lz y. ®
f

The 2D rotation mapping ryre which moves each image

point x = (x y) into the corresponding image point x’ = (¥'y")

1
X=—2Zx
f
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x sing sinB + y cosd — f sind cosd
—x cosd sinf + y sind + f cos¢ cos®

It is important to notice that this transformation contains no
3D variables and is therefore a mapping of the image onto
itself. This demonstrates that no additional information about
the 3D structure of the scene can be obtained under pure
camera rotation.

An interesting property of this mapping should be men-
tioned at this point, which might not be obvious. Moving an
image point on a diagonal passing through the center of the
image at 45° by only rotating the camera does not result in
equal amounts of rotation about the X- and the Y-axis. This
is again a consequence of the successive application of the
two rotations Ry and Ry, since the first rotation about the Y-
axis also changes the orientation of the camera’s X-axis in
3D space. It also explains why the pair of equations in (7) is
not symmetric with respect to 8 and ¢.

y=r

(9b)

222 Measuring the Amount of Camera Rotation

The problem to be solved is the following: Given are
two image locations Xy and x,, which are the observations of
the same 3D point at time f, and time f;. What is the
amount of rotation Ry and Rg which applied to the camera
between time ¢y and time 1, would move image point xg onto
X, assuming that no camera translation occurred at the same
time?

If R, and Ry are applied to the camera separately, the
points in the image move along hyperbolic paths.!2 If pure
horizontal rotation were applied to the camera, a given image
point x; would move on a path described by

(10)

Similarly pure vertical camera rotation would move an image
point x, along

£2+y?
ry (x)): 2 =x} . 11
¢ f2 +}'% ( )
Since the 3D rotation of the camera is modeled as being
performed in two separate steps ( Rg followed by R, ), the
rotation mapping ryrg can also be separated into ry followed
by ry. In the first step, applying pure (horizontal) rotation
around the Y-axis ry, point Xy is moved to an intermediate
image location x.. The second step, applying pure (vertical)
rotation around the X-axis ry, takes point x. to the final
image location x; . This can be expressed as

Fgg = Fy Tg where (12)
ro: Xg=(Xp Yo) — X=X ¥o)
gt X=X Yo} = x1=(x1 1) .

As shown in Figure 3, the image point x, = (x, y,) is the
intersection point of the hyperbola passing through x, result-

Jj =x-cosd-sind + y sind +f cosdp-cos® " .




ing from horizontal camera rotation (10) with the hyperbola
passing through x; resulting from vertical camera rotation
1. _t{lntersecting the two hyperbolae gives the image point
X, Wi

N

Figure 3: Successive Application of Horizontal and Vertical
Rotation. The image point X, is to be moved to location x;
by pure horizontal and vertical camera rotation. Horizontal
rotation (about the Y-axis) is applied first, moving X, to X,
which is the intersection point of the two hyperbolic paths for
horizontal and vertical rotation. In a second step x, is taken
to x;. Then the two rotation angles 6 and ¢ are found
directly.

Figure 4: Location of the focus of expansipn (FOE). With
pure vehicle translation, points in the environment (A, B)
move along 3D vectors parallel to the vector pointing from
the lens center to the FOE in the camera plane. These Vectors
form parallel lines in space which have a common vanishing
point (the FOE) in the perspective image.

' i
x.=fx ( f2+x%+y% (13a)
TR (P - AR
r 1%
i+ +y
= 13b

The amount of camera rotation necessary to map
onto X, by applying Rq followed by Ry is finally obtained as

0 =tan! & —gant X2 14)
f f

= tan-1 26 _ o1 I 15

¢ = tan 7 tan rak 15)

2.2.3 Effects of Pure Camera Translation

When the vehicle undergoes pure translation between
time ¢ and time 7/, every point on the vehicle is moved by the
same 3D vector T = (U V W)!. Again, the same effect is
achieved by keeping the camera fixed and moving every
point X; in the environment to X;’ by applying —T .

Since every stationary point in the environment under-
goes the same translation relative to the camera, the
imaginary lines between corresponding points X;X;” are paral-
lel in 3D space. o

It is a fundamental result from perspective geomel'ry4
that the images of parallel lines pass through a single point in
the image plane called a vanishing point. When the camera
moves along a straight line, every (stationary) image point
seems to expand from this vanishing point or contract
towards it when the camera moves backwards. This particu-
lar image location is therefore commonly referred to as the
Focus of Expansion (FOE) or the Focus of Contraction
(FOC). Each displacement vectors passes through the FOE
creating the typical radial expansion pattern shown in Figure
4.

As can be seen in Figure 4, the straight line passing
through the lens center of the camera and the FOE is also
parallel g% the 3D displacement vectors. Therefore, the 3D
vector OF points in the direction of camera translation in
space. Knowing the internal geometry of the camera (i.e.,
the focal length), the direction of vehicle translation can be
determined by locating the FOE in the image. The actual
translatigg vector T applied to the camera is a muitiple of the
vector OF which supplies only the direction of camera trans-
lation but not its magnitude. Therefore,

T=AOF=A[x y fIT ,AeR. ae)

Since most previous work incorporated a velocity-based
model of 3D motion, the Focus of Expansion has commonly
been interpreted as the direction of instantaneous heading,
i.e., the direction of vehicle translation during an infinitely
short period in time. When images are given as "snapshots”
taken at discrete instances of time, the movements of the
vehicle must be modeled accordingly as discrete movements
from one position in space to the next.

Therefore, the FOE cannot be interpreted as the momen-

N i
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tary direction of translation at a certain point in time, but

rather as the direction of accumulated vehicle translation over
a period of time. .

Figure 5 shows the top view of a vehicle traveling along
a curved path at two instances in time 7y and #;. The position
of the vehicle in space is given by the position of a reference
point on the vehicle P and the orientation of the vehicle Q.

Figure 5: Concept of the FOE for discrete time steps. The
vehicle’s motion between two points in time can be decom-
posed into a translation followed by a rotation: the image
effects of pure translation (FOE,) are observed in image I;.
This scheme is used throughout this work.

z

Figure 6: Amount of expansion from the FOE for discrete
time steps. The camera moves by a vector T in 3D space,
which passes through the lens center and the FOE in the
camera plane. The 3D Z-axis is also the optical axis of the
camera.

decomposition: First the translation T is applied which shifts
the vehicle’s reference point (i.e., the lens center of the cam-
era) from position Py to position P; without changing the
vehicle’s orientation £23. The 3D translation vector intersects
the image plane at FOE,. In the second step the vehicle is
rotated by ® to the mew orientation . Translaton T
transforms image I, into image I,’, which again is
transformed into I, by rotation @. The important fact is that
FOE, is observed at the transition from image I, to image
I)’, which is obtained by derotating image I, by -w.
Throughout the rest of this work, this scheme (Figure 5) is
used as a model for vehicle motion.

2.2.4 Measuring the Amount of Camera Translation

Figure 6 shows the geometric relationships for the 2D
case. It can be considered as a top view of the camera, i.e.,
a projection onto the X/Z-plane of the camera-centered coor-
dinate system. The cross section of the image plane is
shown as a straight line. The camera is translating from left
to right in the direction given by T = (x; f) .

‘A stationary 3D point is observed at two instances of
time, which moves in space relative to the camera from X to
X', resulting in two images x and x'.

o I

Using the inverse perspective (8) transformation yields

z=-§x and 8)
3 -— =L '=£ f—
Z=Z-AZ J'{X x(X AX) .
From similar triangles (shaded in Figure 6)
| & _ Az "
% f (19)
and therefore
X ~x X—x
'Z—AZ?;—AZ[1+1,_I]. (20)

Thus, the rate of expansion of image points from the
FOE contains direct information about the distance of the
corresponding 3D points from the camera. Consequently, if
the vehicle is moving along a straight line and the FOE has
been located, the 3D structure of the scene can be determined
from the expansion pattern in the image. However, the dis-
tance Z of a 3D point from the camera can only be obtained
up to the scale factor AZ, which is the distance that the vehi-
cle advanced along the Z-axis during the elapsed time.

When the velocity of the vehicle (AZ /1) in space is
known, the absolute range of any ‘stationary point can be
computed. Alternatively, the velocity of the vehicle can be
obtained if the actual range of a point in the scene is known

" (e.g., from laser range data). In practice, of course, any such

technique requires that

Figure”S*aISO*displays*the*adopted' 'scheme of 3D motion
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Figure 7: Simulated displacement field caused by a combination of horizontal and vert-
ical rotation and vehicle translation. (a) The rectangle marks the area of search for the
FOE. (b) The derotated displacement with the FOE marked by a circle.

o the FOE can be located in a small area, and

e the observed image points exhibit significant expansion
away from the FOE,

As will be shown in the following section, imaging noise and
camera distortion pose serious problems in the attempt to
assure that both of the above criteria are met.

If a set of stationary 3D points {(X; X)) is observed,
then of course the translation in the Z-direction is the same
for every point.

Z,-Z! = Z;-Z/=AZ forallij. @1)

Therefore, the range of every point is proportional to the
observed amount of expansion of its image away from the
FOE

5% @)

Z‘.=o<
X; = X;

which renders the relative 3D structure of the set of points.

The effects of camera translation T can be formulated as
a mapping t of a set of image locations (x;} into another set
of image locations {x;’}). Unlike in the case of pure camera
rotation, this mapping not only depends upon the 3D transla-
tion vector but also upon the actual 3D location of each indi-
vidual point observed. Therefore, in general, t is not simply
a mapping of the image onto itself.

However, one important property of t can be described
exclusively in the image plane, namely that each point must
map onto a straight line passing through the original point
and one unique location in the image (the FOE). This means
that if the vehicle is undergoing pure translation, then there
must exist an image location X, such that the mapping t
satisfies the condition '

radial-mapping t (x; L I') :
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t=( 0, x)e D Ix =%+ W (x-x%), @3)
IJ.,‘ER,[J.,'ZO}. ' T

2.2.5 Combined Effects of Translation and Rotation

When the vehicle is not undergoing pure translation or
rotation but combined 3D motion of the form Ry Ry T, the
effects in the image are described by a transformation d (for
displacement) which is a combination of Ty Ty and t:

d:I->T=ryrgt(@D , 24)

where I=(x; ), I'={ x; } are the two sets of correspond-
ing image points.

Figure 7 shows a typical displacement field for a camera
undergoing horizontal and vertical rotation as well as transla-
tion. The points x; € I are marked with small circles.

. By decomposing a composite displacement field d into
its three components Ty Tos and t, the vehicle’s rotation and
direction of translation in space can be computed from the
information available in the image. This problem is
addressed in the following section.

3. DECOMPOSITION OF IMAGE MOTION

3.1 Problem Statement

As discussed in the previous section, the 3D motion M
of the vehicle is modeled by a translation T followed by a
rotation Ry about the Y-axis and a rotation R, about the X-
axis:

M=R,RyT . (25)




This results in a mappu-lg d from the original image Io at

time #, into the new image I, at time .
d:Lh>I =ryrgtly = ryrgly. (26)

The intermediate image Iy’ in (26) is the result of the
translation component of the vehicle’s motion and has the

property of being a radial mapping (23). Unlike the two

images Iy and I;, which are actually given, the image Iy is

generally not observed, except when the camera rotation is
zero. It serves as an intermediate result to be reached during
the separation of translational and rotational motion com-
ponents.

The question at this point is whether there exists more
than one combination of rotation mappings ry and re which
would satisfy this requirement, i.e., if the solution is unigue.
It has been pointed out in the previous section that the
decomposition of 3D motion into Ry Rg, Ry, and T is
unique for a fixed order of application. This does not imply,
however, that the effects of 3D motion upon the perspective
image are unique as well.

Tsai and Huang!7 have shown that seven points in two
perspective views suffice to obtain a unique interpretation in
terms of rigid body motion and structure, except for a few
cases where points are arrangled in some very special
configuration in space. Uliman!® reports computer experi-
ments which suggest that six points are sufficient in many
cases and seven or eight points yield unique interpretations in
most cases.

Due to its design and the application, however, the
motion of the ALV in space is quite restricted. The vehicle
can only travel upright on a surface and its large wheelbase
allows for only relatively small changes in orientation. It is
also heavy and thus exhibits considerable inertia. Therefore,

the final motion parameters must lie within a certain narrow:

range and it can be expected that a unique solution can be
found even in cases when the number of points is near the
above minimum.

The fact that
I=rg' ij' =t @n

suggests two different strategies for separating the motion
components:

(1) FOE from Rotation: Successively apply combina}ion§ of
inverse rotation mappings ry, Iy, I'g, Iy, To, Ty, 10
the second image I,, until the resulting image I’ is a
radial mapping with respect to the original image I,
Then locate the FOE x;, in I,

(2) Rotation from FOE: Successively select FOE-locations
(different directions of vehicle translation) va X Xg
in the original image I and then determine the inverse
rotation mapping ?5,1 Ty, that yields a radial mapping
with respect to the given FOE X, in the original image
Iy

Both alternatives were investigated under the assumption
of restricted, but realistic vehicle motion, as stated earlier. It
turned out that the major problem in the FOE-from-Rotation
approach is to determine if a mapping of image points is (or
is close to being) radial when the location of the FOE is unk-
nown. Of course, in the presence of noise, this problem
becomes even more difficult. The second approach was
examined after it appeared that any method which extends
the given set of displacement vectors backwards to find the
FOE is inherently sensitive to image degradations.

Although there have bgen a_number of suggestions for
FOE-algorithms in the past, 1215 no results of implementa-
tions have been demonstrated on real outdoor imagery. One
reason for the absence of useful results might be that most
researchers have tried to locate the FOE in terms of a single,
distinct image location. In practice, however, the noise gen-
erated by merely digitizing a perfect translation displacement

—field-may-keep-the- resulting-vectors-from-passing-through a - -

single pixel. Even for human observers it seems to be
difficult to determine the exact direction of heading (i.e., the
location of the FOE on the retina). Average deviation %
human judgement from the real direction has been reported
to be as large as 10° and up to 20° in the presence of large
rotations. s

It was, therefore, an important premise in this work that
the final algorithm should determine an area of potential
FOE-locations (called the Fuzzy FOE) instead of a single (but
probably incorrect) point.

3.2 FOE from Rotation

In this method, the image motion is decomposed in two
steps. First, the rotational components are estimated and
their inverses are applied to the image, thus partially "derotat-
ing" the image. If the rotation estimate was accurate, the
resulting displacement field after derotation would diverge
from a single image location (the FOE). The second step
verifies that the displacement field is actually radial and
determines the location of the FOE. For this purpose, two
problems have to be solved:

(1) how to estimate the rotational motion components
without knowing the exact location of the FOE, .

(2) how to measure the "goodness of derotation” and locate
the FOE. ? loca

3.2.1 Estimating the rotational components S

—

Each vector in the displacement field is the sum of vec-
tor components caused by camera rotation and camera trans-
lation. Since the displacement caused by translation depends
on the depth of the corresponding points in 3D space (equa-
tion 18), points located at a large distance from the camera
are not significantly affected by camera translation. There-
fore, one way of estimating vehicle rotation is to compute @
and ¢ from displacement vectors which are known to belong
to points at far distance. Under the assumption that those
displacement vectors are only caused by rotation, equations
14 and 15 can be applied to find the two angles. In some
situations, distant points are selected easily. For example,
points on the horizon are often located at a sufficient distance
from the vehicle. Image points close to the axis of translation
would be preferred because they expand from the FOE
slower than other points at the same depth. .

However, points at far distances may not always be
available or may not be known to exist in the image. In
those .cases, the following method for estimating the rota-
tional components can be used. The design of the ALV (and
most other mobile robots) does not allow rapid changes in
the direction of vehicle heading. Therefore, it can be
assumed that the motion of the camera between two frames is
constrained, such that the FOE can change its location only
within a certain range. If the FOE was located in one frame,
the FOE in the subsequent frame must lie in a certain image
region around the previous FOE location.

Figure 8(2) illustrates this situation. The FOE of the
previous frame was located at the center of the square, thus
the FOE in the given frame must be inside this square.

295




Image Piane

Rotation Space

Q2

A ”

oror

theta

(a)

(b)

Figure 8: Image Plane and Rotation S'pace. The displacement field in the Image Plane
(a) contains three vectors (P1-P1/, P2—P2’, P3—P3"). The previous FOE was
observed at the center of the square, which outlines the region of search for the current
FOE. The translational displacement components (P1-Q1, P2—Q2, P3—Q3) and
the current location of the FOE are unknown but marked in this picture. The initial
range of possible camera rotations is £10° in either direction, indicated by a square in

Rotation Space (b).

Three displacement vectors are shown
P1-P1’, P2->P2’, P3—P3). The translational components
(P1-Q1, P2-Q2, P3-Q3) of those displacement vectors
and the FOE (inside the square) are not known at this point
in time.

The main idea of this technique is to determine the pos-
sible range of camera rotations which would be consistent
with the FOE lying inside the marked region. Since the cam-
era rotates about two axes, the resuling range of rotations
can be described as a region in a 2D space. Figure 8(b)
shows this Rotation Space with the two axes theta and phi
corresponding to the amount of camera rotation around the
Y-axis and the X-axis respectively, The initial rotation esti-
mate is a range of £10° in both directions which is indicated
by a square in rotation space.

In general, the range of possible rotations is described
by a closed, convex polygon in rotation space. A particular
rotation (6’,¢") is possible if its application to every displace-
ment vector (i.e., to its endpoint) yields a new vector which
les on a straight line passing through the maximal FOE-
region. The region of possible rotations is successively con-
strained by applying the following steps for every displace-
ment vector (Figure 9):

(a) Apply the rotation mapping defined by the vertices of
the rotation polygon to the endpoint P’ of the displace-
ment vector. This yields a set of image points P;.

(b) Connect the points P; to a closed polygon in the image.
This polygon is similar to the rotation polygon but dis-
torted by the nonlinear rotation mapping (Figure 9(a)).

(c) Intersect the polygon in the image with the open triangle
formed by the starting point P of the displacement vec-
tor and the two tangents onto the FOE-region. The
reisult is a new (possibly empty) polygon in the image
plane.
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Figure 9: Successively constraining the range of possible
camera rotations. (a) The rotation mappings corresponding
to the vertices of the current rotation polygon are applied to
every displacement vector (P—P”). This yields a similar but
distorted polygon in the image plane. (b) The polygon in the
image is intersected with the open triangle defined by the
tangents to the miaximal FOE-region. Rotations that would
bring the endpoint of the displacement vector outside this tri-
angle are not feasible. The new vertices on the polygon are
mapped back into rotation space.




(d) Map the new polygon from the image plane back into
the rotation space (Figure 9(b)).

{e) If the rotation polygon is empty (number of vertices is
zero), then stop. No camera rotation is possible that
would make all displacement vectors intersect the given
FOE-region. Repeat the process using a larger FOE-
region.

- Figures 10(a-c) show the changing shape of the rotation

polygon during the application of this process to the three
displacement vectors in Figure 8.

Since the mapping from rotation space to the image
plane is nonlinear (equation 9), the straight lines between
vertices in the rotation polygon do not correspond to straight
lines in the image. They are, however, approximated as
straight lines in order to simplify the intersection with the
open triangle. The dotted lines in the image plane show the
actual mapping of the rotation polygon onto the image. It
can be seen that the deviations from straight lines are small
and can be neglected. '

Figure 10(c) shows the final rotation polygon after exa-
mining the three displacement vectors. The amount of actual
camera rotation (6=-2.0°,¢=5.0°) is marked with a small cir-
cle (arrow).

- Of course, increasing the number of displacement vec-
tors improves the rotation estimate. In practice, the amount
of camera rotation can be constrained to.a range of below 1°
in both directions. It is interesting, although not surprising,
that rotation can be estimated more accurately when the dis-
placement vectors are short, i.e., when the amount of camera
translation is small. This is in contrast to estimating camera
translation which is easier with long displacement vectors.

The situation when the rotation polygon becomes empry
requires some additonal considerations. As mentioned ear-
lier, in such a case no camera rotation is possible that would
make all displacement vectors pass through the given FOE-
region. This could indicate one of the two alternatives:

¢ At least one of the displacement vectors belongs to a
moving object.

e  The given FOE-region does not contain the actual loca-
tion of the FOE, i.e., the region is nor feasible.

The latter case is of particular importance. If a region
can be determined not to contain the FOE, then the FOE
must necessarily lie outside this region. Therefore, the above
method can not only be used to estimate the amount of cam-
era rotation, but also to search for the location of the FOE.
Unfortunately, if the rotation polygon does not become
empty, this does not imply that the FOE is actually inside the
given region. It only means that all displacement vectors
would pass through this region, not that they have a common
intersection inside this region. However, if not all vectors
pass through a certain region, then this region cannot possi-
bly contain the FOE. The following recursive algorithm
searches a given region for the FOE by splitting it into
smaller pieces (divide-and-conquer):

MIN-FEASIBLE (region, min-size, disp-vectors):
if SIZE (region) < min-size then return (region)
else

if FEASIBLE (region, disp-vectors) then
return (union (
MIN-FEASIBLE (sub-region-1, min-size,
disp-vectors),
MIN-FEASIBLE (sub-region-2, min-size,
disp-vectors),
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I»EN—FEASIBLE (sub-region-n, min-size,
disp-vectors)))
else return (nil) {region does not contain the FOE}

This algorithm searches for the smallest feasible FOE-
region by systematically discarding subregions from further
consideration..- For the case that the shape of the original
region is a square, subregions can be obtained by splitting the
region into four subsquares of equal size.

The simple version shown here performs a depth-first
search down to the smallest subregion (limited by the param-
eter "min-size"), which is neither the most elegant nor the
most efficient approach. The algorithm can be significantly
improved by applying a more sophisticated strategy, for
example, by trying to discard subregions around the perime-
ter first before examining the interior of a region.

Two major problems were encountered with this
method. First, the algorithm is computationally expensive
since the process of computing feasible rotations must be
repeated for every subregion. Second, a small region is more
likely to be discarded than a larger one. However, when the
size of the region becomes too small, errors induced by
noise, distortion, or point-tracking may prohibit displacement
t\ilecti:)g)sEfrom passing though a region which actually contains

e .

Although this algorithm is not employed in the further
treatment, it suggests an interesting alternative which departs
significantly from traditional FOE-algorithms. Its main
attractiveness is that it is inherently region-oriented in con-
trast to most other techniques which search for a single
FOE-location. For the purpose of estimating the amount of
rotation, the method using points at far distance mentioned
earlier is probably more practical. Two other alternatives for
locating the FOE once the rotation components have been
estimated are discussed in the following.

3.22 Locating the FOE in a partially derotated image

After applying a particular derotation mapping to the
displacement field, the question is how close the . new
displacement field to a radial mapping, where all vectors
diverge from one image location. If the displacement field is
really radial, then the image is completely derotated and only
the components due to camera translaton remain. Two
different methods for measuring this property are discussed.
One method uses the Variance of Intersection at imaginary
horizontal and vertical lines. The second method computes
the Linear Correlation Coefficient to measure how "radial”
the displacement field is.

A. Variance of Intersection. Prazdny!? suggests to esti-
mate the disturbance of the displacement field by computing
the variance of intersections of one displacement vector with
all other vectors. If the intersections lie in a small neighbor-
hood, then the variance is small, which indicates that the dis-
placement field is almost radial.

The problem can be simplified by using an imaginary
horizontal and vertical line instead, whose orientation is not
affected by different camera rotations. Figure 11 shows 5
displacement vectors P;—P,’ ... Ps—Ps’ intersecting a verti-
cal line at x at ¥, ... ys. Moving the vertical line from x
towards xp will bring the points of intersection closer together
and will thus result in a smaller variance. The point of inter-
section of a displacement vector P,—P;” with a vertical line
at x is given by
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Figure 10: Changing rotation polygon. (a) The rotation polygon after examining dis-
placement vector P1—Pl’. Any camera rotation inside the polygon would move the
endpoint of the displacement vector (P1”) into the open triangle formed by the tangents
through P1 to the ‘maximal FOE-region given by the square in the image plane. The
actual mapping of the rotation polygon into the image plane is shown with a dotted

outline.
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Figure 10: Changing rotation polygon. ,(b) The rotation polygon after examining dis-

placement vectors P1-P1’ and P2—P2,
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Figure 10: Changing rotation polygon. (c) The rotation polygon after examining dis-

placement vector (P1-P1’, P2—P2, and P3—-P3").

P1-P1’, P2-P2’

and P3—P3.

The amount of actual camera rotation is marked with a small circle (arrow).
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Figure 11: Intersecting the displacement vectors with a verti-
cal line at x. When the vertical line is moved towards xj the
points of intersection move closer together and therefore the
variance of intersection decreases.
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Figure 12: Displacement field used to evaluate various error
functions. The square (£100 pixels in both directions) marks
the region of evaluation.

xyi —yx
5= 2 T o
R (8)
The variance of intersection of all displacement vectors with
the vertical line at position x is

2
Fw=+13%-= =5
N iy X'y N i, xpx'y 29)

To find the vertical cross section with minimum intersection
variance, the first derivative of (29) with respect to x is set to
zero. The location x, of minimum intersection variance is
then obtained.! Similarly, the position of a horizontal cross
section with minimal intersection variance can be obtained.

The square root of the variance of intersection (standard
deviation) at a vertical line was evaluated on the synthetic
displacement field shown in Figure 12. The actual FOE is
located in the center of the image. The square around the
center (+100 pixels in both directions) marks the region over
which the error functions are evaluated.

Figure 13 shows the distribution of the intersection stan-
dard deviation for increasing residual rotations in vertical
directon in the absence of noise. Locations of displacement
vectors are represented by real numbers (not rounded to
integer values).

In Figure 13(a), no residual rotation exists, i.e., the dis-
placement field is perfectly radial. The value of the horizon-
tal position of the cross section varies 3:100 pixels around the
actual FOE. The standard deviation is zero for x = Xg (the x-
coordinate of the FOE) and increases linearly on both sides
of the FOE. In Figures 13(b-d), the residual vertical rotation
is increased from 0.2° to 1.0°. The bold vertical bar marks
the horizontal position of minimum standard deviation, the
thin .bar marks the location of the FOE. It can be seen that
the amount of minimum standard deviation rises with increas-
ing disturbance by rotation, but that the location of minimum
standard deviation does not necessarily move away from the
FOE.

Figures 14-16 show the same function under the
influence of noise. In Figure 14, noise was applied by
merely rounding the locations of displacement vectors to their
nearest integer values. Uniform noise of £1 and +2 pixels
was added to image locations in Figures 15 and 16. It can
be seen that the effects of noise are similar to the effects
caused by residual rotation components. The purpose of this
error function is to determine (a) where the FOE is located,
and (b) how "radial" the current displacement field is.

If the displacement field is already perfectly derotated,
then the location of minimum intersection standard deviation
is, of course, the location of the FOE. Ideally all vectors
pass through the FOE, such that a cross section through the
FOE yields zero standard deviation. The question is how
well the FOE can be located in an image which is not per-
fectly derotated.

Figure 17 plots the location of minimum intersection
standard deviation under varying horizontal rotation. The
vertical rotation is kept fixed for each plot. Horizontal cam-
era rotations from -1° to +1° are shown on the abscissa (ro?).
The ordinate (x0) gives the location of minimum standard
deviation in the range of 100 pixels around the FOE
(marked xf). It is not surprising that the location of
minimum standard deviation depends strongly on the amount
of horizontal rotation. ‘

The problem is, however, that the location of minimum
standard deviation is not necessarily closer to the FOE when
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Figure 13: Standard deviation of intersection at a vertical cross section at position x for
different amounts of vertical rotation. (a) Without vertical rotation, (b) with 0.2° verti-
cal rotation, (c) 0.5° and (d) 1.0°. The horizontal rotation is 0° in all cases. No noise
was applied and image positions were not rounded to integers. The error values are
shown for +100 pixels around the x-coordinate of the FOE (xf), which is marked with
a thin bar. The location of minimum standard deviation is marked with a thick bar.
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Figure 14: Standard deviation of intersection (square root) at a vertical cross section at
position x for different amounts of vertical rotation with no horizontal rotation. (a)
Without vertical rotation, (b) with 0.2° vertical rotation, (c) 0.5° and (d) 1.0°. No
noise was applied and image positions were rounded to the closest integer values.,
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Figure 15: Standard deviation of intersection
position x for different amount
Without vertical rotation,
form noise of *1 pixels was applied to
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(square root) at a vertical cross section at
s of vertical rotation with no horizontal rotation.
(b) with 0.2° vertical rotation,

(a)

(c) 0.5° and (d) 1.0°. Uni-
the image locations.
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Figure 16: Standard deviation of intersection (square root) at a vertical cross section at
position x for different amounts of vertical rotation with no horizontal rotation. (a)
Without vertical rotation, (b) with 0.2° vertical rotation, (¢) 0.5° and (d) 1.0°. Uni-
form noise of +2 pixels was applied to the image locations.
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Figure 17: Location of minimum intersection standard deviation under varying horizon-
tal rotation. The amount of vertical rotation is kept fixed in each plot. (a2) Without
vertical rotation, (b) with 0.2° vertical rotation, (c) 0.5° and (d) 1.0°. Image locations

the amount of rotation is less. The function is only well
behaved in a narrow range around zero rotation, which means
that the estimate of the camera rotation must be very accurate
to successfully locate the FOE.

The second purpose of this error function is to measure
how "radial" the displacement field is after partial derotation.
This should be possible by computing the amount of
minimum intersection standard deviation. Intuitively, a
smaller amount of minimum intersection standard deviation
should indicate that the displacement field is less disturbed by
rotation. Figure 18 and 19 show that this is generally true.

For the noise-free case in Figure 18, the amount of
minimum intersection standard deviation becomes zero in the
absence of horizontal and vertical rotations (a), indicating
that the derotation is perfect. Unfortunately, the function is
not well behaved even in this relatively small range of rota-
tions (£1.0°). The curve exhibits some sharp local minima
where an algorithm searching for an optimal derotation would
get trapped easily. Figure 19 shows the same function in the
presence of noise.

B. Linear Correlation. The second method of measur-
ing how close a displacement field is to a radial pattern again
uses the points of intersection at vertical (or horizontal) lines.
The basic idea is illustrated in Figure 20. The displacement

f were digitized but no noise was added. The horizontal location of the FOE is marked

vectors are intersected by two vertical lines, both of which lie
on the same side of the FOE, Since the location of the FOE
is not known, the two lines are simply located at a sufficient
distance from any possible FOE-location, This results in two
sets of intersection points {(x1,y;)) and {(x.y2))-

If all displacement vectors emanate from one single
image location, then the distances between corresponding
intersection points in the two sets must be proportional, i.e.,

Yu—Yy Y~ Yu

= forall ijjk. 30
Y2 = Yoj  Yoi— Y )

Therefore, a linear relationship exists between the verti-
cal coordinates of intersection points on these two lines. The
"goodness" of this linear relationship is easily measured by
computing the correlation coefficient for the y-coordinates of
the two sets of points.

The resulting coefficient is a real number in the range
from -1.0 to +1.0. If both vertical lines are on the same side
of the FOE, then the optimal value is +1.0. Otherwise, if the
FOE lies between the two lines, the optimal coefficient is
-1.0. The horizontal position of the two vertical lines is of
no importance, as long as one of these conditions is satisfied.
For example, the left and right border lines of the image can
be used.

300




s(x0) . s(x0
2200 ad )

-1.0 +1.0 -1.0 -l.0 +1.0 -1.0 +1.0

vertical rotation: 0.00 deg vertical rotation: 0.20 deg wertical rotation: 0.50 deg vertical rotation: 1.00 deg
(a) (b) (c) : (d)

Figure 18: Amount of minimum intersection standard deviation under varying horizon-
tal rotation. The amount of vertical rotation is kept fixed in each plot. (a) Without
vertical rotation, (b) with 0.2° vertical rotation, (¢) 0.5° and (d) 1.0°. Image locations
were digitized but no noise was added.
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Figure 19: Amount of minimum intersection standard deviation under varying horizon-
tal rotation as in Figure 18. (a) Without vertical rotation, (b) with 0.2° vertical rota-
tion, (c) 0.5°, and (d) 1.0°. Uniform noise of +2 pixels was added to image locations.

Figure 20: Intersecting displacement vectors with two vertical lines, both of which lie
on the same side of the FOE.
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Figure 21 Correlation coefficient for the intersection of displacement vectors at two
. vertical lines under varying horizontal rotations in the noise-free case. (a) Without
vertical rotation, (b) with 0.2° vertical rotation, (c) 0.5° and (d) 1.0°. The optimal
coefficient is +1.0 (horizontal axis). .
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Figure 22 Correlation coefficient for the intersection of displacement vectors at two

vertical lines under varying horizontal rotations.
added to image locations. Without vertical rotation
0.5° (c) and 1.0° (d). The optimal coefficient is +1.0 (horizontal

Figures 21 and 22 show plots for this correlation
coefficient under the same conditions as in Figures 18 and
19. No noise was applied for Figure 21. The shapes of the
curves are similar to those for the minimum standard devia-
tions shown earlier, with peaks at the same locations. It is
apparent, however, that each curve has several locations
where the coefficient is close to the optimum value (+1.0),
i.e,, no distinct global optimum exists which is not only the
case in the presence of noise (Figure 22). This fact makes
the method of maximizing the correlation coefficient useless
for computing the FOE.

3.3 Rotation from FOE

The main problem encountered in computing the FOE in
section 3.2 was that none of the functions examined was well
behaved, making the search for an optimal derotation and the
location of the FOE difficult. Disturbances induced by noise
and residual rotation components are amplified by extending
short displacement to straight lines and computing their inter-
sections. The method described below avoids this problem
by guessing an FOE-location first and estimating the optimal
derotation for this particular FOE in the second step.

Given the two images I and I, of corresponding points,
the main algorithmic steps of this approach are:

(1) Guess an FOE-location

x{? in image I (for the current
iteration i).
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Uniform noise of £2 pixels was
(a), with 0.2° vertical rotation (),
axis).

(2) Determine the derotation mapping rg’, r;! which would
transform image I, into an image I;” such that the map-
ping (xf’.o,1;") deviates from a radial mapping (23)
with minimum error E®,

Repeat steps () and (2) until an FOE-location
the lowest minimum error E® is found.

An initial guess for the FOE-location is obtained from
knowledge about the orientation of the camera with Tespect to
the vehicle. For subsequent pairs of frames, the FOE:
location computed from the previous pair can be used as a
starting point.

Once a particular Xr has been selected, the problem is to
compute the rotation mappings rz' and r;! which, when
applied to the image I), will result in an optimal radial map-
ping with respect to I; and Xp : ,

To measure how close a given mapping is to a radial
mapping, the perpendicular distances between points in the
second image (x;) and the "ideal" displacement vectors is
measured. The "ideal" displacement vectors lie on straight
lines passing through the the FOE Xr and the points in the
first image x; (Figure 23). The sum of the squared perpen-
dicular distances d; is the final error measure. For each set
of corresponding image points (x; € I, x; e I), the error
measure is defined as

(3) % with




Figure 23: Measuring the perpendicular distance d; between
lines from X, through points x; and points x/ in the second
image.

Figure 24: One vector x, is selected from the set of displace-
ment vectors to determine the optimum 2-D shift to be
applied to points x;, given a FOE-location x. First Xg is
forced onto the line xx, and then the entire image
I' = {x;, X5’ ,...} is translated in the direction of this line
until the error value reaches a minimum,

=
i i

2
E (x) = XF; = Ydf = X [—2— £k, x 3| . @
i i !

In the following, it is assumed that the amount of resi-
dual image rotation in horizontal and vertical direction is
moderately smail (less than 4°). In most practical cases, this
condition is satisfied, provided that the time interval between
frames is sufficiently small. However, should the amount of
vehicle rotation be very large for some reason, a coarse
estimate of the actual rotation can be found (as described ear-
lier) and applied to the image before the FOE computation.
With small amounts of rotation, the actual rotation mapping,
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where points move on horizontal and vertical hyperbolic
paths, can be approximated by a horizontal and vertical shift
with constant length over the entire image.

Under this condition, the inverse rotation mapping
ryl, rg! can be approximated by a adding a constant vector
§ = (s, 5,) which is independent of the image location:
DR I'= migl L = s¥1 0

Given two images I and I’ the error measure (31) becomes
2
1 [xj_;(i X (Xﬁﬂ’i’ + S)] }

E (xp8) = —_
where x; € I and x{ € I. For a given FOE-location x; the
problem is to minimize E with respect to the two unknowns
5, and s,. To reduce this problem to a one-dimensional
search, one point x,, called the Guiding Point, is selected in
image I which is forced to maintain zero error (Figure 24).
Therefore, the corresponding point x,” must lie on a straight
line passing through x, and x, Any shift s applied to the
image I’ must keep x,’ on this straight line, so

(33

X, +§=%Xp+ A(xg—-xp) foralls, (34a)
and thus,

s =X x, + A (xg — X9 (AeR). (34b)
For A=1, s=x, —x,/ which is the vector x,’—x,. This

means that the image ¥ is shifted such that x, and x.’ over-
lap. This leaves A as the only free variable and the error
function (33) is obtained as ’ ’

EQ) = >.:' [k A;+B; - C:]2 (35)

with
he = N0 — xp% + O; — yp*

A,~=-t O =y O —x) — (5 = %) Og = ¥

1 B
Bi-_—z; G-y & - %)

1 '
Ci:E (xi—x) O =) .

Differentiating 35 with respect to A and forcing the resulting
equation to zero yields the parameter for the optimal shift s,

as
2 _ JAC - YAB
LD 7

The optimal shift s,, and the resulting minimum error
E(A,py) for the given FOE-location X, is obtained by inserting
kap, into equations (34b) and (35) respectively, giving

EinX) = My AP +2 hopy (A1 - ZAC)
-2 ¥BC;+ B} + Y C?.

The normalized error E, shown in the following results (Fig-
ures 26-31) is defined as

B, ) = = Enin (%) (38) -

where N is the number of displacement vectors used for com-

(36)
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Figure 25: FOE-locatons are prohibited if the displacement
field resulting from the application of the optimal shift Sopt

contains vectors pointing towards the FOE. This is the case
at point x;.

puting the FOE.

Since in a displacement field caused by pure camera
translaton all vectors must point away from the FOE, this
restriction must hold for any candidate FOE-location (Figure
24). If after applying s,,(xp) to the second imiage I’, the
resulting displacement field contains vectors pointing towards
the hypothesized x; then this FOE-location is prohibited and
can be discarded from further consideration. Figure 25
shows a field of 5 displacement vectors. The optimal shift
Sope for the given x; is shown as a vector in the lower right-
hand corner. When s, is applied to point x,’, the resulting
displacement vector (;%own fat) does not point away ﬁ:om
the FOE. Since its projection onto the line xx; points
towards the FOE, it is certainly not consistent with a radial
expansion pattern.

The final algorithm for determining the direction of
heading as well as horizontal and vertical camera rotations is
the following:

Find-FOE:
(1) Guess an initial FOE x, for example the FOE-location
obtained from the previous pair of frames.

(2) Starting from x}), search for a location xf”—”‘ where
Emin(x}-"") is a minimum. A technique of siéepest des-

cent i$ used, where the search proceeds in the direction

of least error.

(3) Determine a region around x}"" in which the error is
below some threshold.

The search for this FOE-area is conducted at FOE-
locations lying on a grid of fixed width. In the examples
shown, the grid spacing is 10 pixels on both x- and y-
directions.

The error function E(xy) is computed in time propor-
tional to the number of displacement vectors N. The final
size of the FOE-area depends on the local shape of the error
function and can be constrained not to exceed a certain max-
imum M. Therefore, the time complexity is O(MN).

3.4 Experiments on Synthetic Data

. The first set of experiments was conducted on synthetic
lmagery to investigate the behavior of the error measure
under various conditions, namely

. tl}e average length of the displacement vectors (longer
displacement vectors lead to a more accurate estimate of

_the FOE),

¢ the amount of residual rotation components in the
image, and

e the amount of noise applied to the location of image
points.

Figure 26 shows the distribution of the normalized error
E, (xp for a sparse and relatively short displacement field
containing 7 vectors. Residual rotation components of #2° in
horizontal and vertical direction are present in (b)-(d) to visu-
alize their effects upon the image. This displacement field
was used with different average vector lengths (indicated as
length-factor) for the other experiments on synthetic data.
The displacement vector through the Guiding Point is marked
with a heavy line. The choice of this point is not critical, but
it should be located at a considerable distance from the FOE
to reduce the effects of noise upon the direction of the vector
¥e

In Figure 26, the emror function is sampled in a grid
with a width of 10 pixels over an area of 200 by 200 pixels
around the actual FOE, which is marked by a small square.
At each grid point, the amount of error is indicated by the
size of the circle. Heavy circles indicate error values which °
are above a cermin threshold. Those FOE-locations that
would result in displacement vectors which point rowards the
FOE (as described earlier) are marked as prohibited (+). It

‘can be seen that the shape of the 2D error function changes

smoothly with different residual rotations over a wide area

axg exhibits its minimum close to the actual location of the
FOE.

Figures 27 to 32 show the effects of various conditions
upon the behavior of this error function in the same 200x200
pixel square around the actual FOE as in Figure 26.

Figure 27 shows how the shape of the error function
depends upon the average length of the displacement vectors
in the absence of any residual rotation or noise (except
digitization noise). Clearly, the minimum of the error func-
tion becomes more distinct with increasing amounts of dis-
placement.

Figure 28 shows the effect of increasing residual rota-
tion in horizontal direction upon the shape of the error func-
don.

Figure 29 shows the effect of residual rotation in verti-
cal direction. Here, it is important to notice that the displace-
ment field used is extremely nonsymmetric along the Y-axis
of the image plane. This is motivated by the fact that in real
ALYV images, long displacement vectors are most likely to be
found from points on the ground, which are located in the
lower portion of the image. Therefore, positive and negative
vertical rotations have been applied in Figure 29.

In Figure 30, residual rotations in both horizontal and
vertical direction are present. It can be seen (Figure 30(a-¢j)
that the error function is quite robust against rotational com-
ponents in the image. Figure 30(f-j) shows the amounts of
optimal linear shift s,,, under the same conditions.

The result in Figure 30(e) shows the effect of large
combined rotation of 4.0° / 4.0° in both directions. Here, the
minimum of the error function is considerably off the actual

304




—_——.image Flane image Planse

122
3

13333

- ~ %
/ N N
length-factors 2.0 length-factors 2.0
rotations 0.0 0.0 deg rotatione 2.0 0.0 deg
(a) (b)
Image Plans imaqe Plane
/ \ N ’
length-factote 2.0 length=factore 2.0
rotations 0.0 2.0 deg retatlone 0.0 -2.0 deg

(c)

(d)

Figure 26: Displacement field and minimum error at selected FOE-locations. The
shape of the error functon is plotted over an area of £100 pixels around the actual
FOE, which is marked with a small square. The diameter of the circle drawn at each
hypothesized FOE-location indicates the amount of normalized error (equation 40),
large circles are locations of large error. Heavy circles indicate error values above a
certain threshold (4.0), prohibited locations (as defined earlier) are marked "+". (a} No
residual rotation. (b) 2.0° of horizontal camera rotation (camera rotated to the left). (c)
2.0° vertical rotation (camera rotated upwards). (d) -2.0° vertical rotation (camera
rotated downwards).
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Figure 27 (a-e): Effects of increasing the average length of displacement vectors upon
the shape of the error function. Length factors vary from 1 to 15. The error function
was evaluated over the same image area of 200x200 pixels around the actual FOE
(square) as in Figure 26. No rotation or noise was applied.
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Figure 28 (a-e): Effects of increasing residual rotation in horizontal direction upon the
shape of the error function for relatively short vectors (length-factor 2.0). No noise

was applied.
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Figure 29 (a-e): Effects of increasing residual rotation in vertical direction upon the
shape of the error function for relatively short vectors (length-factor 2.0). No noise

was applied.

location of the FOE because of the error induced by using a
linear shift to approximate the nonlinear derotation mapping.
In such a case, it would be necessary to actuaily derotat-. the
displacement field by the amount of rotation eguivale .t to
Sopt found at the minimum of this error function and repeat
the process with the derotated displacement.

The effects of various amounts of noise are shown in
Figure 31. For this purpose, a random amount (with uniform
distribution) of displacement was added to the original (con-
tinuous) image location and then rounded to integer pixel
coordinates. Random displacement was applied in ranges
from 0.5 to +4.0 pixels in both horizontal and vertical direc-
tion. Since the displacement field contains only 7 vectors,
the results do not provide information about the statistical
effects of image noise. This would require more extensive
modeling and simulation. However, what can be observed
here is that the absolute minimum error increases with the
"amount of noise. It can thus serve as an indicator for the
amount of noise present in the image and the reliability of
the final result.

Again, the length of the displacement vectors is an
important factor. The shorter the displacement vectors are,
the more difficult it is to locate the FOE correctly in.the pres-
ence of noise. Figure 32 shows the error functions for two
displacement fields with different average vector lengths. For
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the shorter displacement field (length-factor 2.0) in Figure
32(a), the shape of the error function changes dramatically
under the same amount of noise (compare Figure 30(a)). A
search for the minimum error would inevitably converge
towards a point indicated by the small arrow, far off the
actual FOE. For the image with length-factor 5.0 (Figure
32(b)), the minimum of the error functon coincides with the
actual location of the FOE (a). The different result for the
same constellation of points in the Figure 31(d} is caused by
the different random numbers (noise) obtained in each experi-
ment. This experiment shows that a sufficient amount of dis-
placement between consecutive frames is essential for reli-
ably determining the FOE and thus, the direction of vehicle
translation.

The performance of this FOE algorithm is shown in sec-
tion 5.1 on a sequence of real images taken from the moving
ALV. In the following section, it is shown how the absolute
velocity of the vehicle can be estimated after the location of
the FOE has been determined. The essential measure used
for this calculation is the absolute height of the camera above
the ground which is constant and known. Given the absolute
velocity of the vehicle, the absolute distance from the camera

ofogD points in the scene can be estimated using equation
(20).
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Figure 32: The effects of uniform noise applied to image point coordinates for
different average vector lengths (length factors 2.0 and 5.0). For the short displace-
ment field (@) the disturbance moves the local minimum (arrow) far off the actual
. FOE. The same amount of noise applied to the longer displacement field has much

less dramatic effects.

3.4 Computing Velocity Over Ground

After the FOE has been computed following the steps
outlined in the previous section, the direction of vehicle
translation and the amount of rotation are known. From the
derotated displacement field and the location of the FOE, the
3D layout of the scene can be obtained up to a common scale
factor (20). As pointed out earlier, this scale factor and, con-
sequently, the velocity of the vehicle can be determined if the
3D position of one point in space is known. Furthermore, it
is easy to show®* that it is sufficient to know only one coor-
dinate vaiue of a point in space to reconstruct its position in
space from its location in the image.

Since the ALV travels on a fairly flat surface, the road
can be approximated as a plane which lies parallel to the
vehicle’s  direction of transiation (see Figure 33). This
approximation holds at least for a good part of the road in
the field of view of the camera.

Since the absolute height of the camera above the
ground is constant and known, it should be possible to esti-
mate the positions of points on the road surface with respect

to the vehicle in absolute terms. From the changing dis-

tances between these points and the camera, the actual
advancement and speed can be determined.

First, a new coordinate system is introduced which has’

its origin in the lens center of the camera. The Z-axis of the
new system passes through the FOE in the image plane and
points, therefore, in the direction of translation. The original
camera-centered coordinate system (X Y Z) is transformed
into the new frame (X’ Y’ Z’) merely by applying horizontal
and vertical rotation until the Z-axis lines-up with the FOE.

The horizontal and vertical orientation in terms of pan
and filt are obtained by "rotating" the FOE (x;yp) into the
center of the image (0 0) using equations (14) and (15):

= — _lﬁ

o f (39)
— £

el O

The two angles 8, and ¢y represent the orientation of the
camera in 3D with respect to the new coordinate system.
This allows us to determine the 3D orientation of the project-
ing rays passing through image points by use of the inverse
perspective transformation. A 3D point X in the environment
whose image x = (xy ) is given, lies on a straight line in
space defined by

Y cosB; sinBy sing, —sinBy cosdy o
X=|Yl=x 0 cos¢f sintbf y| (41)
sinb; —cos6 singy cosOy cosfy

For points on the road surface, the Y-coordinate is —h which
is the height of the camera above ground. Therefore, the

value of x, for a point on the road surface (x,y,) can be
estimated as

= -h ____
K= ¥s cosy + f sinf; @2y

and its 3D distance is found by inserting v, into equation 41
as

X sinf,— y, cos/ef singy — f cosb, cosdy
s cosd + f sind;

Zy=-h

s

. @43

If a point on the ground is observed at two instances of
time, x, at time 7 and X, at ¢, the resulting distances from the

vehicle Z; at ¢ and Z;” at ¢’ yield the amount of advancement
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Figure 33: Side view of the camera traveling parailel to a flat
surface. The camera advanced in direction Z, such that a 3D
point on the ground moves relative to the camera from Z; to
Z,. The depression angle ¢ can be found from the location
of the FOE in the image. The height of the camera above
the ground is given.

AZ, (1,¢') and estimated velocity V (¢,¢') in this period as
AZ (t)=Z,-Z/
Z,-2Z/

44)

V, () = 45)

Of course, image noise and tracking errors have a large
impact upon the quality of the final velocity estimate. There-
fore, the longest available displacement vectors are generally
selected for this measurement, i.e., those vectors which are
relatively close to the vehicle. Also, in violation of the initiai
assumption, the ground surface is never perfectly flat, In
order to partially compensate these errors and to make the
velocity estimate more reliable, the resuits of the measure-
ments on individual vectors are combined. The length of
each displacement vector Ix; — x;/| in the image is used as the
weight for its contribution to the final result. Given a set of
suitable displacement vectors § = { x; — x;” }, the estimate of
the distance traveled by the vehicle is taken as the weighed
average of the measurements AZ; on individual vectors

- Z (Ix,- - Xi’l AZ‘)
R e 40
and the final estimate for the vehicle velocity is
- Az
=L 4
V@ == @n

This computation was applied to a sequence of real images
which is described in section 5.

4. THE QUALITATIVE SCENE MODEL

The choice of a suitable scheme for the internal
representation of the scene is of great importance. The Qual-
itative Scene Model (QSM) is a 3D camera-centered interpre-
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_feature A located in the image atx,y at time ¢

tation of the scene that is built incrementally from visual
information gathered over time. The nature of this model,
however, is qualitative rather than a precise geometric
description of the scene. The basic building blocks of the
QSM are entities, which are the 3D counterparts of the 2D
Jeatures observed in the image. For example, the point

( Point_Feature A rxy )
has its 3D counterpart in the model as
( Point_Entity A ).

Since the model is camera-centered ("retinocentric"), the
image locations and 2D movements of features are implicitly
part (i.e., known facts) of the model. Additional entries are
the properties of entities (e.g., "stationary" or "mobile") and
relationships between entities (e.g. "closer"), which are not
given facts but hypotheses about the real scene. This is
expressed in the model as either

( Stationary enrity ) or ( Mobile entity ) .

It is one of the key features of the QSM that it generally
contains not only one interpretation of the scene, but a (pos-
sibly empty) ser of interpretations which are all pursued
simultaneously. At any point in time, a hypothesis is said to
be "feasible" if it exists in the QSM and is not in conflict
with some observation made since it was established.

Interpretations are structured as an inheritance network
of partial hypotheses. Individual scene interpretations are
treated as "closed worlds", i.e., a new conclusion only holds
within an interpretation where all the required premises are
true. Interpretations are also checked for internal con-
sistency, e.g., entities cannot be both stationary and mobile
within the same interpretation.

The QSM is maintained through a generate-and-test pro-
cess as the core of a rule-based blackboard system. The two

major groups of rules are: Generation Rules and Verification
Rules.

Generation Rules

Generation rules examine the (derotated) image
sequence for significant changes and modify each interpreta-
tion in the QSM. Some of these observations have uncondi-
tional effects upon the model. For example, if an image
feature is found to be moving rowards the Fuzzy FOE
(instead of diverging away from it), then it belongs to a mov-
ing entity in 3D space. The actual rule contains only one
premise and asserts (MOBILE 7x) as a global fact (i.e., it is
true in every interpretation):

(defrule DEFINITE_MOTION
(MOVING_TOWARDS_FOE 7x )

=>

(at ROOT (assert (MOBILE ?x)))) /*a global fact*/

The directive "at ROOT" places the new fact at the root of
the interpretation graph, i.e., it is inherited by all existing
interpretations.

Other observations depend upon the facts that are
currently true in a "world" and, therefore, may have only
local consequences inside particular interpretations. For
example, if two image features A and B lie on opposite sides
of the Fuzzy FOE and they are getting closer to each other,
then they must be in relative motion in 3D space. If an
interpretation exists that considers at least one of the two
entities (x,y) stationary, then (at least) the other entity cannot



be static_mgry (i.e., it must be mobile). The following rule
"fires within" each interpretation that considers the first entity
(x) stationary:

(defrule RELATIVE_MOTION
(OPPOSITE_FOE 7x ?y %) /* first observation */
(CONVERGING 7?x ?y M) /* second observation */

(STATIONARY 7x) /* true inside an interpretation */
=>

(assert (MOBILE 7¥)) /* local to this intéfbretaﬁon ;/

While some image observations allow direct conclusions
about motion in the scene, other observations hold cues about
the stationary 3D structure. If the exact location of the FOE
is known, then the depth of each stationary point (i.e., its 3D
distance from the camera) is proportional to the rate of
expansion (from the FOE) of its image (Equation 7). Conse-
quently, for the Fuzzy FOE, where a set of potential FOE
locations is given, the distance Z(A) of a stationary point A is
determined as an interval instead of one single number:

ZmingA) < Z(A) < ZMEX(A) .

Therefore, a point A is closer in 3D than another point
B, if the corresponding ranges of depth do not overlap, i.e.,

Z™X(A) < Z™™B) — (CLOSER A B) .

Since this conclusion only holds if both featres are
actually stationary, the following rule fires only within a suit-
able interpretation (if it exists):

(defrule CLOSER_FROM_EXPANSION
(STATIONARY 7x) [*interpretation where */
(STATIONARY 7y) /*both are stationary */
(< (Zmax ?x) (Zmin ?y)) /*no overlap in range */
=>
(assert (CLOSER ?x ?y))).

To compare the ranges of 3D points, another criterion
can be used which does not require the rate of expansion
from the FOE. Instead, the change of distances between cer-
tain pairs of features is observed. If two stationary points lie
on the same side of the FOE and the distance between them
is becoming smaller, then the inner feature (i.e., the one
which is nearer to the FOE) is also closer in 3D space. This
is a valuable test for features that are relatively near to each
other in the image. It can be employed even if the image is
not derotated and the location of the FOE is either only
known very roughly or is completely outside the field of
view (i.e., for a side-looking camera):

(defrule CLOSER_FROM_CHANGING_DISTANCE

(STATIONARY 7x) /*interpretation where */
(STATIONARY ?y) /*both are stationary, */
(SAME_SIDE_OF_FOE ?x ?y) /*both on the right, */
(CONVERGING 7x ?y) f*dist. is shrinking *

(INSIDE 7x 7y)
=>
(CLOSER 7x ?y).

/*x is nearer to FOE */

Verification Rules

While the purpose of the generation rules is to establish
new hypotheses and conclusions, the purpose of verification
rules is to review interpretations after they have been created
and, if possible, prove that they are false. When a hypothesis
is found to be inconsistent with some new observation, it is
usually removed from the QSM. Any interpretation that is
based on such a hypothesis is removed simultaneously.
Since we are always trying to come up with a single (and

—-image-are-generally-closer to the camera. Although-this-rule— -
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hopefully correct) scene interpretation, this mechanism is
important for pruning the search tree,

Verification rules are typically based on image observa-
tions that, used as generators, would produce a large number
of unnecessary conclusions. For example, the general layout
of the scene seen from the top of a land-based vehicle sug-
gest the rule of thumb that things which are lower in the

is not strong enough to draw direct conclusions, it may be
used to verify existing hypotheses:

(defrule LOWER_IS_CLOSER_HEURISTIC
(CLOSER ?x ?y) (BELOW_THE_HORIZON 2x 71
(BELOW_THE_HORIZON ?y 7t) (BELOW ?y 7x )
=>
/*mark this interpretation as conflicting*/
(assert (CONFLICT LOWER/CLOSER 7x ?y))).

Whenever an existing hypothesis (CLOSER 7x ?7y)
violates the above rule of thumb, this rule fires and marks the
interpretation as conflicting. How the conflict is eventually
resolved depends upon the global state of the QSM. Simply
removing the afflicted interpretation would create an empty
model if this interpretation was the only one. This task is
handled by a set of dedicated conflict resolution rules.!

The kind of rules described up to this point are mainly
based upon the geometry of the imaging process, ie., per-
spective projection. Other important visual clues are avail-
able from occlusion analysis, perceptual grouping, and
semantic interpretation. Occlusion becomes an interesting
phenomenon when features of higher dimensionality- than
points are employed, such as lines and regions. Similarities
in form and motion found by perceprual grouping allow us to
assemble simple features into complex objects. Finally, as an
outcome of the recognition process, semantic information
may help to disambiguate the scene interpretation. If an
object has been recognized as a building, for example, it
makes every interpretation obsolete that considers this object
mobile. For all these various lines of reasoning, the QSM
serves as a common platform.

Mera Rules

In summary, the construction of the QSM and the search
for the most plausible scene interpretation are guided by the
following meta rules:

®  Always tend towards the "most stationary" (i.e. most

conservative) solution. By default all new entities are
considered stationary.

Assume that an interpretation is feasible unless it can be
proved to be false ( the principle of "lack of conflict").

If a new conclusion causes a conflict in one but not in
another current. interpretation, then remove the
conflicting interpretation.

If a new conclusion cannot be accommodated by any
current interpretation, then create a new, feasible
interpretation and remove the conflicting ones.

5. EXPERIMENTAL RESULTS USING QSM
5.1 Fuzzy FOE Results

In the following, the results of the FOE-algorithm and
computation of the vehicle’s velocity over ground are shown
on a real image sequence taken from the moving ALV. The
original sequence was provided on standard video tape with a
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frame-rate of 30 per second. Out of this original sequence,
images were taken in 0.5 second intervals, ie., at a frame
rate of 2 per second in order to reduce the amount of storage
and computation. The images were digitized to a spatial
resolution of 512x512, using only the Y-component (lumi-
nance) of the original color signal.

Figure 34 shows the edge images of 16 frames with the
points being tracked labeled with ascending numbers. We

region is limited, ie., E/EM® = pi < plim (see equation
40 for the definition of the error function E,). No
FOE-location for which the error ratio p' exceeds the
limit p“™ is joined to the region. Thus the final size of
the region depends on the shape of the error function.
In this example, the ratio pi™ was set at 4.0. Similarly,

no prohibited locations (Figure 25) are considered.
o .. The-maximum-size-of the region M is~given:—he giveir

have —developed —an adaptive windowing technique as an
extension of relaxation labeling disparitar analysis for the
selection and matching of tracked points.? The actual image
location of each point is the lower left comer of the
corresponding mark. The resulting data structure consisted of
a list of point observations for each image (time), e.g.,

time %, ( (py 2o X1 1) @2 29 X2 ¥2) (B3 o X3 ¥3) ... )

time £, ( (1 1) X1 3)) P2 1y X3 ¥) (P38, X3 ¥3) ... )

Points are given a unique label when they are encoun-
tered for the first time. After the tracking of a point has
started, its label remains unchanged until this point is no
longer tracked. When no correspondence is found in the sub-
sequent frame for a point being tracked, either because of
occlusion, or the feature left the field of view, or because it
could not be identified, tracking of this point is discontinued.
Should the same point reappear again, it is treated as a new
item and given a new label. Approximately 25 points per
ir:age have been selected in the sequence shown in Figure
34,

In ‘the search for the Focus of Expansion, the optimal
FOE-location from the previous pair of frames is taken as the
initial guess. For the very first pair of frames (when no pre-
vious result is available), the location of the FOE is guessed
from the known camera setup relative to the vehicle. The
points which are tracked on the two cars (24 and 33) are
assumed to be known as moving and are not used as refer-
ence points to compute the FOE, vehicle rotation, and velo-
city. This information is eventually supplied by the reason-
ing processes in conjunction with the Qualitative Scene
Model.

Figure 35 shows the resuits of computing the vehicle’s
motion for the same sequence as in the previous figure. Each
frame ¢ displays the motion estimates for the period between
t and the previous frame 1. Therefore, no estimate is avail-
able at the first frame (182). Starting from the given initial
guess, the FOE-algorithm first searches for the image loca-
tion, which is not prohibited and where the error function
(equation 35) has a minimum.

The optimal horizontal and vertical shift resulting at this
FOE-location is used to estimate the vehicle’s rotations
around the X- and Y-axis. This point, which is the initial
guess for the subsequent frame, is marked as a small circle
inside the shaded area. The equivalent rotation components
are shown graphically on a £ 1° scale. They are relatively
small throughout the sequence such that it was never neces-
sary to apply intermediate derotation and iteration of the
FOE-search. ~ Along with the original displacement vectors
(solid lines), the vectors obtained after derotation are shown
with dashed lines.

After the location with minimum error has been found,
it is used as the seed for growing a region of potential FOE-
locations. The growth of the region is limited by two restric-
tions:

® The ratio of maximum to minimum error inside the
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FOE-region. region regardless of their error values.
The resulting error ratio p™** = max(p') for the points
inside the region indicates the shape of the error func-
tion for this area. A low value for the ratio pP™* indi-
cates a flat error function. The value for p™=* is shown
as FOE-RATIO in every image.

For the computation of absolute vehicle velocity, only a
few prominent displacement vectors were selected in each
frame pair. The criterion was that the vectors are located
below the FOE and their length is more than 20 pixels. The
endpoints of the selected (derotated) vectors are marked with
dark dots. The parameter used for the computation of abso-
lute advancement is the height of the camera above the
ground, which is 3.3 meters (11 feet).

5.2 Motion Detection and Tracking

Following the computation of the FOE locations in each
of the frames in the sequence, the QSM processes the images
and determines the motion of the moving objects and builds a
3D representation of the environment as described in section
4. Figures 36 (a-f) show the complete scene interpretations
starting at frame 183 up to frame 197. Interpretations are
ranked by their number of stationary entities, i.e,, "Interpreta-
tion 1" is ranked higher than "Interpretation 2" if both exist.
During this run, the maximum number of concurrent interpre-
tations was two. Whenever two interpretations exist at the
same time, they are lined-up horizontally in Figure 36. Oth-
erwise, interpretations are displaced to indicate that they refer
to different points in time. Entities are marked as stationary
or mobile. Entities which carry no mark (just the label) are
stationary and have not been found to be closer than any
other entity in the scene. A square without a pointer in any
direction means that this entity is considered mobile, but that
the direction of movement could not be determined for the
current frame interval.

The scene contains two moving objects, a car (24)
which has passed the ALV and is moving away throughout
the sequence and another vehicle (33), approaching the ALV
on the same road, which appears in frame 185.

After the first pair of frames (frame 183), two interpreta-
tions are created due to the movement of point 24 (the reced-
ing car). Interpretation 1 is preferred because it contains 23
stationary entities instead of 18 in interpretation 2. The latter
interpretation is discarded due to inconsistent expansion of
the points considered moving downwards.

A single interpretation is pursued from frame 184 until
frame 194. In this period, no object motion other than the
one caused by point 24 is observed. However, the perception
of the 3D structure of the stationary part of the scene is con-
tinuously refined by adding new closer-relationships between
entities. Point 24 is always considered mobile, although the

direction of its movement cannot be identified between every
pair of frames.

After frame 195, two interpretations again become feasi-
ble, this time caused by the movement of the approaching car
(point 33). Again, the (correct) alternative 1 was ranked
higher due to the larger number of stationary entities.




. _FRAME 182

FRAME 183

FRAME 184

G - e

FAAME 185

FRAME 186

FAAME 187

FAAME 188

FRAME 189

FRAME 190

Figure 34: Original image sequence taken from the moving ALV after edge detection
and point selection. The selected points are located at the lower-left corners of their
marks. (a) Frames 182-190 of the original image sequence. The scene contains two
moving objects, one car moving away from the ALV (point 24) and another car

approaching the ALV (point 33).
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FRAME 191 ) FRAME 192 FRAME 193

FRAME 194 FRAME 135 FRAME 1968

» FRAME 197

Figure 34(b): Frames 191-197 of the original image sequence after edge detection and
point selection.
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Figure 35: Displacement vectors and estimates of vehicle motion for the image
sequence shown in Figure 34. The shaded area marks the possible FOE locations, the
circle inside is the FOE with the lowest error value. FOE-RATIO measures the
flatness of the error function inside this area. The absolute advancement of the vehicle
is estimated in meters, vehicle rotation is plotted in a coordinate grid over £1.0°. (a)
Displacement vectors and estimates of vehicle motion for frames 182-190 shown in
Figure 34(a).
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Figure 35(b): Displacement vectors and estimates of vehicle motion for frames 191-
197 shown in Figure 34(b).
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FRAME 183: int tation 2

FRAME 183: int tation 1

FRAME 184: tnt, tetion 1

FRAME 185: int: tation § FRAME 1868: Int. tation 9

FRAME 187: Interpretation 1

FRAME $80: Interpretation FRAME 189: iInt tation V ) FRAME_190: inte

Figure 36: Scene interpretations for image sequence in Figure 34. (a) Frames 183-190.
After the first pair of frames two interpretations are created due to the movement of
point 24 (the receding car). Interpretation 1 is ranked higher because it contains 23
stationary entities instead of 18 in interpretation 2. The latter interpretation is dis-
carded after frame 184 due to inconsistent expansion of the points considered moving
downwards. The single interpretation from frame 184 is pursued, because no object -
motion other than the one caused by point 24 is observed in this period.




FRAME 19%: int tation 1 FRAME 192: Int station § FRAME 193: int; tation ¥

FRAME 194: int, tation 1

FRAME 138: It etation FRAME 198: Iat tation 2

FRAME 197: int, etation 9

Figure 36: (b) Frames 191-197. The 3D structure of the stationary part of the scene is
continuously refined by adding new closer-relationships between entities.
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The two interpretations are pursued simultaneously until
frame 197. At this time, a pending closer-conflict between
point 33 and 76 in interpretation 2 is resolved. Point 76 is
clearly closer to the ALV because it is near the bottom of the
image, but the faster expansion of point 33 contradicts that.
Therefore, as in the synthetic example, interpretation 2 can be
discarded in favor of interpretation 1 and point 33 is correctly
identified as approaching the ALV (Figure 36(f)).

B. Bhanu and W. Burger, ‘‘Approximation of Displace-
ment Field Using Wavefront Region Growing,”” Com-
Ilaggesr) Vision, Graphics and Image Processing, (March

S. Bharwani, E. Riseman, and A. Hanson, ‘‘Refinement
Of Environmental Depth Maps Over Multiple Frames,”
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This experiment shows that the Qualitative Scene Model
is robustly maintained under real-world conditions, i.c., noise,
distortion, imperfect derotation, and location of the FOE.
The number of simultaneous interpretations is quite small
(maximum is 2) and the correct interpretation clearly ranks
higher at any point in time.

6. CONCLUSIONS

In this paper, we presented a qualitative approach to
scene understanding for mobile robots in dynamic environ-
ments. The challenge of understanding such image
sequences is that stationary objects do not appear as station-
ary in the image and mobile objects do not necessarily appear
to be in motion. Consequently, the detection of 3D motion
often requires reasoning far beyond simple 2D change
analysis.

The approach taken here clearly departs from related
work by following a strategy of qualitative, rather than quan-
titative, reasoning and modeling. All the numerical efforts
are packed into the computation of the Focus of Expansion
(FOE), which is is accomplished entirely in 2D. To cope
with the problems of noise and errors in the displacement
field, we determine a region of possible FOE-locations
instead of a single FOE. Termed the Fuzzy FOE, it is prob-
a(l)a(lli one of the most robust techniques of this kind available
today.

We showed on sequence of data that, even without
knowing the exact location of the FOE, powerful conclusions
about motion and 3D scene structure are possible. From
these clues, we construct and maintain an internal 3D
representation, termed the Qualitative Scene Model, in a
generate-and-test cycle over extended image sequences. This
model also serves as a platform for other visual processes,
such as occlusion analysis, perceptual grouping, and object
recognition. To overcome the ambiguities inherent to
dynamic scene analysis, muitiple interpretations of the scene
are pursued simultaneously.

The examples given in the paper show the fundamental
operation of our approach on real images produced by the
Autonomous Land Vehicle. We also wanted to demonstrate
that some apparently simple situations require relatively com-
plex paths of reasoning. Of course, the exclusive use of dis-
blacement vectors from point features is a limiting factor. To
exploit a larger part of the information contained in the
image and to demonstrate the full potential of our approach,
more complex 2D features, such as lines and regions, will be
employed in our future work.
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