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Fig. 10. Colon 4, Number of poinis—435: cluster time—-1.50 s.

By taking into account the presence of a certain number of
small triangular submatrices which do not merge with each other,
(F;,---,T;), an investigation is carried out to test whether
this region could be a concavity sct in the shape boundary, Let
P,, Py be the endpoints of the region defined by Ty, - -, Ty
on the shape, Let, furthermore, Z be the triangular submatrix
of MLy obtained by merging together T, -+ - . T;{ie..Z Is the
submatrix of ML;(s, 1} where g <5 <7 ¢ <1< b). Thetestis
based on the evaluation of all the elements belonging to Z
which do not beleng to any T,,-- -, T;. This region, called
test region, is indicated in Fig. 2 by dotted lines. If all the
eiements in the test region are zeros, then the algorithm looks
for a mirror of §;. The detection of such a region is made by
looking for a square submatrix of M/, made of only ones,
PRISM (5, ¢}, intheband o + 1 <5< h - 1, 1 Kr=g- |,0rin
the band b+ 1 sk, e+ 1 <¢<h- 1, where £ is the num-
ber of rows of the ML; matrix.

If such a region does exist, we say that the points belonging
to the “intrusion” [e.g., Pas, P33, Py, P25, Pae, P2 in Fig.
I{a)] can be considered as a whole set. By using this tech-
nique combined with the procedure described in the previous
section, the algorithm divides the shape in the foliowing sets:

(Py, Py, P3,Pa, Ps, Pe, P, T3),
(P8)P9!'[)|.0!P!I)P12![)]3!‘0]4)1
(Pra, Prs, Pro Pyas Pig Pro, Pag, Par  Pd),
(Pra, Poz, Poa, Pas, Fas, Paa Py

The method described in [1] produces as a single element of
the decomposition that one formed by the points P5, -+, Pia,
Paa,t 0, Py, Py The fact that our method groups Pyg, - .
P13 and Pgy, 00, Pyp, Py separately suggests that our tech-
nique may be producing finer divisions than the previous one,
The algorithm was implemented ir Fortran and run on an IBM
370-145. The execution time is, for Fig. 1, 1.05s. The value
of the correlation factor is CORR, = 0.7 for the first itera-
tion, CORR, = CORR, - 0.12 for the second iterarion, and
CORR; = CORR; - 0.12 for the third iteration. The same ap-
proach is used to carry out the foliowing examples.

V. SOME EXAMPLE AND TIME EVALUATION

We report here the original boundary . the obtained decom-
position, and the CPU execution time in the cases listed in
Figs, 5-10,
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Segmentation of Images Having Unimodal Distributions

BIR BHANU axp OLIVIER D. FAUGERAS

Abstract—A gradient relaxation method based on maximizing a crite-
rion function is studied and compared to the nonlinear probabilistic
relaxation method for thce purpose of segmentation of images having
unimodal distributions. Although both methods provide comparable
segmentation results. the gradient method has the additional advantage
of providing control over the relaxation process by choosing three
parameters which can be tuned to obtain the desired segmentation re-

sults at a faster rate. Examples are given on two different types of
scenes.

Index Terms—Gradient relaxation, image segmentation. nonlinear
relaxation. optimization. unimodal distribution.

[ INTRODUCTION

Various approaches based on thresholding have been used
by many researchers for the segmentation of both monochrome
and color pictures [1], {2]. Normally, in the application of
these techniques, the histogram shows two or more peaks in
at least one of the spectral features corresponding to various
homogeneous regions of an image. Very often preprocessing
is done to improve the histograms, and local properties are
used to compute the global, local, or dynamic thresholds.
However, if the intensity (or color) histogram of the image is
unimodal. then the application of such methods gives a poor
segmentation and there are no criteria for automatic threshold
selection. Unimodal distributions are typically obtained when
the image consists mostly of a large background area with
cther small but significant regions. For example, in the bio-
medical area, the extraction of the boundaries of various types
of cells is complicated by the fact that the cells are very close
together, their boundaries are poorly defined, and the gray
level histogram is unimodal. Similarly, in scenes with many
different objects as in the case of aeriai photographs, the histo-
gram may have only one peak because the range of intensities
for each object will probably overiap with the ranges of other
subjects. - Jain er af. [3] consider the segmentation of muscle
cell pictures using ten low level operators which are very time-
consuming and require the selection of five thresholds. Rosen-
feld and Davis [4] and Peleg [5] use iterative methods to
modify the histogram, Their methods do not take into ac-
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count the possibility that small regions in an image may have
significance even though they may not show significant peaks
in the histogram of the image. Rosenfeld [6] considers thresh-
olding by relaxation. In this correspondence. we study a gra-
dient relaxation method based on maximizing a criterion func-
tion and compare it to the nonlinear probabilistic retaxation
method [6], [7] for the purpose of segmenting images having
unimodal gray level distributions. Results are illustrated with
the aid of two different types of scenes.

1. SEGMENTATION SCHEMES

Fig. 1 shows two 128 X 128 pixel &-bir images. The back-
ground of the image in Fig. 1(a) consists of a confluent mono-
layer of human skin cancer cells, and the small circular-shaped
objects are human lymphocytes and red blood cells, The ob-
jective is to get the boundaries of all the cells. The image in
Fig. 1(b) is part of an aerial photograph. Here the objective
is to detect significant features such as roads, etc. Gray level
histograms of these images are shown in Fig. 2. Note that the
histograms are almost unimodal. and as 2 consequence, there
is no reliable way of automatically choosing a threshold for
segmenting these pictures. Although one could argue that the
gray level intensity 16 in Fig. 2(b) might be a valley. threshold-
ing the image at this value produces a very poor segmentation.

Commonly used difference operators such as gradient,
Laplacian, and Sobel were applied to the images shown in Fig,
I. For example, Fig. 3(a) shows the Laplacian of the cell
image obtained by convolution of the cell image by a 3 X 3
mask., The gray level histogram of the image in Fig. 3(a) is
shown in Fig. 3(b). We also considered the methods based on
thresholding the histogram of the picture where the gradient,
Laplacian, and edge values are high [1]. However, the pictures
so obtained have a unimodal histegram and lack the criterion
for segmenting them at the valley of two peaks. Threshold-
ing at the gray level corresponding to the mode or mean of the
fittered histogram gave very poor results. Edge detection has
also been done by convolving the images in Fig. 1 with 5 X 5
masks corresponding to the ideal step edges in six directions
[8]. Thresholding of the magnitude image does not show
good segmentation. A number of bar masks of various sizes and
orientations have also been used, but the results were poor (for
the image shown in Fig. 1(a) the width of an edge is about
5~6 pixels).

I, SLGMENTATION USING RELAXATION METHODS
A. Gradient Relaxation Algorithm

In [9], Faugeras and Berthod proposed a relaxation algo-
rithm which is based upon the exglicit use of consistency and
ambiguity to define a global criterion upon the set of units.
This criterion has the inherent problem that the consistency
and ambiguity tend to go in opposite directions. Therefore,
in the present study, we consider a simpler criterion [10]
based on the inner product of probabilitv vector p; and com-
patibility vector q;. N is the number of pixels in the image, g;
is a function of p;’s as discussed below. and we defined the
criterion as

Clp,p2, " ,PNY=) Piq; (1)

[~1=

and carry out its maximization using the gradient projection
approach,

Suppose we have a set of N pixelsi=1,2, -+ A which fall
into two classes A, and A, corresponding to the white (gray
value = 255} and black (gray value = 0). The relaxation pro-

cess is specified by choosing a model of interaction berween
pixels. We attach to every pixel / the ser P of its eight nearest
neighbors. Assuming that objects of interest in the picture are
continuous, we will make like reinforce like and define a com-

409
patibility function ¢ such that
e{i, A, i, Ay =0,  k#1, jin V; foratl |
(i, Agyiyhg) =1, k=1,2 jin I forall i (2)

The compatibility vector ¢; is then defined as

2
qi{hg)= % 25 iy hg,d, Ay o (A,
jeEViI=1
A=1,2, i=1,--" ,N. (3)
In effect, ¢;(A,) is the mean neighborhood probability of
the ith pixel for the class under consideration, i.e., g;,(A;) =
($)Zjev, p;(Ae). The choice of compatibility function in (2)
will give the desired result in the interior of the region, but on
the border of a region, the pixel label may be ambiguous be-
cause of two different classes of neighbors and may cause a
little distortion of the boundary,

The maximization of the global criterion (1) means that we
are seeking a local maximum close to the initial labeling p,.(")
(=1, -+ N) subject to the constraints that the pi's are the
probability vectors. The maximization of {1) results in a re-
duced inconsistency and ambiguity. Inconsistency is defined
as the error between p; and ¢;. Intuitively, this means the
discrepancy between what every pixel “thinks” about its own
labeling (p;} and what its neighbors “think” about it £q;).
Ambiguity is measured by the quadratic entropy and results
from the fact that initial labeling p‘-(") is ambiguous (p{®) are
not unit vectors). We are therefore trying to align the vectors
P; and g; while turning them into unit vectors. Indeed, it can
be easily seen that each term p; - g; is maximum for P;=q;
(maximum consistency) and p; = ¢; = unit vector (maximum
unambiguity).

The initial assignment of probabilities to every pixel is very
important. It affects the convergence rate and the results of
reiaxation schemes. The simplest way to compute the initial
probabilities {6]. [11] is to define

(A I 4
PitA) = =5 (4)
where /(i) is the intensity at the ith pixel and G is the number
of possible gray levels (0 /(i)=& - 1). This has the prob-
lem of compietely ignoring any g priori information that we
may have about the contents of the image. It is possible to
include a rough knowledge of the relative number of white
pixels versus black pixels. 1f / denotes the mean of the image,
we may have an approximate idea of the value of the number
of white versus black pixels (the ratio rg = Nyhite/Mblack ) 1T
we estimate this rario for the image. we obtain

1
;,,Zp,-(m

i

E(h|) _
E(x)

_ Mwhie _

== (5)

jaad|

n 1
black ;Zﬁj(hz)
i

If we know a priori that there are more white than black pixels
in the image, we may want to modify the distribution of gray
levels so as to make the ratio » closer to the known value rq.
One very simple way to do so is to define

I'svacT s -1)+1, (6)
where E, is a desired mean and FACT is a function of the inten-
sity which is taken to be equal to 1 if > 7T and less than 1 if
I<{I. In our experiments, the initial assignment of probabili-
ties has been obtained by

iy-1
Pi(A;)=FACT = (@T} 0.5. (7)
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‘ Fig. 2. Gray level histogzam of ihe images in Fig. 1. {a) Histogram of
b the cell image. Mean = 163.76. (b) Histogram of the aerial image.
(b) Mean = 26.47.
Fig. 1. Two typical 128 X 128, 8-bit images. (a) Cell image. (b) An
aerial image,
When (i) <Z FACT has usually been taken between 0.7 and 1.
Of course, if the first term of {7) happens to be greater than
0.5 or less than -0.5, then a probability of one or zero, respec-
tively, is assigned to that pixel.
The gradient of the criterion C in (1) is obtained as
o c2q,00) (8)
e = 240
opi{A) !
0 a0 )
T T eqilig
ap;(A;) '
and the iteration of the p's is given by
aC
2 (W) =pf () +p ™) P [———} (10)
ap;(Ay) e
aC 458 T
(1) 3y = p ) oy 4 oY play | 2 11
p; (M) =p (M) +p D Bmom (11) -
se T
where p " is a positive step size, s A
In order to have pl.(””) (?\1)+pi("“) (A2) =1, the projec- e -
tion of the gradient should be such that s \
aC 1 aC aC 150 1
P.‘”’[—] =2q; (A1)~ —[ + } (12) 1
f i ap!(y\l) i 1 2 ap,(?\l) ap,(lz) ;:' ] \h\‘
and . el
[ ] » 148 159 Fa o5 N
P(”)‘: 8¢ :l 2g;(%;) 1[ o¢ ac}(u) Fig. 3. Laplacian of the cell image and th di level
NS rumprunll e LAz ) — + , ig. 3. Laplacian of the cell image an ¢ corresponding gray leve
' ap; () ' 2 1dp(hy) 0p;(A2) histogram.
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CRITERION } 100

80 | 4 1 i i 1 1

1 2 3 4 S [ 7 8
ITERATION NUMBER

Fig. 4. Variation of criterion {1) with the iteration number for various
values of o) and o for the cell image. «)/ay = FACT = 1 in all cases.

(b
Fig. 5. Effect of different values of @y and o, on the cell image.
FACT = | in both cases. In each figure, the first row contains images
for the first four iterations, and the second for the next four itera-
tiens. This figure illustrates the biasing of a class. {a) ey = 0.4, a; =
0.2. (b)a; = 0.2, 0, =0.4.

but
8¢ _ac__
3p; (M) 3pi(A2)
So the iterations in (10) and (11) reduce to
2 (=0 () + 0™ [2g;00) - 1] (14)
2D (M) =p M (M) + 0™ [1- 24;,(A)1. (15)

Normally, o is kept constant for all pixels during each itera-
tion, and it is determined to have the largest possible vaiue such
that the p/s at the (7 + L)st iteration still iie in the bounded
convex region of the 2N-dimensional Euclidean space defined

411

Fig. 6. Results showing that for a fixed ratic of ¢, and a5, increasing
both of them by 1 constant fuctor increases the speed of convergence.
In each figure, ract =1 is taken. (a) «; = oy = 0.2, iteration 8. (b)
oy Fag =0.5, iteration 4. (¢) a; =aq = 0.9, iteration 3.

by pi(A)+p;(A)=1 and p;(A) 20, k=1, 2 and i=1,
*-,N. However, in the two-class case considered, it is easier
to compute a p(") for each pixel. This leads toa faster conver-
gence rate., The maximum p0581ble value for p is obtained

from (14) by setting ("1 (A;) =1 when 2;(A)- i >0
andp("“)(?\ )-—Owhen 2¢;(7;)- 1<0. Thus,

)]
(M) if 2¢;(0)-1>0  (16)
(n) 2g;i(A)- 1

imax ( Pf(”) (A)) )
1-2q;(A))°

Since we want to be able to control the rate of convergence
and the number of pixels within each class, we actually took

p (A =0 (M) + 08 [24;00) - 1) (18)

and

2}
if 2g;(n) - 1<0, (17)




412 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. PAMI4, NO. 4, JULY 1982

MINV: BB MAxXU: 267
teee

1eee ‘
l

[1:12]

SRR SRR

i
]
100 *{'“‘,

209

e g0 198 L 140 169 188 20¢ 228
(b)

MINU: 53 MAXU: 224
t2ee

1800

00
|

[:1:1 =

e

a
=
.
-
}

|
209 7 Jw
49 69 80 198 120 140 169 180 cee 22@ c4e

(d)

MINGI 48 MAXU: 239

1600 73

1409 T ‘
1208 v
i
1092 7 h!
|
L
|

dee |

|
420 = M '
zee - \4 [\ i
h
B AL W, S A _/A\ j N
49 66 88  10@ 120 148 160 180 =00 220 249

(f)

Fig. 7. Results of gradient relaxation method at various iterations and
corresponding histograms for the cell image. facT = 0.9, oy = 0.2,
as = 0.1, (a) Iteration 1. (b) Histogram of Fig. 7(a). (c} [teration 3.
(d) Histogram of Fig. 7(c). (e) Iteration 4. (I} Histogram of Fig, 7(e).
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it 2g;(0)-1<0

where k = |, 2 and @, and & are constants less than unity. In
the actual implementation of the algorithm, we only need to
evaluate (18) for k=1 or 2 only since pl.(” 1) (?\l)+pt.(”+”
(Az) =1L A side effect of computing pl.(") for every pixel is
that we may not be following the gradient exactly. However,
it can be expected that we are approximately in the direction
of the gradient, and the criterion (1) is still maximized, It is

p{ = e
! ‘lzp(n)

imax*

(19)

our conjecture that for the two-class case, the criterion will
always increase. Fig. 4 shows the behavior of the criterion as
the iteration number increases for the cell image when Uy =0y,
The same behavior is obtained when & and &, are not equal.
The values of «; and a, can be used to bias a ciass and control
the speed of convergence, hence the control over the relaxa-
tion process. Figs, 3 and 6 illustrate these effects for different
values of a; and &, on the cell image.

Fig. 5 shows how changing the ratio of &, and ¢, allows the
control of where we converge by biasing one class. At every
step. the probabilities are displayed as gray levels, i.e.,[(”) ()=

P (M) # (G- 1). From Fig. 4, it can be seen that for a

fixed ratio of o, and o, increasing both of them by a con-
stant factor increases the speed of convergence, and Fig. 6 veri-
fies the fact that indeed we converge towards a similar result.
What we seem to be losing when increasing a; and &, is some
amount of smoothing: there are a few more isolated small
biack blobs in Fig. 6(b) and (c) than in Fig 6(a). The magni-
tude of a; and @, controls the degree of smoothing at each
iteration and their ratio controls the bigs. Therefore, changing
the values of a; and &, not only allows one to control where
one wants to converge, but also how fast one converges. Thus,
controi over the relaxarion process is achieved.

Figs. 7 and 8 show the results of gradient relaxation method
at various iterations and corresponding histograms for the ceil
and aerial image, respectively, Observe that at the first itera-
tion itself, we pet two peaks separated by a valley which can
be used to automaticailly select the threshold to obtain seg-
mentation. As the number of iterations increases, the two
peaks move apart. average brightness increases, and the conver-
gence of probabilities takes place as expected. When the peaks
are far apart. thresholding can be done at the mean vajue.
Also, it has been found that the actual value of ract does not
affect the value of criterion (see Fig. 9) very much, hence the
speed of convergence, but it affects the segmentation results
as expected. Fig, 10 shows the gradient relaxation results at
various iterations for different values of ract wheno, =a, =
0.5 for the cell image.

B. Nonlinear Probabilistic Relaxation Algorithn

Rosenfeld [6], [7] has used the nonlinear probabilistic re-
laxation algerithm rtor thresholding, In this algorithm, the
probability ol labeiing the jth pixel with label X, at the (n +
l)st iteration is given by

(n) (n)
P,-('”l)(lk)z by (Ak)qi (Ag)

-~

> i af O
i=i

k=1,2, i=1,--- N (20)

Assuming the same compatibility function and the initiat as-
signment of probabilities as in the discussion of the gradient
technique, the results on the images shown in Fig. 1 are illus-
trated in Figs, 11 and 12. 1t can be seen from the histogram
plots that in the first few iterations, histogram equalization
takes place, resulting in the enhanced image, and then black
and white classes get separated. However, in this method,
unlike the gradient method, we do not have any control over
where we converge and how fast we converge. As an aside,
Helland [12] has shown that the compatibility function de-
fined in (2) results in the maximum convergence speed of the
Peleg relaxation scheme [13] for the two-class problem. In
this case, Peleg’s updating rule becomes the same as (20).
Thus, it is possible to control the convergence rate of the non-
linear relaxation method by adjusting other parameters such
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Fig. 12. Results of nonlinear relaxation method at various iterations
and corresponding histograms for the aerial image. ract = 1. (a)
Iteration 1. (b} Histogram of Fig. 12(a). (¢) [teration 3. (d) Histo-
gram of Fig. 12(c). (¢} Iteration 5. (f) Histogram of Fig. 12(c).

;. as the compatibility coefficients. However, the resuits of nonlinear relaxation methods provide comparable segmenta-

“ relaxation can be sensitive to the choice of these coefficients. tion results. Second, it is not possible to compare these two
methods directly because they do not converge to exactly the
same limit, However, as illustrated in Figs. 5, 6, and 10, it is
From the images and histograms shown in Figs, 7, 8. 11,and  only the gradient method that provides the control over the
12, two observations can be made. First, the gradient and relaxation process by choosing ihe ®y, Gy, and FacT param-

IV, CONCLUSION
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eters which can be tuned to obtain the desired segmentation
results at a faster rate. The magnitude of the o’s controls the
degree of smoothing at each iteration and their ratio controls
the bias, The magnitude of ract controls the initial assign-
ment of probabilities. Although we have presented a two-
class problem for the segmentation of images having unimodal
distributions, the method can be easily generalized to include
more classes [141.
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of a region or along angle bisectors. This note discusses a generalization
of the MAT in which a score is computed for each point P of a grayscale
picture based on the gradient magnitudes at pairs of points that have P
as their midpoint. These scores are high at points that lie midway be-
tween pairs of antiparallel cdges or along angle bisectors, so that they
define a MAT-ike “skeleton,” which we may cail the GRADMAT.
However, this skeleton is rather sensitive to the presence of noise edges
or to irreguiarities in the region edges, and it also is subject to artifacts
created by pairs of edges belonging to different objects,

Index Terms—image approximation, image processing, medial axis

-, transformation, region representation.

[. INTRODUCTION

In the early 1960s, Blum {1] introduced the medial axis
transformation (MAT) of a set §; this is basically the set of cen-
ters and radii of the maximal disks that are contained in §, or
equivalently, the set of points of S whose distances to the com-
plement § are local maxima, together with these distances. It is
not hard to see that medial axis points tend to lie midway be-
tween opposite borders of § or along the bisectors of angles
formned by the borders. Thus, these points constitute a kind
of “skeleton” of §. For an introduction to the MAT, see [2,
sect. 9.2.3].

Blum’s MAT is defined for a picture only after the picture
has been segmented into $ and §. Several generaiizations of the
MAT to grayscale pictures have been suggested. We can define
the gray-weighted length of a path as proportional to the sum
of the gray levels at the points of the path; the gray-weighted
distance between two points can then be defined as the lowest
gray-weighted length of a path between them, and the gray-
weighted MAT (GMAT) of a picture can be defined as the set
of points whose gray-weighted distances to the set of 0's in
the picture are local maxima, together with these distances [3].
Note that this definition still requires segmentation of the pic-
ture, since it treats 0's as “background” and regions of nonzero
values as objects. Another generalization is based on finding
maximal homogeneous disks in the given picture; the set of
centers, radii, and average gray levels of these disks defines a
generalized MAT, called the SPAN (spatial piccewise approxi-
mation by neighborhoods), since this information can be used
to generate approximations to the picture [4].

This note discusses a generalization of the MAT in which
a score is computed for each point # of the picture based on
the gradient magnitudes a¢ pairs of points that have £ as their
midpoint. These scores are high at points that lie midway be-
tween pairs of antiparallel edges or along angle bisectors, so
that they define a MAT-like “skeleton,” which we may call the
GRADMAT. However, this skeleton is rather sensitive to the
presence of noisc edges or to irregularities in the region edges,
and it is also subject to artifacts created by pairs of edges be-
longing to different objects. Note that the GRADMAT scores
are not thresholded; the GRADMAT is a “gray” skeleton, not
a binary one.

I. THE GRADMAT

The basic idea of the GRADMAT is to compute a score for
every F based on the gradient magnitudes at all pairs of points
that have £ as their midpoint. Evidently, this score will be
very high at the center of a circle (or region that has a high de-
gree of central symmetry); and it will also be high along the mid-
iine of a parallel-sided strip. There will be weaker responses at
points that lie on local axes of symmetry, e.g., on angle bisec-
tors. since such points are midway between at least one pair of
cdges.

These vxamples show that the GRADMAT is in many ways
analogous to the MAT. However, it shouid be realized that the
analogy is only partial. To see this, consider the GRADMAT

0162-8828/82/0700-0419800.75 © {982 IEEE
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Cormrection o “Segmentation of Images Having
Unimodal Distributions”

BIR BHANU anp OLIVIER D. FAUGERAS

In the above paper,! three figures have been inadvertently
switched. The correct figures are as follows.

Fig. 7(a) should be Fig. 7(¢).
Fig. 7(e) should be Fig. 7(a).
Eig. 8(c) should be Fig. 8(e).
Fig. 8(¢) should be Fig, &(c).
Fig. 11(i) should be Fig. 11(1).
Fig. 11(1) should be Fig, 11(j).
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