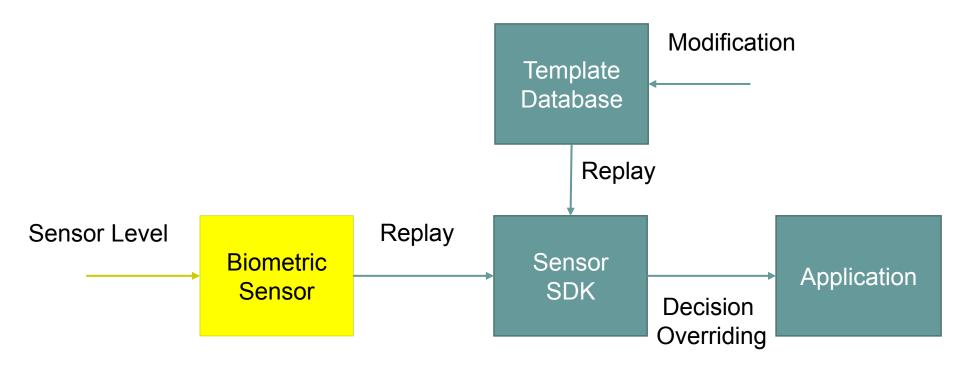
UCRIVERSITY OF CALIFORNIA

Iris Liveness Detection by Relative Distance Comparisons

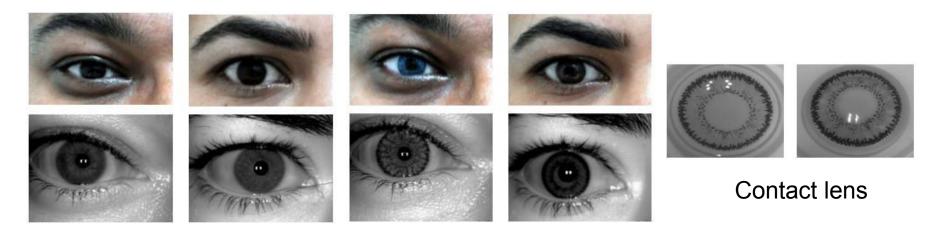

Federico Pala, Bir Bhanu Center for research in intelligent systems University of California, Riverside

IEEE Workshop on Biometrics CVPR 2017 July 21 2017 – Honolulu, Hawaii, USA

Liveness Detection

- > Detect vitality from biometrics signature
- Targeted to sensor level attacks

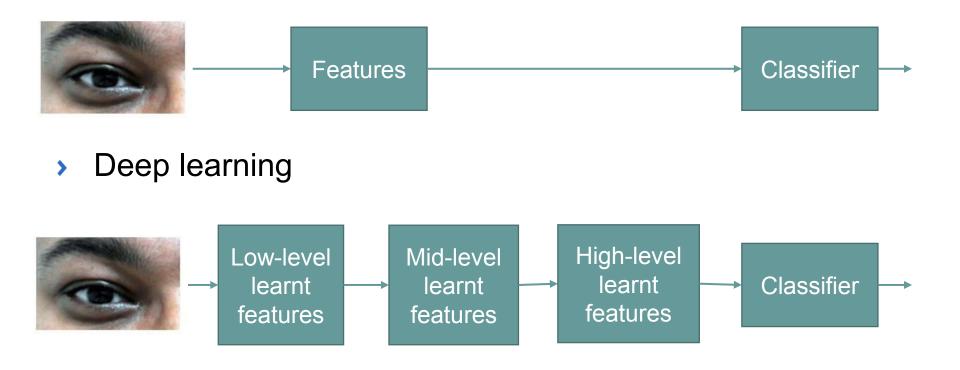
Iris Liveness Detection


- Training
 - > Collection of real and fake iris images
 - Photo attacks:

Adam Czajka - Database of Iris Printouts and its Application: Development of Liveness Detection Method for Iris Recognition, In: International Conference on Methods & Models in Automation & Robotics (2013)

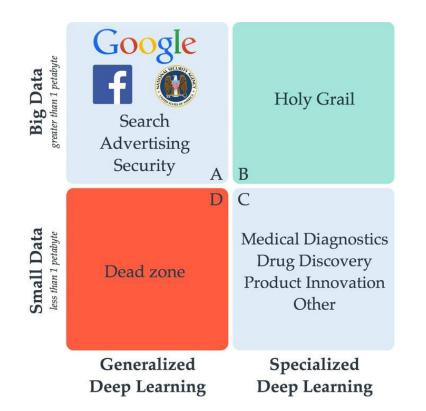
Iris Liveness Detection

- Training
 - Collection of real and fake images
 - Contact lens attacks:


real

fake (textured lens)

Daksha Yadav, Naman Kohli, James S. Doyle, Kevin Bowyer - **Unraveling the Effect of Textured Contact Lenses on Iris Recognition**, In: IEEE Transactions on Information Forensics and Security (2014)


Artificial Intelligence Approach

- Let an intelligent agent perceive what are the characteristics that make a biometrics real or fake
- Pattern recognition

Specialized Deep Learning

	random	optimized		
benchmark	AO	cf10-11	spoofnet	SOTA
Warsaw	99.84	67.20	66.42	97.50
Biosec	98.93	59.08	47.67	100.00
MobBIOfake	98.63	99.13	100.00	99.75

David Menotti et Al. - Deep Representations for Iris, Face, and Fingerprint Spoofing Detection, In: IEEE Transactions on Information Forensics and Security (2015)

Shalini Ananda - An Open Letter to Yann LeCun—Small Data Requires Specialized Deep Learning, https://tinyurl.com/smalldata

Our Approach

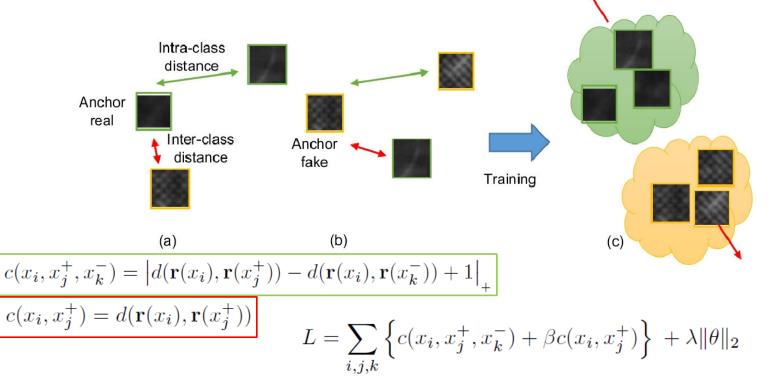
- > Learn by comparing local features
 - > Set of n reference real and fake patches:

>
$$R_L = \{ r(x_{L_1}), r(x_{L_2}), ..., r(x_{L_n}) \}$$

> $R_F = \{ r(x_{F_1}), r(x_{F_2}), ..., r(x_{F_n}) \}$

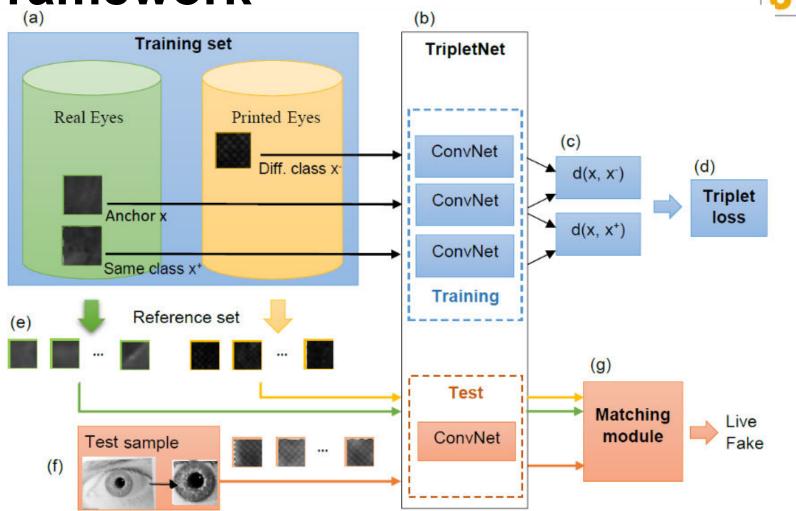
- > Matching problem:
 - > Given a query image
 - > Extract p patches $Q = \{r(Q_1), r(Q_2), \dots, r(Q_p)\}$
 - > Real if $\sum_{j=1}^{p} D(R_L, Q_j) \ge \sum_{j=1}^{p} D(R_F, Q_j)$
 - Fake otherwise

Architecture


Layer description	output
32x32 gray level image	
5x5 conv. filters, stride 1, $1 \rightarrow 64$ feat. maps	64x28x28
batch normalization	64x28x28
rectifier linear unit	64x28x28
3x3 conv. filters, stride 2, padding 1, 64 \rightarrow 64 feat. maps	64x14x14
$3x3$ conv. filters, stride 1, $64 \rightarrow 128$ feat. maps	64x12x12
batch normalization	64x12x12
rectifier linear unit	64x12x12
3x3 conv. filters, stride 2, padding 1, $128 \rightarrow 128$ feat. maps	128x6x6
$3x3$ conv. filters, stride 1, $128 \rightarrow 256$ feat. maps	256x4x4
batch normalization	256x4x4
rectifier linear unit	256x4x4
3x3 conv. filters, stride 2, padding 1, $256 \rightarrow 256$ feat. maps	256x2x2
fully connected layer $4x256 \rightarrow 256$	256
dropout $p = 0.4$	256
rectifier linear unit	256
fully connected layer $256 \rightarrow 256$	256
softmax	256

Jost Tobias Springenberg et Al. - **Striving for Simplicity: The All Convolutional Net**, In: ICLR workshop track (2015)

Metric Learning


- > Increase number of examples
 - patch based representation
 - > examples arranged in triplets

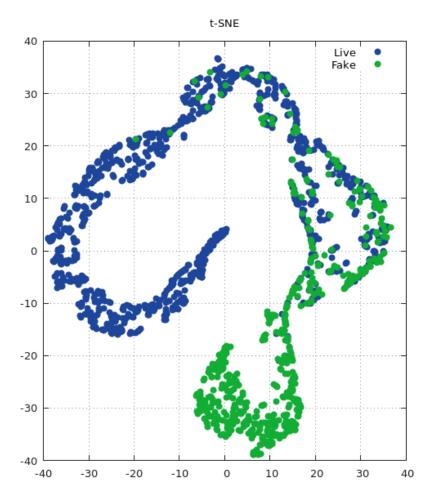
Elad Hoffer, Nir Ailon - **Deep Metric Learning Using Triplet Network**, International Workshop on Similarity-Based Pattern Recognition (2015)

Framework

Validation: Classification error leads to underfitting

- > Criterion: how many patches closer to the respective reference set?
- Stop: when the number of violating triplets does not decrease for five epochs.

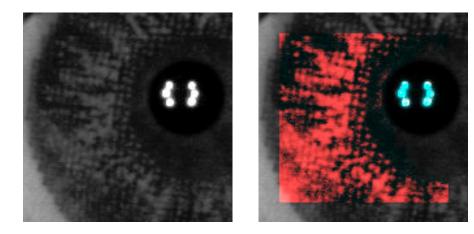
Results

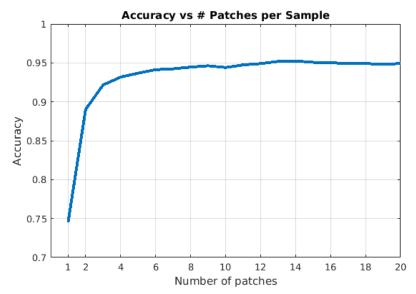

> Average Classification Error %

Dataset	Triplet Net	SID	CNN	Dense SIFT	DAISY	LCPD
Iris-2013- Warsaw	0.0	0.0	0.2	0.5	0.9	7.1
Cogent	5.5	6.2	-	13.9	17.2	11.0
Vista	0.7	3.5	-	2.5	8.8	3.1

- Computational time: 0.2ms + 1ms (GPU)
- Average between
 - > Attack Presentation Classification Error Rate (APCER)
 - Bona Fide Presentation Classification Error Rate (BPCER)

T-SNE Representation




Visualization

In red, patches classified as Fake (sliding window)

Accuracy wrt the number of patches to evaluate a test iris image

Conclusions

- We proposed a software system for Iris liveness detection
- > We overcome the **scarcity of examples** by:
 - Patch based representation
 - Full scale image analysis
 - Metric learning
 - > Examples arranged in a multitude of triplets
- > State of the art or better performance