

Component Biologically Inspired Features with Moving Segmentation for Age Estimation

> Yi-Tseng Cheng, Gee-Sern (Jison) Hsu National Taiwan University of Science and Technology Choon Ching Ng, Moi Hoon Yap Manchester Metropolitan University, UK

# Outline

- Issues
  - Many different boundaries for age segmentation
  - Limitations of BIF (Biologically Inspired Feature)
- Proposed Solution
  - Moving segmentation and hierarchical classification
  - Component BIF (CBIF)
- Performance on benchmark databases

## Issues

- 2 Groups: ages split into Young and Adult groups with 20 as the boundary age in [5, Neurocomputing, 2013].
- 3 Groups: boundaries at 10 and 20 in [12, SMC 04], 19 and 60 in [11, ICCV 09], and 15 and 30 in [4, ICASSP 12].
- 4 Groups: boundaries at 1, 16, 50 years in [13, ICB 09], and 29, 49, 69 in [14, CVPR 12].
- Groups with the same age gap: [2, CVPR 09], [15, ISCIS 08].

# Solution

- Moving segmentation: exhaustive search for boundary ages good for segmentation across various age gaps.
- Component BIF: an improved version of the BIF, defined on facial components with more parameters allowed to vary, leading to a superset of BIF.
- Hierarchical classification.

## **Component Biologically Inspired Features**



- Components defined by landmarks (RTSM, ICCV 15);
- Independent and catenated features;
- Number of layers, orientations, scales, spatial frequencies can be different for each component.

#### Differences between CBIF and BIF

• **BIF**: 
$$G(x, y; \omega_i) = exp\left(-\frac{\left(X^2 + \gamma_i^2 Y^2\right)}{2\sigma_i^2}\right) cos\left(\frac{2\pi}{\lambda_i}X\right)$$

• **CBIF**: 
$$G(x, y; \omega_{i,j,k}) = exp\left(-\frac{\left(X^2 + \gamma^2_{i,j}Y^2\right)}{2\sigma^2_{i,j}}\right)cos\left(\frac{2\pi}{\lambda_{i,j}}X\right)$$

- We can define  $J_i$  Gabor filters for Layer-*i*, in terms of layer parameter  $\omega_{i,j,k} = [s_{i,j}, \gamma_{i,j}, \theta_{i,k}, \sigma_{i,j}, \lambda_{i,j}].$
- $X = x \cos \theta_{i,k} + y \sin \theta_{i,k}$ ,  $Y = x \sin \theta_{i,k} + y \cos \theta_{i,k}$
- More independent parameters in each layer!!

## Moving Segmentation



Weighted average of miscl. rates at each age over multiple age gaps  $\Delta_i$ 's. The weight is normalized to  $\sqrt{1/\Delta_i}$ 

#### Moving Segmentation





## Hierarchical Classification

• Given boundary ages, a hierarchical configuration is needed to determine the structure for classification



## **Comparison with BIF**

#### GT (CBIF, BIF)



43 (38, 19)



25 (21, 49)



24 (26, 49)



19 (24, 48)



48 (50, 18)



52 (51, 29)



23 (28, 48)

## Evaluation

#### • Evaluation on FG-NET and MORPH

| Publication               | FG-NET | MORPH |
|---------------------------|--------|-------|
| Guo et al.(2009)          | 4.8    | N/A   |
| Luu et al.(2011)          | 4.1    | N/A   |
| Chang et al.(2011)        | 4.5    | 6.1   |
| Kohli et al.(2013)        | 3.9    | N/A   |
| Hu Han et al.(2013)       | 4.6    | 4.2   |
| Hu Han et al.(2015)       | 3.8    | 3.6   |
| Proposed (truncated CBIF) | 3.62   | 3.41  |
| Proposed (CBIF+CNN)       | N/A    | 2.78  |

