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ebtch to Digital
Photo Matching

o Sketches are important in Llaw
enforcement applications



Different Types of
Skeebches
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Viewed vs Semi-Forensics
Matching Scenario
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Face Skeebch Dabkaseb

o 150 subjects

e 180 «composi&a skeebches and 300
digital face imaqes

o One image used to create sketch
image, the other used for matching

o Sketches are created using FACES
software

o Dataset will be made publicly
available for research
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Experivwental
rotocol

Experiment Source Domain Pairs in Training Target Domain

Viewed Hand Drawn Sketch Composite Sketch
Images (Proposed IIITD

Semi-Forensic Hand-Drawn Sketch _
Composite Face Sketch

Database)

‘Propcwsed IIITD Composite Face Sketch
CMU Mulbi-PIE (Gross ek al.)
I11T-Delhi Siebch (Bhabk et al.)
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Best p@.rﬂformi,a»\g Results:
~hen source domaiin is semi-forensic
skebches



Kev Observations

o Rank-10 identification accuracy improves
by §-10% after applying the transfer
learning technique

o Training with forensic sketches yields
lower accuracy than semi-forensic sketches

o However, Rank-1 (even Rank-10) accuracy
is very Low



Next (Future) Step

@ Try representation-learning with
domain adap%a%mm (transfer
learning) for very small sample size

S. Nagpal, M. Singh, R. Singh, M. Vatsa, A. Noore, and A, Majumdar, Face Sketch Matching via Coupled Deep
Transform Learning, International Conference on Compuler Vision, 2017
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