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Sketch to Digital 
Photo Matching

Sketches are important in law 
enforcement applications



Different Types of 
Sketches
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Viewed vs Semi-Forensics 
Matching Scenario
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IIITD Composite 
Face Sketch Dataset
150 subjects 

150 composite sketches and 300 
digital face images 

One image used to create sketch 
image, the other used for matching 

Sketches are created using FACES 
software 

Dataset will be made publicly 
available for research

Digital	ImagesSketch



Transfer Learning based 
Evolutionary Algorithm

Sketches
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Experimental 
Protocol

Experiment Source	Domain Pairs	in	Training Target	Domain

1 Digital	Image 250

Composite	Sketch	
Images	(Proposed	IIITD	
Composite	Face	Sketch	
Database)	

2 Viewed	Hand	Drawn	Sketch 482

3 Semi-Forensic	Hand-Drawn	Sketch 106

4 Forensic	Hand-Drawn	Sketch 190

5 Composite	Sketch 25

Proposed IIITD Composite Face Sketch 
CMU Multi-PIE (Gross et al.)  

IIIT-Delhi Sketch (Bhatt et al.) 



Results

(a) Experiment 1: Digital Image (b) Experiment 2: Viewed Image (b) Experiment 3: Semi-Forensic Image

(d) Experiment 4: Forensic Image (e) Experiment 5: Composite Image (f) Comparison with Existing Algorithms

(a) Experiment 1: Digital Image (b) Experiment 2: Viewed Image (b) Experiment 3: Semi-Forensic Image

(d) Experiment 4: Forensic Image (e) Experiment 5: Composite Image (f) Comparison with Existing Algorithms



Results
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Best performing Results:  
when source domain is semi-forensic 

sketches



Key Observations

Rank-10 identification accuracy improves 
by 5-10% after applying the transfer 
learning technique 

 Training with forensic sketches yields 
lower accuracy than semi-forensic sketches  

However, Rank-1 (even Rank-10) accuracy 
is very low



Next (Future) Step

Try representation-learning with 
domain adaptation (transfer 
learning) for very small sample size 

S. Nagpal, M. Singh, R. Singh, M. Vatsa, A. Noore, and A. Majumdar, Face Sketch Matching via Coupled Deep 
Transform Learning, International Conference on Computer Vision, 2017
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